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Abstract: The pleiotropic chemokine chemerin is involved in multiple processes in metabolism and
inflammation. The present study aimed to elucidate its regulation in morbid obesity and during
therapy-induced rapid weight loss. A total of 128 severely obese patients were enrolled, and their
basal anthropometric and clinical parameters were assessed. In total, 64 individuals attended a
conservative 12-month weight loss program that included a low calorie-formula diet (LCD), and
64 patients underwent bariatric surgery (Roux-en-Y gastric bypass, RYGB). Blood serum was obtained
at study baseline and at follow-up visits after 3, 6, and 12 months. Systemic chemerin concentrations,
as well as metabolic and immunological parameters, were quantified. During the 12-month period
studied, serum chemerin levels decreased significantly with weight loss after bariatric surgery, as
well as with conservative low calorie therapy; however, the effects of RYGB were generally stronger.
No substantial associations of systemic chemerin concentrations with therapy-induced improvement
of type 2 diabetes and with indicators of liver function and fibrosis were observed. We conclude
that systemic chemerin levels decrease in obese individuals during weight loss, regardless of the
therapeutic strategy. A potential involvement in weight loss-associated improvement of metabolic
disorders and liver fibrosis remains to be further investigated.
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1. Introduction

Metabolic syndrome—comprising obesity, together with a number of co-morbidities
and metabolic disorders, such as type 2 diabetes mellitus (T2D), dyslipidemia, and
hypertension—represents a major problem for public health worldwide, with growing
prevalence [1]. On the cross-roads of metabolic dysregulation and immunity, metaflam-
mation acts as a substantial mechanism of the metabolic syndrome [2]. Besides these
severe health issues originating from obesity per se, metabolic-associated steatotic liver
disease (MASLD)—with phenotypes including steatohepatitis and liver fibrosis—are of
increasing relevance [3,4], and their prevalence is clearly associated with obesity [5].

Among the established therapies for the induction of sustained weight loss and cura-
tion of concomitant metabolic disorders, dietary approaches represent a widely applied
conservative option [6]. As an alternative to dietary and lifestyle intervention, bariatric
surgery strategies comprise potent therapeutical tools enabling weight loss, fat mass re-
duction, and beneficial metabolic outcome in severely obese individuals [7]. Importantly,
recent years have witnessed increasing efforts in order to optimize the individual allocation
of patients to anti-obesity therapy options [8]. Against this background, we previously
presented data from a large comparative study comprising obese patients either undergoing
bariatric (Roux-en-Y (RYGB) or gastric sleeve) surgery or attending a low calorie-formula
diet (LCD) program [9,10]. Circulating quantities of progranulin and C1q/TNF-related
protein 3 (CTRP3) have previously been investigated in this study cohort. While a positive
correlation between serum quantities of both adipokines was detected, rather contrary
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kinetics were observed during weight loss, with a significant increase in progranulin and a
decrease in CTRP3 concentrations within 12 months [9,10].

A number of secretory proteins derived from adipose tissue—generally referred to as
adipokines—are affected by and contribute to the mechanisms underlying obesity-related
inflammation [11]. Due to its involvement in multiple entities of metabolic dysregula-
tion [12], the adipokine chemerin has been suggested as a biomarker for the metabolic
syndrome [13]. It is predominantly expressed in adipocytes [14] and hepatocytes [15],
alongside lower expression levels in further organs, as a product of the RARRES2 gene.
The initially synthesized and secreted pro-chemerin (143 amino acids) is further processed,
undergoing subsequent cleavage events that are catalyzed by extracellular proteases and
regulate the bioactivity of mature chemerin [16]. Activated chemerin isoforms as chemoat-
tractant factors have an essential part in the onset and regulation of tissue inflammation via
modulation of immune cell recruitment and chemotaxis [12]. Of note, chemerin exhibits
both pro- and anti-inflammatory properties. For instance, the hepatic overexpression of
chemerin was shown to be protective against inflammation in non-alcoholic steatohepati-
tis [17]. Exceeding its role as an immune-modulatory adipokine, chemerin is significantly
involved in various metabolic processes [12]. Of note, elevated systemic chemerin concen-
trations alongside a negative correlation with insulin sensitivity in obesity have recently
been reported, suggesting that the relation of serum chemerin to glucose metabolism might
depend on overweight [18].

Overall, the results from the present literature on chemerin’s precise role within the
metabolic syndrome remains somewhat inconsistent. Our present approach aimed to
investigate the relation of chemerin to metabolic disorders associated with morbid obesity,
T2D, arterial hypertension, dyslipidemia, and liver fibrosis. In particular, the regulation
of systemic chemerin in morbidly obese individuals under the conditions of weight and
fat loss represents a highly relevant yet so far unknown issue remaining to be elucidated
by current clinical studies. Our main goal therefore was to investigate chemerin kinetics
during significant weight loss and its interrelation with a beneficial metabolic outcome
in the context of the aforementioned disorders. Of note, the present study included a
comparative investigation of chemerin kinetics during and after conservative and bariatric
intervention, thus enabling a more distinguished interpretation of observed effects and
correlations, as was performed in recent studies [9,10].

In order to address the aforementioned issues, the study encompassed a total of
128 severely obese patients undergoing either RYGB surgery or LCD. Our investigation
focused on the following aspects:

- Regulation of circulating chemerin in severe obesity and its correlation with anthropo-
metric, inflammatory, and metabolic parameters;

- Comparative investigation of weight loss-associated effects on chemerin driven by
either bariatric surgery (RYGB) or conservative therapy (LCD);

- Elucidation of chemerin as a biomarker of metabolic disorders and as a predictor of
an ameliorated metabolic-inflammatory state as a consequence of weight loss.

2. Materials and Methods
2.1. ROBS (Research in Obesity and Bariatric Surgery) Study Cohort

Blood serum was collected from severely obese individuals participating in the ROBS
(Research in Obesity and Bariatric Surgery) study, which was previously introduced in
detail [9]. As a longitudinal and observational study at the University Hospital Giessen,
Germany, ROBS includes patients routinely undergoing either bariatric surgery (gastric
sleeve or Roux-en-Y gastric bypass) or a low calorie-formula diet (LCD) as a dietary therapy
approach for weight loss. Patients participating in the study must not meet the exclusion
criteria of pregnancy, underlying endocrine diseases, untreated bulimia nervosa and binge
eating behavior, illicit drug abuse, neoplasm, severe psychiatric disorders, psychosis, and
psychopathologic instability.
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The 12-month dietary regimen applied for the LCD sub-cohort included an initial
period of 12 weeks of restricting nutrition to a balanced formula diet (~900 kcal/day),
followed by successive replacement of formula nutrition by conventional meals within
8 weeks, and a final stabilizing period without any formula nutrition.

For the present investigations, serum samples and previously assessed anthropometric
and biochemical data from study time points V0 (baseline), V3, V6, and V12 (routine
medical 3-, 6-, and 12-month follow-up visits) of ROBS subjects were analyzed. These
follow-up examination time points were chosen due to the observed considerable decrease
in body weight and fat content within both study cohorts during the respective time
intervals [9,19] and, additionally, in order to identify the potential effects of the changing
nutritional conditions during LCD.

The present study investigated a subset of the previously introduced clinical cohort [9]
that was approved by the local ethical committee at the University of Giessen, Germany
(file code: AZ 101/14). All patients gave their informed consent, and data anonymization
and a privacy policy were applied accurately.

In the present subset, 79 patients of RYGB surgery and 81 individuals undergoing
LCD were studied. Alongside general anthropometric and physiological data, scores
of liver fibrosis (NFS, FIB-4) were assessed according to the calculation formula [20–22].
More detailed information concerning this ROBS subset can be retrieved from a recent
publication [19].

2.2. Data Collection

Samples and the general data of patients were obtained at study baseline and at
routine follow-up visits 3, 6, and 12 months after bariatric surgery or the beginning of
dietary therapy, respectively. General anthropometric, clinical, and psychological data, as
well as medication, smoking habits, nutritional status, and routine laboratory data, were
assessed and were reported previously [19]. Patient subgroups with advanced (NFS > 0.675)
and without liver fibrosis (NFS < −1.455) were determined, as well as those with and
without T2D.

2.3. Quantification of Circulating Chemerin Concentrations

Venous blood was drawn from all study subjects at the time points V0, V3, V6, and
V12, and serum was obtained via centrifugation (4000 rpm, 15 min, and 4 ◦C). Serum
chemerin quantities were measured by applying enzyme-linked immunosorbent assay
(ELISA) techniques (DuoSet ELISA development kits, R&D systems, Wiesbaden, Germany)
in technical duplicates. Quantification was repeated whenever intra-duplicate variation
exceeded 20% in a measurement.

2.4. Statistical Analysis

Data analysis was performed applying the statistical software package SPSS 27.0
(Armonk, IBM Statistics, NY, USA). Data were tested for normal distribution by applying
the Wilk–Shapiro test. For the analysis of numerical parameters, the non-parametric
Mann–Whitney U test (for 2 unrelated groups) or Wilcoxon test (for 2 related groups) was
applied. Dynamic changes were tested with a general linear model for repeated measures.
Distribution of categorial variables was analyzed by applying the McNemar test (for related
samples). The non-parametric Spearman’s rho test was applied for the correlation analysis.
A receiver operation characteristic (ROC) curve analysis was applied for the numerical
parameters as potential determinants of classified variables. In general, a p-value below
0.05 (two-tailed) was considered statistically significant. Data are graphically presented
either with dots representing mean values and whiskers giving the standard error of the
mean (SEM); or by box plots displaying median, upper/lower quartiles, interquartile range,
and outliers which are indicated as dots and asterisks.
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3. Results
3.1. Study Cohort Characteristics

Standard anthropometric and physiological data of the ROBS study cohort as a whole
were published recently [9,19]. In the present study, the LCD sub-cohort comprised 25 men
and 39 women (mean age 42.6 years), and 11 men and 53 women were included in the
RYGB sub-cohort (mean age 40.2 years). A total number of 29 patients suffered from
manifested T2D (11 in LCD and 18 in RYGB subgroup). The baseline BMI ranged from 33.7
to 61.2 kg/m2, with a significantly higher mean value in the bariatric subgroup (51.5 kg/m2;
n = 64) when compared to LCD patients (43.8 kg/m2; n = 64) (p < 0.001). Both therapy
strategies induced a significant weight loss within 12 months although RYGB proved
to be more effective regarding the extent of body weight and BMI reduction than LCD.
In addition to weight loss, a general amelioration of the metabolic state was observed
predominantly in the bariatric sub-cohort at the 12 month follow-up, as was displayed by
the reduced body fat proportion (RYGB: p < 0.001; LCD: p < 0.001) and waist–hip ratio
(RYGB: p < 0.001; LCD: p < 0.001), as well as by improved type 2 diabetes mellitus (RYGB:
p < 0.001), hypertension (RYGB: p < 0.001; LCD: p = 0.012), and hyperlipidemia ((RYGB:
p < 0.001; LCD: p = 0.013).

3.2. Systemic Chemerin Levels at Study Baseline

Serum chemerin was quantified in all study subjects. Baseline concentrations ranged
from 75.9 to 283.5 ng/mL (mean: 152.7 ± 54.8 ng/mL) in LCD participants and from
71.2 to 357.1 ng/mL (mean: 152.2 ± 54.2 ng/mL) in patients undergoing RYGB surgery.
In both sub-cohorts, the baseline chemerin levels were not normally distributed and
exhibited positive skewness. Regarding the total study cohort, a slight difference in
chemerin levels between male and female patients (140.7 vs 157.1 ng/mL) was observed as
a non-significant trend.

Focusing on the cohort of patients receiving LCD therapy, we observed no sexual
dimorphism in regard to baseline chemerin levels (Figure 1A). There was also no signifi-
cant divergence with regard to BMI (Figure 1B). The further subgroup analysis involving
patients’ medical history did not indicate any substantial impact of T2D, hypertension,
hyperlipidemia, and liver fibrosis on systemic chemerin concentrations (Figure 1C–F).
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Among patients being allocated to RYGB surgery, females exhibited higher baseline
systemic chemerin levels (158.7 ng/mL) compared to males (121.0 ng/mL) (Figure 2A).
BMI, T2D, hypertension, hyperlipidemia, and liver fibrosis apparently did not significantly
affect chemerin quantities (Figure 2B–F).
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Figure 2. Pre-surgery systemic chemerin concentrations were elevated in female RYGB patients (A),
whereas BMI, hypertension, T2D, hyperlipidemia, and liver fibrosis had no effect (B–F).

Regarding the whole study cohort (n = 128), serum chemerin quantities were nega-
tively correlated with the waist–hip ratio (rho = −0.209, p = 0.024) and positively correlated
with CRP (rho = 0.298, p = 0.001) and CCL5 levels (rho = 0.247, p = 0.005) (Figure 3).
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3.3. Changes in Chemerin Levels during Weight Loss

Upon bariatric surgery or during caloric restriction, respectively, patients experienced
significant and prolonged weight loss within 12 months, as was reported recently [19].

Figure 4 displays the dynamics of systemic chemerin concentrations during this period
of weight loss for both study cohorts. Both RYGB surgery and LCD induced a considerable
decline in chemerin levels within the initial 3–6 months upon intervention/therapy start,
with a more rapid and pronounced decrease among LCD patients (~35% reduction within
3 months). Albeit a subsequent slight recovery, chemerin concentrations remained at a
significantly lower level after 12 months when compared to baseline quantities. In both sub-
cohorts, no significant divergences of chemerin kinetics in non-diabetic and T2D patients
were detected.
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Figure 4. Serum chemerin concentrations substantially decreased during the initial phase of weight
loss and remained at lower levels after 12 months (V12).

3.4. ROC and Correlation Analysis of Chemerin Levels and Improvement of Metabolic Parameters

A receiver operating characteristic (ROC) curve analysis was applied in order to
identify a potential predictive quality of systemic chemerin concentrations for changes in
metabolic dysregulation during weight loss (Figure 5). The results indicate that baseline
chemerin quantities were not predictive for weight loss-associated dynamics of body fat
percentage (Figure 5A) and liver fibrosis—as was displayed by the NAFLD fibrosis score
and FIB4 (Figure 5B,C)—in LCD patients within 12 months. Among individuals undergoing
RYGB surgery, a moderate association of basal chemerin levels with less/absent NFS and
FIB4 improvement during weight loss was detected (Figure 5B,C).
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Figure 5. ROC analysis of the predictive potency of baseline chemerin levels for beneficial changes in
body fat percentage (A), NFS (B), and FIB4 (C) during weight loss in LCD and RYGB patients.

The comparative correlation analysis revealed significant positive correlations of
changes in systemic chemerin concentrations with total cholesterol and CRP dynamics dur-
ing 12 months of weight loss in LCD but not in RYGB patients (Figure 6A,B). Furthermore,
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a considerable negative correlation of chemerin and IGFBP6 levels was observed that was
more pronounced within the LCD subgroup (Figure 6C). On the other hand, a positive
correlation of chemerin dynamics with ∆PLTs (changes in systemic platelets concentrations)
and negative correlations with ∆NFS and ∆FIB4 were exclusively detected among RYGB
patients (Figure 6D–F).
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A further subgroup analysis comparing patients with differentially pronounced losses
in body fat percentage (=<13.5% or >13.5%) revealed lower chemerin serum concentrations
after 12 months among those individuals with higher fat loss (Figure 7A). Of note, this
significant difference was exclusively observed among patients receiving LCD therapy but
not among those having undergone RYGB surgery (Figure 7B,C).
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4. Discussion

Previous studies reported elevated systemic chemerin levels in obesity, as well as a de-
cline occurring during weight loss [18]. We provide data from a large and well-characterized
obesity cohort, comprising patients undergoing either conservative or surgical treatment
(n = 64 each) for body weight and fat reduction and therefore enabling a direct comparison
of the effects induced by these competitive therapeutical strategies. Both the LCD interven-
tion and RYGB surgery succeeded in significant weight loss and body fat reduction, as well
as in metabolic improvement within one year, as reported recently [9,19]. In the present
study, we observed an initial decline and sustained reduction in circulating chemerin con-
centrations accompanying weight loss throughout 12 months, with only slight differences
in the outcomes of the RYGB and LCD sub-cohorts. Within the whole study cohort of
128 obese individuals, we assessed no significant sexual dimorphism in systemic chemerin
concentrations, regarding levels at study baseline, as well as therapy-induced kinetics.

Furthermore, we did not observe any significant association of basal circulating
chemerin levels with the extent of obesity and with common metabolic comorbidities
such as T2D, hypertension, hyperlipidemia, and markers of hepatic fibrosis. Our data
thus did not confirm the results of previous studies suggesting an association of chemerin
with impaired glycemic control, as was summarized by a recent review [23]. However, the
absence of significant correlations might be due to the low proportion of diabetic patients in
the present study cohort (29 among 128 subjects). Among the anthropometric parameters
assessed, the waist–hip ratio was negatively correlated with chemerin quantities. Of note,
this correlation was exclusively found among the patients who were allocated to RYGB
surgery. This sub-cohort exhibited a significantly elevated mean BMI (51.5 kg/m2) when
compared to the group of LCD participants (43.8 kg/m2) at study baseline, while not
differing according to the mean waist–hip ratio. The observed correlation therefore argues
for a putative negative impact of high quantities of visceral adipose tissue—indicated by an
elevated waist–hip ratio—on systemic chemerin concentrations predominantly occurring
at an advanced extent of obesity. Of particular interest in this context, lowered chemerin
expression levels in the visceral adipose tissue of obese individuals correlate with hep-
atic steatosis [24], suggesting the significant role of chemerin secreted from this adipose
compartment during metabolic regulation in severe adiposity.

Of particular interest, serum chemerin concentrations were positively correlated with
CRP and CCL5 levels, markers of systemic inflammation, within the whole study co-
hort. This finding is in good accordance with the significant involvement of chemerin in
obesity-related inflammatory processes, acting as a chemoattractant protein [25,26]. The
stronger correlation with CRP among the LCD sub-cohort—characterized by lower mean
BMI—suggests that this association with systemic inflammation might be more pronounced
in less severe obesity.

Two previous studies investigating the long-term impact of different bariatric proce-
dures on circulating adipokine concentrations reported a significant long-term reduction in
chemerin levels within 12 months after surgery [27,28]. To the best of our knowledge, our
present approach is the first to directly compare the effects of conservative and bariatric
interventions on systemic chemerin regulation in a large cohort of morbidly obese individ-
uals. During the 12-month period of substantial body weight and fat loss—either following
RYGB surgery or under a low-calorie diet—we observed a significant and largely sustained
decrease in circulating chemerin quantities. Of note, LCD induced a more pronounced
and rapid decline in serum chemerin, resulting in a reduction in circulating levels by ~35%
within three months. The chemerin decrease during RYGB-induced weight loss occurred
less rapidly, with the detected minimum of ~70% of baseline quantities being reached
after 6 months. It therefore appears reasonable to conclude that a dietary shift to caloric
restriction might affect serum chemerin in a faster and stronger way than bariatric surgery
with subsequent limitations on food intake and nutrient absorption. Nevertheless, both
weight loss strategies resulted in a significant and prolonged chemerin reduction, with
some indication of slight recovery after 12 months. Since the latter finding implies a rather
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transient nature of the observed decline, it should motivate future longitudinal approaches
in order to investigate circulating chemerin kinetics during long-term periods of conserva-
tive and surgical obesity therapy in relation to sustained weight loss and improvement in
metabolic disorders.

Circulating chemerin has been characterized as a risk factor for NAFLD/MASLD [29]
and has been suggested as a potential non-invasive biomarker [30]. We recently reported
the correlation of body fat loss and improvement of liver fibrosis risk during obesity ther-
apy [19]. Regarding the potential of systemic chemerin as a pre-interventional predictor of
therapy-induced beneficial effects on metabolism, we did not observe any predictive poten-
tial of baseline systemic levels concerning a reduction in body fat percentage in the present
study cohort. In the RYGB sub-cohort, a moderate predictive power of basal chemerin for
less improvement of hepatic fibrosis—indicated by NFS and FIB4 index—was detected
which was absent among LCD patients. Thus, the weight loss-associated amelioration of
liver health and integrity upon bariatric surgery might rather be favored by lower baseline
systemic chemerin concentrations. Such an association remains to be carefully verified by
applying adequate study cohorts with a more predominant focus on these hepatic effects
of obesity therapy.

Among patients attending the LCD program, we detected positive correlations of
serum chemerin kinetics with changes in the total cholesterol and CRP level within the
12-month study period. This finding suggests an association of decreasing chemerin quanti-
ties with a reduction in circulating total cholesterol and CRP—hence, with an amelioration
of the systemic metabolic and inflammatory state—that might be more pronounced during
weight loss induced by caloric restriction than by bariatric surgery. A substantial nega-
tive correlation between the kinetics of chemerin and IGFBP6 levels was predominantly
detected among LCD patients. Since elevated IGFBP6 concentrations are considered to
be associated with hepatic steatosis [31], this observation might imply a rather inverse
correlation between weight loss-associated chemerin decline and improvement in hepatic
metabolism, especially under caloric restriction—whereas chemerin concentrations at study
baseline were not predictive for LCD-induced subsequent improvement in hepatic fibrosis,
as was mentioned above.

Patients undergoing RYGB surgery exhibited a positive correlation between post-
surgical changes in chemerin and platelet concentrations, whereas negative correlations
were observed with changes in NFS and FIB4. The latter finding suggests the hypothesis
that, during RYGB-induced weight loss, chemerin might be involved in the amelioration of
obesity-related hepatic fibrosis occurring during RYGB-induced weight loss, presumably
in a protective role, as is illustrated in Figure 8.

When comparing systemic chemerin concentrations at the end of the 12-month study
period in patients with a lower and higher pronounced reduction in body fat percentage
(below and above the median value of reduction by 13.5%), we found higher body fat loss
to be associated with lower chemerin levels. This effect was specific to patients attending
the LCD program who experienced a more pronounced decline in chemerin levels during
weight loss, as mentioned above. Besides potentially displaying reduced fat mass as a
significant sign of chemerin expression, this finding might also indicate a lower level of
remaining adipose inflammation in patients having experienced a stronger weight loss.
Thus, our data might also underline the role of chemerin as an immune–metabolic factor
linking mechanisms of obesity and inflammation [25].

The present study provides data on a large and well-characterized study cohort in a
longitudinal setting, demonstrating the significant down-regulating impact of considerable
weight loss on systemic chemerin quantities in severely obese individuals. Of particular
interest is the comparative investigation of chemerin kinetics under dietary intervention
and upon bariatric surgery, respectively, in order to distinguish effects associated with
general weight loss from such induced by therapy-specific confounders.
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Figure 8. Circulating chemerin concentrations significantly decline during therapy-induced loss
of body weight, BMI, and fat mass. The downregulation appears to be more pronounced under
LCD than after RYGB surgery. Furthermore, reductions in body weight and fat mass are partially
accompanied by a decrease in NFS [32] and FIB4 values, indicating reduced liver fibrosis risk. These
changes in NFS and FIB4 during RYGB-induced weight loss are negatively correlated with chemerin
kinetics, suggesting the hypothesis of chemerin being involved in the process of hepatic amelioration
during post-surgical weight loss.

The implications to be drawn from the study are limited by the focus on systemic
chemerin quantities without elucidating the effects on chemerin expression in organs
such as particular adipose tissue and the liver. Furthermore, the clinical relevance of the
hypothesized role of chemerin as a biomarker for the weight loss-induced amelioration of
liver integrity remains to be validated by studies involving cohorts with a higher proportion
of patients with fibrosis or hepatic malfunction. The present design did not include control
groups of non-obese individuals or of morbidly obese individuals not undergoing weight
loss therapy in order to enable a comparative analysis of systemic chemerin. Finally, the
molecular mechanisms underlying the observed chemerin kinetics during weight loss
remain to be elucidated and should motivate further research focusing on molecular and
cellular levels.

5. Conclusions

The present data analyses demonstrate a significant and prolonged decline in serum
chemerin concentrations in severely obese individuals during therapy-induced weight
loss. Since no significant differences between the overall effects of conservative caloric
restriction therapy and bariatric surgery were detected, decreasing chemerin levels might
be causally related to the reduction in body weight and fat mass per se. The data do not
indicate a predictive role of chemerin for the achieved extent of body fat loss nor a direct
association with type 2 diabetes and liver disease. Among bariatric patients, post-surgical
chemerin levels were associated with a reduced risk of liver fibrosis. Future research
elaborating on the present data should further elucidate the mechanistic involvement of
chemerin in obesity-associated hepatic malfunction and fibrosis. In particular, promising
comparative clinical approaches might involve large subsets of severely obese individuals
with and without MASLD. Furthermore, characterization of the mechanisms underlying
the observed weight loss-associated effects on circulating chemerin remains an issue to be
addressed by future investigation.
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