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Abstract: Atherosclerosis affects human health in many ways, leading to disability or premature
death due to ischemic heart disease, stroke, or limb ischemia. Poststenotic blood flow disruption may
also play an essential role in artery wall impairment linked with hemolysis related to shear stress.
The maximum shear stress in the atherosclerotic plaque area is the main parameter determining
hemolysis risk. In our work, a 3D internal carotid artery model was built from CT scans performed on
patients qualified for percutaneous angioplasty due to its symptomatic stenosis. The obtained stenosis
geometries were used to conduct a series of computer simulations to identify critical parameters
corresponding to the increase in shear stress in the arteries. Stenosis shape parameters responsible
for the increase in shear stress were determined. The effect of changes in the carotid artery size,
length, and degree of narrowing on the change in maximum shear stress was demonstrated. Then, a
correlation for the quick initial diagnosis of atherosclerotic stenoses regarding the risk of hemolysis
was developed. The developed relationship for rapid hemolysis risk assessment uses information
from typical non-invasive tests for treated patients. Practical guidelines have been developed
regarding which stenosis shape parameters pose a risk of hemolysis, which may be adapted in
medical practice.

Keywords: arteriosclerosis; hemolysis; blood; CFD; coronary artery; carotid artery; percutaneous
coronary intervention; hemoglobin

1. Introduction

Despite the continuous development of medicine, modern society still suffers from
cardiovascular diseases [1–3]. Today’s lifestyle, combined with a lack of physical activity
and an unhealthy diet, often leads to hypertension or atherosclerosis [4,5]. Atherosclerosis
is responsible for cardiovascular diseases leading to stroke or infarction. The increase
in cholesterol deposits causes a decrease in the surface area perpendicular to the flow
direction, which in turn causes a local increase in shear stresses. An increase in shear stress
can destroy erythrocytes [6–8]. This local hemolysis causes impairment of the endothelium
and smooth muscle cells related to NO decrease and direct toxicity of hemoglobin and
Fe++ released from erythrocytes [9]. Endothelial abrasion may expose deeper layers of the
arterial wall rich with collagen to circulated platelets and may lead to its activation and
clot formation. Hemolysis occurs in atherosclerosis from very early to advanced stages
of artery stenosis [9]. The basis of atherosclerosis treatment is to cease this pathological
process as soon as possible. Guidelines related to endovascular interventions in cardio-
vascular diseases are focused mainly on the severity of artery stenosis before angioplasty
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(i.e., carotid internal artery or coronal arteries). One of the most common treatment methods
for patients with advanced carotid or coronary atherosclerosis is percutaneous endovascular
intervention with balloon angioplasty followed by stent placement. A better understanding
of atherosclerosis hemolysis etiopathology may help to establish a new guideline with
interventions performed at an earlier stage of the disease. Due to the potential risk of
complications, it is worth having information about the impact of the narrowing on the
hydrodynamics of blood flow in the vessel. Hence, the idea is to use non-invasive blood
flow measurements combined with advanced imaging and computational fluid dynam-
ics (CFD) for a non-invasive diagnosis of atherosclerosis [10]. Appropriate diagnosis of
atherosclerotic complications using CFD requires attention to blood rheology, which is
a non-Newtonian fluid [11–17] due to the complex structure of blood. Due to the non-
Newtonian nature of blood, a blood rheology model based on population balance [8]
was used, which reconstructs the physiological behavior of blood related to erythrocyte
agglomeration and deagglomeration depending on the shear rate. In addition to blood
rheology, selecting an appropriate hemolysis model is important [6,7,18–25]. The blood
rheology model based on the erythrocyte population balance has a built-in blood hemolysis
model that allows for the use of information obtained from solving the size distribution
of red blood cell agglomerates and the number of single erythrocytes [8]. In addition, it is
crucial to select an appropriate flow turbulence model that would be useful both in terms of
laminar and transient flow observed in the zone after the stenosis. Printed channel models
and micro particle image velocimetry (µPIV) [10,26] were used to validate the turbulence
model used in the CFD simulations. The simulations were carried out for steady flows
because the difference between the values of average wall shear stresses (WSSs) for average
flow and time-averaged wall shear stresses (TAWSs) for pulsating flow is minimal [27] for
stenosed arteries, as shown in one of the previous articles. The analysis of the influence of
the shape of the blood vessel on the risk of hemolysis was started in the last article [10],
where the focus was on the degree of stenosis of the vessel and its eccentricity. As part of
this work, the analysis was extended to include variable vessel size, stenosis length, and
variable lumen shape in the narrowest part of the stenosis.

In this article, we wanted to address the research gap in the field of rapid initial
diagnosis of atherosclerotic complications regarding the risk of blood hemolysis in the
space of cholesterol constrictions. The aim of the study was to identify key parameters
of the shape of the atherosclerotic stenosis that influence the increase in shear stress to
which red blood cells are exposed. The universal relationship between shear stresses
and the geometry of the constriction fits into modern trends in personalized medicine,
while increasing the efficiency of the health care system in the case of a growing number
of patients.

2. Materials and Methods
2.1. Blood Rheology and Hemolysis Model

The blood viscosity model based on population balance was presented in detail in
various publications [8,10,27]. The model assumes agglomeration of red blood cells in areas
with low shear rates and deagglomerations in regions with high shear rates. As a result, a
physiological distribution of the size of red blood cell agglomerates can be observed across
the cross-section of the vessel so that the viscosity is greatest in the axis of the vessel. In
addition, thixotropic effects of blood [28–31] related to the finite rate of deagglomeration
and agglomeration of erythrocytes are observed. The hemolysis model originates from
power law formulation and later linearization [6,7,32]. However, population-balance-based
rheology’s (PBBR’s) model refers to hemolysis to only fully deagglomerated single red
blood cells, whose concentration is known thanks to the solution of population balance [8].

∆Hb
Hb

=
H · msL3

0

msL3
0 + ∑3

i=1 wiL3
i

. (1)
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where ms is the concentration of single red blood cells in direct quadrature method of
moments (DQMOM), Li is the sizes of agglomerates used in DQMOM, and wi is the
weights used in DQMOM.

2.2. Numerical Settings

The calculations in this study were performed using ANSYS Fluent 2022 R2. Model
implementation was presented in detail in the previous article [8]. Similar to previous
studies, the flow is mainly laminar; however, the turbulent flow is promoted by the rapid
increase in velocity in the stenosis in the case of large flows [10]. The GEKO model with
the transition flow option was chosen to capture both laminar and turbulent regions. The
simulations were conducted for blood flow rates in the 0.625–6.25 mL/s range, similar to the
previous article [10]. Simulations for different polyhedral mesh densities were performed
to determine the final meshes for which the obtained results were independent of mesh
size and quality.

The following boundary conditions were applied. At the INLET, the plug flow inlet
was located at an appropriate distance from the stenosis to establish the fully developed
velocity profile. Inlet conditions for the population balance were calculated, assuming
that the hematocrit equaled 45%. It was also assumed that no hemolyzed red blood cells
were at the inlet. In the case of WALLS, the no-slip condition and homogeneous Neumann
conditions for user-defined scalars were used. At the OUTLET, the atmospheric pressure
and homogeneous Neumann conditions for user-defined scalars were chosen.

3. Results
3.1. CFD Results

The CFD analysis was carried out for an inlet velocity of 0.05 to 0.5 m/s similarly to the
previous article. Within the framework of this article, the range of analyzed geometries of
cholesteric stenoses was extended by examining the influence of changes in vessel diameter,
stenosis length, and cross-sectional shape. The geometry model is shown in Figure 1 and
detail dimensions for analyzed cases are summarized in Table 1. For artery size analysis,
the base model taken from the previous article for stenosis with (Ac/A0)

0.5 = 0.4 [10] was
scaled proportionally in three dimensions in the 50–125% range. However, in the case of
the throat length analysis, the length of the throat was changed in the range of 4 to 16 mm.
In addition, in the case of the shape analysis of the influence of changes in the shape of the
throat in the cross-section of the throat, the baseline model had (Ac/A0)

0.5 = 0.3 [10], and
the shape changes were obtained by asymmetric neck scaling in two directions to maintain
a constant cross-sectional area. The prepared geometries were then used to conduct a
detailed analysis of the impact of these three shape parameters on the maximum shear
stresses and the hemolysis value. The obtained results were presented in graphs, and the
tables with the results are available in Appendix A (Tables A1–A6).
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Figure 1. Geometry of an artery with stenosis. Figure 1. Geometry of an artery with stenosis.

Based on Figure 2 and Table A1, a strong correlation can be seen between vessel size
and maximum shear stresses. The smaller the blood vessel, the greater the shear stress at
the same linear velocity for the cross-section before the constriction. Consequently, the
smaller the vessel, the lower the limiting velocity at which hemolysis of red blood cells
can occur.
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Table 1. Dimensions of analyzed geometry cases.

Case Number D[mm] dh[mm] dh0[mm] l[mm] (Ac/A0)
0.5[−]

1 2 0.77 1.92 8 0.4
2 3 1.15 2.87 12 0.4
3 4 1.53 3.83 16 0.4
4 5 1.92 4.79 20 0.4
5 4 1.53 3.83 4 0.4
6 4 1.53 3.83 6 0.4
7 4 1.53 3.83 8 0.4
8 4 1.53 3.83 10 0.4
9 4 1.53 3.83 12 0.4
10 4 0.80 3.83 16 0.3
11 4 0.99 3.83 16 0.3
12 4 1.10 3.83 16 0.3
13 4 1.15 3.83 16 0.3
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Figure 2. Correlation between inlet hydraulic diameter [mm] and mean velocity [m/s] for maximum
shear stress [Pa].

Changes in maximum shear stresses are of crucial importance in assessing the risk of
hemolysis; despite the increase in maximum stresses by about 50% (Figure 2 and Table A1)
for the smallest artery at maximum flow, in the case of hemolysis, the difference reaches
193% (Figure 3 and Table A2) or even higher for lower velocities. This is related to both the
increase in maximum stresses and the fluid volume in which the maximum shear stresses
are exceeded, above which hemolysis is observed.

Figure 4 and Table A2 show that the differences in maximum shear stresses are even
more visible in the case of changes in the throat length. For the shortest stenosis, the
increase in shear stress exceeds 100% compared to the base geometry with a stenosis length
of 16 mm. Therefore, the shorter the throat, the greater the velocity acceleration and the
greater the shear stress. Due to the rapid changes in velocity, apart from the increased risk
of hemolysis, there is also a greater risk of damage to the vessel wall and the release of
deposits, which can lead to embolism, which is very dangerous for the patient.

As in the case of changes in the size of the artery, changes in the hemolysis value are
also visible in the case of changes in the length of the stenosis. However, despite much
more observable changes in shear stresses for changes in the narrowing length, the changes
in the hemolysis value are not so large. In the case of maximum flow and minimum length,
they reach 74% (Figure 5 and Table A4). However, these changes are much greater for lower
velocities, which significantly reduces the critical velocity at which hemolysis begins.
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In contrast to the previous two shape parameters, the change in the shape of the
cross-section has a much smaller impact on the maximum shear stresses, which can be
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seen both in Figure 6 and in the data from Table A5. Consequently, for most stenoses, the
influence of this factor can be neglected unless the stenosis is very strongly flattened.
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Figure 6. Correlation between stenosis hydraulic diameter [mm] and mean velocity [m/s] for
maximum shear stress [Pa].

Despite slight differences in the maximum shear stresses observed in Figure 6, in the
case of hemolysis, the differences are slightly larger, as seen in Figure 7 and Table A6. The
increase in hemolysis reaches 49% for maximum flattening at maximum flow. However, in
the case of lower speeds, the differences are more significant, similar to the previous issues.
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hemolysis [−].

Based on the obtained results, it was decided to develop tables of correction factors
for the equation for maximum shear stress. The resulting equation can pre-estimate the
expected maximum shear stresses for a quick initial cholesteric stenosis analysis using
typical medical data from non-invasive medical procedures. For this purpose, auxiliary
dimensionless parameters for reading correction factors were introduced.

The first parameter is the size factor k. It is defined as the ratio of the size of the
analyzed geometry x to the geometric dimensions of the base geometry X with a given
degree of stenosis

k =
x
X

. (2)
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The second parameter is the dimensionless stenosis length z, which is similarly de-
fined as the ratio of the length of the analyzed stenosis l and the base model hydraulic
diameter Dh0, taking into account the scale parameter

z =
l

kDh0
. (3)

The last parameter is the dimensionless stenosis hydraulic diameter w, which is
similarly defined as the ratio of the hydraulic diameter of the stenosis of the analyzed
stenosis dh and the base model Dh, taking into account the scale parameter

w =
dh

kDh
. (4)

Considering the correction factors, the modified equation for the maximum shear
stress is presented in Equation (5). However, the correction parameter related to the shape
of the neck section can be omitted in most cases:

τmax = τ0 · β1β2β3 ∼= τ0 · β1β2. (5)

where τmax is maximum shear stress in the analyzed case, τ0 is maximum shear stress for
baseline artery stenosis geometry [10], and β1, β2, β3 are correction coefficients. Correction
factors are listed in Tables 2–4.

Table 2. List of β1 correction coefficients related to scale factor.

Velocity before Stenosis [m/s]

Scale Factor [−]

0.50 0.75 1.00 1.25

β1 [−]

0.053 1.68 1.24 1.00 0.85
0.106 1.61 1.21 1.00 0.86
0.159 1.58 1.20 1.00 0.87
0.212 1.54 1.19 1.00 0.88
0.265 1.52 1.19 1.00 0.88
0.318 1.51 1.18 1.00 0.88
0.371 1.50 1.18 1.00 0.88
0.424 1.49 1.18 1.00 0.89
0.476 1.48 1.17 1.00 0.89
0.529 1.47 1.17 1.00 0.89

Table 3. List of β2 correction coefficients related to dimensionless stenosis length.

Velocity before Stenosis [m/s]

Dimensionless Stenosis Length [−]

1.04 1.57 2.09 2.61 3.13 4.17

β2 [−]

0.053 1.65 1.34 1.21 1.13 1.08 1.00
0.106 1.81 1.43 1.26 1.16 1.10 1.00
0.159 1.90 1.48 1.29 1.21 1.11 1.00
0.212 1.94 1.51 1.31 1.22 1.10 1.00
0.265 1.98 1.53 1.32 1.23 1.10 1.00
0.318 2.00 1.54 1.32 1.24 1.10 1.00
0.371 2.02 1.55 1.33 1.25 1.11 1.00
0.424 2.03 1.56 1.33 1.25 1.11 1.00
0.476 2.04 1.56 1.34 1.25 1.11 1.00
0.529 2.04 1.56 1.34 1.25 1.11 1.00
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Table 4. List of β3 correction coefficients related to dimensionless stenosis hydraulic diameter.

Velocity before Stenosis [m/s]

Dimensionless Stenosis Hydraulic Diameter [−]

0.70 0.86 0.96 1.00

β3 [−]

0.053 1.36 1.13 1.05 1.00
0.106 1.25 1.09 1.03 1.00
0.159 1.20 1.07 1.03 1.00
0.212 1.17 1.05 1.02 1.00
0.265 1.15 1.05 1.01 1.00
0.318 1.13 1.04 1.00 1.00
0.371 1.11 1.04 1.00 1.00
0.424 1.10 1.03 0.99 1.00
0.476 1.10 1.03 0.99 1.00
0.529 1.09 1.03 0.99 1.00

3.2. Enhanced Diagnostic Implementation for Internal Carotid Artery (ICA)

The presented model has been tested in the context of application in the diagnosis of
carotid artery stenoses. The geometry of the stenosis (Figure 8) was obtained as a result of
the routine patient’s CT scans performed before endovascular treatment (angioplasty with
stent placement). The hemolysis risk was checked at rest [33] and during physical exer-
tion [34] corresponding to physical work or physical activity. Common carotid blood flow
velocity data during graded exercise on a treadmill [34] were used and then recalculated to
internal carotid artery (ICA) flow for physical activity conditions.
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The geometry of the artery was obtained after geometry processing in MeshMixer
and SpaceClaim to remove geometry distortions resulting from the finite resolution of the
apparatus. The hydraulic diameter at the vessel inlet was 7.6 mm, and the distance between
the beginning of the stenosis and the maximum stenosis was 10 mm. The measured
degree of stenosis was (Ac/A0)

0.5 = 0.29. The length of the entire geometry in the Z
direction (Figure 9) was 50 mm. In addition, a fully developed velocity profile at the inlet
to the stenotic carotid artery was assumed. Dimensionless geometry parameters were
calculated according to Equations (2) and (3). Coefficients β1 and β2 were interpolated
using spline function Matlab software (R2022b) with respect to velocities. Later, β1 was
extrapolated to adjust the scale factor outside the previously considered region; however,
power interpolation presented a high R2, higher than 0.99 for the analyzed region. In the
case of β2, another spline interpolation with dimensionless stenosis length was in the table
data range. All results are summed up in Table 5.

The mean velocity in the artery before the stenosis was obtained from the Fluent
software (2023 R1). The maximum shear stresses for the base model τ0 were then calculated
based on Equation (6) introduced in the previous article [10]:

τ0 = α · uβ ·
[(

Ac

A0

)0.5
]γ

, (6)

where α = 24.21, β = 1.346, γ = −3.385, and u stands for velocity before stenosis.
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Table 5. Comparison of correlation and CFD results.

Blood Flow
[mL/s]

Velocity
before

Stenosis [m/s]
τ0 [Pa] β1 [−] β2 [−] τmax [Pa] τCFD [Pa] τmax−τCFD

τCFD
[%]

Mean Flow
at Rest 4.00 0.088 60.3 0.6179 1.1397 42.5 51.6 −17.6

Mean Flow
during

Exercise
7.95 0.174 152.0 0.6436 1.2125 118.7 132.0 −10.1

Systole Peak
Flow during

Exercise
20.6 0.451 548.1 0.6829 1.2456 466.2 496.7 −6.1

The correction factor β1 has a small value due to the high value of the scale factor k be-
cause the diameter of the vessel before the stenosis has a large diameter resulting from
the presence of an aneurysm. On the other hand, the correction factor β2 is greater than
unity because the obtained value of the dimensionless stenosis length z is slightly smaller
than for the scaled base model. And, this shape parameter was calculated by comparing
the distance between the beginning of the necking and the maximum necking due to the
large differences in diameters before and after the stenosis. Based on the maximum shear
stresses from the correlation τ0 for the base model and knowing the correction factors, the
expected maximum stresses τmax were calculated. The results obtained from the correlation
were compared with the data obtained from the CFD simulation. In the case of flow at
rest, the error was several percent; however, in the case of blood flow during exercise, this
error decreased to about 10% in the case of average flow and a few percent in the case of
maximum flow.

The wall shear stresses are presented in Figure 9 to highlight the difference between
rest and exercise conditions and also to present the areas where shear stress exceeds the
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shear threshold above which hemolysis occurs. It can be seen that increased blood flow is
in line with increased wall shear stress. It is worth mentioning that, for mean flow, even
during exercise, wall shear stresses are lower than 150 Pa [35–38], but during systole peak,
there is a vast area where hemolysis may occur. The presented results are supplemented by
Figure 10, where the hemolysis value can be seen. The largest fraction of hemolyzed blood
cells can be observed in the constriction, where the greatest shear stresses occur.
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The velocity vectors presented in Figure 11 show that, in the stenosis region, velocity
increases rapidly, forming a jet structure. The velocity profile in the stenosis throat is more
flattened for higher blood flows. The stagnation zone is also visible and increases with
higher blood flow.
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4. Discussion

Cardiovascular diseases, including atherosclerosis, affect more patients [1–3]. There-
fore, developing prevention and early diagnosis is increasingly important to protect pa-
tients’ health. Over the years, a number of methods for imaging cholesterol stenoses,
such as optical coherence tomography [39–43], near infrared spectroscopy [44], ultrasound
imaging [45–48], computed tomography [49–55], and magnetic resonance imaging [55–61],
have been developed [62]. The information obtained thanks to imaging methods allowed
for the visualization of stenoses and the creation of accurate CFD simulation models.
CFD simulations can be a valuable tool in a wide range of blood flows in the circulatory
system [10,27,63–73], providing valuable information for physicians. CFD can provide
information on high shear stress [10,63–65], which is one of the factors causing blood hemol-
ysis, which negatively affects patients’ health [74]. In addition, computational methods
allow for the improvement of stents [75–82] used in PCI, or allow one to obtain “virtual”
results of FFR measurements [83–88]. A wide range of computer simulation methods
allows for extensive support of medics. However, there is room for tools for quick initial
diagnostics before the more sophisticated tools offered by today’s computers are used. The
presented model fills the gap, allowing for an instant preliminary hemolysis risk assessment
based on non-invasive imaging methods and blood flow velocity. In addition, it can be
implemented in software commonly used in hospitals, and artificial intelligence [61,89–91]
can be responsible for identifying narrowing areas and their geometric parameters [92,93].

This study analyzed three shape parameters regarding their influence on the increase
in maximum shear stresses and hemolysis. A strong correlation was observed between
a decrease in vessel size and an increase in maximum shear stresses. There was a clear
decrease in the critical velocity at which hemolysis occurs with a reduction in the diameter
of the vessel. The increase in stress was largely reflected in the increase in hemolysis
observed for smaller vessels. A similar rise in maximum shear stresses was observed for
shorter constrictions, where the change in local velocity was faster. Stenosis with a sharp
decrease in the vessel’s lumen is particularly dangerous due to the high stresses acting
on the tissue, which may cause the uncontrolled release of cholesterol deposits, causing
embolism. Stenoses of this shape are particularly dangerous during physical activity,
resulting from physical work and sports. Patients exposed to such cholesterol changes
are often still professionally active. Therefore, rapid diagnosis is very important. As far
as hemolysis is concerned, the increase in shear stress observed for shorter constrictions
translates into an increase in hemolysis. However, the increase is not as large as in the
case of a decrease in size. This is due to a different distribution of shear stresses. The last
parameter of the shape was the degree of flattening of the vessel in the narrowing, which
translated into a decrease in the hydraulic diameter. In the case of shear stresses, an increase
in shear stresses is observed only for strongly flattened narrowing, which is rarely observed.
As in the other cases, the increase in shear stress translates into an increase in hemolysis.
However, this increase is smaller than in the other analyzed cases. Based on the obtained
results, Tables 2–4 present correction factors for the correlation, allowing us to estimate the
maximum shear stresses presented in the previous article [10]. The obtained correlation
was tested on the internal carotid artery stenosis and compared with the results of the
CFD simulation; the error between the equation and the full simulation did not exceed
a dozen or so percent and decreased with the increase in flow; for the maximum flow
during exercise, it was only a few percent. The CFD simulations for the internal carotid
artery show that increased blood flow leads to higher hemolysis, hence the need for prompt
treatment, especially in physically active people, as they are more exposed to hemolysis of
blood in the area of constrictions.

5. Conclusions

A helpful correlation was established between maximum shear stresses, a significant
indicator of hemolysis risk, and blood flow and stenosis geometry. It has been shown that
rapid changes in the cross-section of the vessel cause a greater risk of hemolysis than the
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same narrowing with a mild change in diameter on a larger section of the artery. Moreover,
it has been shown that with a reduction in the vessel diameter, the critical flow velocity
above which the risk of hemolysis occurs also decreases. The obtained correlation was
tested on the actual geometry of a carotid atherosclerosis patient. The obtained results can
be used to develop new guidelines for diagnosing atherosclerosis as a tool for a quick initial
assessment of the patient’s condition.
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Appendix A

The main equation describing the behavior of fluids during flow is the Navier–Stokes
equation. Its general form for an incompressible fluid is presented below.

∂u
∂t

+ (u · ∇)u − ν∇2u = −∇
(

p
ρ

)
+ g (A1)

where ν is kinematic viscosity.
For laminar flows, this equation is sufficient for solving the flow field. However, for

transient and turbulent flows, additional equations are needed due to the presence of
time-varying turbulence affecting the flow field. A common solution to this problem is to
average the Navier–Stokes equations based on Reynolds decompositions. In the Cartesian
coordinates system, the Reynolds-averaged Navier–Stokes equations are as follows:

ρuj
∂ui
∂xj

= ρ f i +
∂

∂xj

[
−pδij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
− ρu′

iu
′
j

]
. (A2)

In addition to the RANS equation, equations describing turbulence are added to close
the system of equations. The two most popular models using this approach are k − ϵ and
k − ω and their derivatives.

Due to the complicated rheology of blood, it was necessary to use a non-Newtonian
blood model. It was decided to use the PBBR model, which uses population balance to
reflect the physiological processes of the agglomeration and deagglomeration of blood cells,
which influence the change in the apparent fraction of red blood cell agglomerates in the
cross-section of the artery.

The viscosity model used in this article can be described as follows:

µ = M(ϕ)µ0 (A3)
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where µ0 = 6.99 · 10−4 Pa·s is the viscosity obtained by fitting viscosity experimental data.
Equation (A4) presents the relative blood viscosity M(ϕ):

M(ϕ) =
M0(ϕ) + PeM∞(ϕ)

1 + Pe
(A4)

And, Equation (A5) shows the Peclet number formula:

Pe =
.
γa2

DM(ϕ)
(A5)

Furthermore, the relative blood viscosity for high shear rates M∞(ϕ) is defined
as follows:

M∞(ϕ) = (1 − ϕ)−5/2 − C

{
ln

[
1 −

(
ϕ

ϕ∗

)1/3
]
+ ∑6

j=1
1
j

(
ϕ

ϕ∗

)j/3
}

(A6)

And, the relative blood viscosity for low shear rates M0(ϕ) is defined in
Equation (A7):

M0(ϕ) = (1 − ϕ)−5/2 + 1.3

[(
1 − ϕ

ϕ∗

)−2
−

2

∑
j=0

(1 + j)
(

ϕ

ϕ∗

)j
]

(A7)

where
.
γ is the shear rate, a is the characteristic particle size for the whole population of

agglomerates and is equal to the volume-weighted mean particle size, ϕ is the effective
apparent volume fraction of red blood cells, DM(φ) is the effective diffusion coefficient [8]
for molecular diffusion, C ∼= 2 and is an equation constant, and ϕ∗ is the maximum
apparent volume fraction equal to 0.695 [8,94,95].

Furthermore, the hemolysis model was presented in detail in previous
publications [8,10,27]; however, the main equation describing hemolysis is as follows:

∂HL
∂t

+
∂

∂xi
(ui HL)−

∂

∂xi

(
DEFF

∂HL
∂xi

)
= δAτθ(1 − HL) (A8)

where DEFF is the effective diffusion coefficient for molecular and turbulent diffusion and

δ =

{
0, i f τ < τs
1, i f τ ≥ τs

. (A9)

Moreover, based on various articles [35–38], the value of shear threshold τs was set to
150 Pa.

The numerical mesh was made in Fluent Meshing. A polyhedral mesh with a boundary
layer was generated. A mesh independence test was performed for the carotid artery
model for mean exercise blood flow for five different meshes ranging from several hundred
thousand elements to several million cells. The results of the mesh independence test are
presented in Figure A1, where the pressure drop is compared depending on the mesh
size. A mesh with 2.15 million cells was chosen because the difference in pressure drop
compared to the densest mesh was below 1%. The final mesh had a maximum cell size set
to 0.2 mm, and the boundary layer was generated with a uniform algorithm for 12 layers
with a growth rate of 1.2 and a first layer height of 0.01 mm.

The tables summarize the results of CFD calculations presented in Figures 2–7.
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Table A1. Maximum shear stress [Pa] vs. inlet hydraulic diameter [mm].

Inlet
Velocity [m/s]

Velocity
before

Stenosis [m/s]

Inlet Hydraulic Diameter [mm]

2 3 4 5

Maximum Shear Stress [Pa]

0.05 0.053 2.09 ·10 1.53 ·10 1.24 ·10 1.06 ·10

0.10 0.106 4.54 ·10 3.42 ·10 2.81 ·10 2.43 ·10

0.15 0.159 7.34 ·10 5.59 ·10 4.66 ·10 4.07 ·10

0.20 0.212 1.04 ·102 8.05 ·10 6.76 ·10 5.93 ·10

0.25 0.265 1.38 ·102 1.08 ·102 9.07 ·10 7.97 ·10

0.30 0.318 1.74 ·102 1.37 ·102 1.16 ·102 1.02 ·102

0.35 0.371 2.13 ·102 1.68 ·102 1.42 ·102 1.25 ·102

0.40 0.424 2.53 ·102 2.00 ·102 1.70 ·102 1.51 ·102

0.45 0.476 2.96 ·102 2.34 ·102 2.00 ·102 1.78 ·102

0.50 0.529 3.41 ·102 2.70 ·102 2.31 ·102 2.06 ·102

Table A2. ∆Hb/Hb [−] vs. inlet hydraulic diameter [mm].

Inlet
Velocity [m/s]

Velocity
before

Stenosis [m/s]

Inlet Hydraulic Diameter [mm]

2 3 4 5

∆Hb/Hb [−]

0.05 0.053 0 0 0 0
0.10 0.106 0 0 0 0
0.15 0.159 0 0 0 0
0.20 0.212 0 0 0 0
0.25 0.265 0 0 0 0
0.30 0.318 1.57 ·10−6 0 0 0.
0.35 0.371 5.87 ·10−6 1.06 ·10−6 0 0.
0.40 0.424 1.08 ·10−5 4.37 ·10−6 1.39 ·10−6 5.78 ·10−8

0.45 0.476 1.64 ·10−5 8.24 ·10−6 4.35 ·10−6 2.08 ·10−6

0.50 0.529 2.27 ·10−5 1.27 ·10−5 7.76 ·10−6 4.88 ·10−6
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Table A3. Maximum shear stress [Pa] vs. stenosis length [mm].

Inlet
Velocity

[m/s]

Velocity
before

Stenosis [m/s]

Stenosis Length [mm]

4 6 8 10 12 16

Maximum Shear Stress [Pa]

0.05 0.053 2.04 ·10 1.67 ·10 1.50 ·10 1.40 ·10 1.33 ·10 1.24 ·10
0.10 0.106 5.09 ·10 4.02 ·10 3.55 ·10 3.28 ·10 3.08 ·10 2.81 ·10
0.15 0.159 8.84 ·10 6.91 ·10 6.02 ·10 5.62 ·10 5.15 ·10 4.66 ·10
0.20 0.212 1.31 ·102 1.02 ·102 8.83 ·10 8.27 ·10 7.47 ·10 6.76 ·10
0.25 0.265 1.79 ·102 1.39 ·102 1.19 ·102 1.12 ·102 1.00 ·102 9.07 ·10
0.30 0.318 2.31 ·102 1.78 ·102 1.53 ·102 1.44 ·102 1.28 ·102 1.16 ·102

0.35 0.371 2.87 ·102 2.20 ·102 1.89 ·102 1.77 ·102 1.57 ·102 1.42 ·102

0.40 0.424 3.45 ·102 2.6 ·102 2.27 ·102 2.13 ·102 1.89 ·102 1.70 ·102

0.45 0.476 4.08 ·102 3.12 ·102 2.68 ·102 2.50 ·102 2.22 ·102 2.00 ·102

0.50 0.529 4.71 ·102 3.61 ·102 3.10 ·102 2.89 ·102 2.57 ·102 2.31 ·102

Table A4. ∆Hb/Hb [−] vs. stenosis length [mm].

Inlet
Velocity

[m/s]

Velocity
before

Stenosis [m/s]

Stenosis Length [mm]

4 6 8 10 12 16

∆Hb/Hb [−]

0.05 0.053 0 0 0 0 0 0

0.10 0.106 0 0 0 0 0 0

0.15 0.159 0 0 0 0 0 0

0.20 0.212 0 0 0 0 0 0

0.25 0.265 1.09 ·10−6 0 0 0 0 0

0.30 0.318 2.68 ·10−6 1.38 ·10−6 1.45 ·10−7 0 0 0

0.35 0.371 4.73 ·10−6 3.47 ·10−6 2.19 ·10−6 1.40 ·10−6 3.67 ·10−7 0

0.40 0.424 7.25 ·10−6 5.77 ·10−6 4.65 ·10−6 3.80 ·10−6 2.79 ·10−6 1.39 ·10−6

0.45 0.476 1.01 ·10−5 8.55 ·10−6 7.52 ·10−6 6.58 ·10−6 5.55 ·10−6 4.35 ·10−6

0.50 0.529 1.35 ·10−5 1.17 ·10−5 1.05 ·10−5 9.64 ·10−6 8.93 ·10−6 7.76 ·10−6

Table A5. Maximum shear stress [Pa] vs. stenosis hydraulic diameter [mm].

Inlet
Velocity [m/s]

Velocity
before

Stenosis [m/s]

Stenosis Hydraulic Diameter [mm]

0.80 0.99 1.10 1.15

Maximum Shear Stress [Pa]

0.05 0.053 4.16 ·10 3.46 ·10 3.19 ·10 3.05 ·10

0.10 0.106 8.91 ·10 7.77 ·10 7.36 ·10 7.13 ·10

0.15 0.159 1.44 ·102 1.28 ·102 1.23 ·102 1.20 ·102

0.20 0.212 2.05 ·102 1.84 ·102 1.78 ·102 1.75 ·102

0.25 0.265 2.71 ·102 2.47 ·102 2.38 ·102 2.36 ·102

0.30 0.318 3.41 ·102 3.14 ·102 3.03 ·102 3.02 ·102

0.35 0.371 4.15 ·102 3.86 ·102 3.71 ·102 3.73 ·102

0.40 0.424 4.94 ·102 4.61 ·102 4.44 ·102 4.47 ·102

0.45 0.476 5.76 ·102 5.41 ·102 5.20 ·102 5.25 ·102

0.50 0.529 6.61 ·102 6.23 ·102 5.99 ·102 6.06 ·102
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Table A6. ∆Hb/Hb [−] vs. stenosis hydraulic diameter [mm].

Inlet
Velocity [m/s]

Velocity
before

Stenosis [m/s]

Stenosis Hydraulic Diameter [mm]

0.80 0.99 1.10 1.15

∆Hb/Hb [−]

0.05 0.053 0 0 0 0
0.10 0.106 0 0 0 0
0.15 0.159 0 0 0 0
0.20 0.212 7.59 ·10−6 3.84 ·10−6 2.46 ·10−6 2.05 ·10−6

0.25 0.265 1.85 ·10−5 1.25 ·10−5 1.02 ·10−5 9.45 ·10−6

0.30 0.318 3.13 ·10−5 2.27 ·10−5 1.95 ·10−5 1.82 ·10−5

0.35 0.371 4.64 ·10−5 3.48 ·10−5 3.04 ·10−5 2.86 ·10−5

0.40 0.424 6.39 ·10−5 4.89 ·10−5 4.30 ·10−5 4.07 ·10−5

0.45 0.476 8.43 ·10−5 6.56 ·10−5 5.83 ·10−5 5.50 ·10−5

0.50 0.529 1.07 ·10−4 8.50 ·10−5 7.56 ·10−5 7.18 ·10−5
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8. Jędrzejczak, K.; Makowski, Ł.; Orciuch, W. Model of Blood Rheology Including Hemolysis Based on Population Balance. Commun.
Nonlinear Sci. Numer. Simul. 2023, 116, 106802. [CrossRef]

9. Michel, J.B.; Martin-Ventura, J.L. Red Blood Cells and Hemoglobin in Human Atherosclerosis and Related Arterial Diseases. Int.
J. Mol. Sci. 2020, 21, 6756. [CrossRef]
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