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Abstract: Background: To date, there have been numerous metataxonomic studies on gut microbiota
(GM) profiling based on the analyses of data from public repositories. However, differences in
study population and wet and dry pipelines have produced discordant results. Herein, we propose
a biostatistical approach to remove these batch effects for the GM characterization in the case of
autism spectrum disorders (ASDs). Methods: An original dataset of GM profiles from patients with
ASD was ecologically characterized and compared with GM public digital profiles of age-matched
neurotypical controls (NCs). Also, GM data from seven case–control studies on ASD were retrieved
from the NCBI platform and exploited for analysis. Hence, on each dataset, conditional quantile
regression (CQR) was performed to reduce the batch effects originating from both technical and
geographical confounders affecting the GM-related data. This method was further applied to the
whole dataset matrix, obtained by merging all datasets. The ASD GM markers were identified
by the random forest (RF) model. Results: We observed a different GM profile in patients with
ASD compared with NC subjects. Moreover, a significant reduction of technical- and geographical-
dependent batch effects in all datasets was achieved. We identified Bacteroides_H, Faecalibacterium,
Gemmiger_A_73129, Blautia_A_141781, Bifidobacterium_388775, and Phocaeicola_A_858004 as robust
GM bacterial biomarkers of ASD. Finally, our validation approach provided evidence of the valid-
ity of the QCR method, showing high values of accuracy, specificity, sensitivity, and AUC-ROC.
Conclusions: Herein, we proposed an updated biostatistical approach to reduce the technical and
geographical batch effects that may negatively affect the description of bacterial composition in
microbiota studies.

Keywords: machine learning; batch effect normalization; quantile regression; autism spectrum
disorders (ASDs); gut microbiota; intestinal biomarkers

1. Introduction

The identification of gut microbiota (GM) signatures associated with pathological and
physiological conditions is crucial for understanding wellness and illness [1]. Indeed, the
accurate identification of gut biomarker results is important to define host–microbiome
interactions and to find new potential diagnostic and therapeutic targets [2]. Nowadays,
numerous studies based on differential GM profiles of healthy subjects and patients have
allowed the identification of key bacteria as biomarkers [1,3–7]. However, unravelling the
intricate relationship between human host and microbial communities requires precise and
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accurate experimental designs and data analyses, as technical artefacts, such as experimen-
tal procedures, can confound biological interpretations of the results. A source of error can
be identified in the batch effects that arise from differential processing of specimens and can
lead to spurious findings and obscure true signals [8]. For example, the variability in sample
processing, such as differences in sampling techniques or storage conditions, can influence
microbial composition descriptions [8]. Moreover, different methods for DNA extraction,
PCR amplification, and library construction [9], and also variations in sequencing depth,
read quality, and other technical parameters due to platforms of sequencing, can impact
the observed abundance of microbial taxa, leading to final biases and inconsistencies in
data interpretation [10].

Furthermore, there is supporting evidence that geography plays a significant role in
shaping gut microbiota composition [11,12]. Diet variability, driven by different levels of
development, agricultural practices, and cultural traditions in different countries, is the
primary factor for this phenomenon. The Western diet, prevalent in America and Europe,
is typically low in fiber and high in fat and refined carbohydrates [11]. In contrast, the
Eastern diet, which is common in China and neighboring countries, consists of rice or
noodles, soup, and a variety of vegetable and meat dishes [11]. Other than these dietary
differences, other lifestyle factors such as smoking habits, stress levels, and circadian
rhythms also influence the intestinal microbiome [13]. Recognizing the geographic batch
effect highlights the importance of considering territorial dietary and lifestyle patterns in
gut microbiota research.

Hence, all together, technical artefacts and geographic variability may have the poten-
tial to overshadow true biological signals, leading to spurious associations and erroneous
conclusions [14] and hindering the reproducibility of research findings, complicating efforts
to validate study results across independent cohorts or replicate experiments in different
laboratories [14]. Although attempts have been made to alleviate batch effects through
standardized experimental designs [15], some confounding factors remain unavoidable
in practice. Furthermore, in certain instances, the reasons for batch effects may be only
partially or entirely unknown [16].

Moreover, another aspect to consider is the distribution of the metataxonomic data,
which are typically highly zero-inflated, over-dispersed, and heterogeneous, with com-
plex distributions.

In the literature, other statistical tools, such as ComBat, Limma, sva, and Harmony,
have been proposed for batch effect corrections [17–20]. However, these methods are de-
signed for single-cell RNA-Seq or microarray data and they are not suitable for adequately
accounting for metataxonomic data, failing with sparse count data or zero-inflated datasets
and overestimating batch effects in the presence of large or low-dimensional data.

Therefore, conditional quantile regression (CQR) represents the best method for
metataxonomic data normalization, being able to enhance the robustness of analyses
and uncover meaningful insights into the microbial dynamics underlying human health
and disease.

For these purposes, we applied CQR for the reduction of batch effects from different
datasets in the context of an important pediatric disease, i.e., autism spectrum disorder
(ASD), to effectively identify, quantify, and mitigate batch effects, thereby improving the
quality and reproducibility of GM results.

2. Materials and Methods
2.1. Patient Enrolment and Sample Collection

For the study, 123 patients with ASD aged 2–19 years (97 boys and 26 girls) were
recruited at the Bambino Gesù Children’s Hospital (Rome, Italy), Italy, with a diagnosis
of ASD based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) and confirmed by the Autism Diagnostic Observation Schedule (ADOS-2) and by
the Autism Diagnostic Interview, Revised (ADI—R).
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During clinical visits, a single fecal sample was collected from each patient. In total,
123 fecal samples were collected and stored at −80 ◦C, until following analysis at the
Microbiome Biobank of the OPBG, node of the Biobanking and Biomolecular Resources
Research Infrastructure of Italy (BBMRI) of the Human Microbiome Unit, until processing
for GM metataxonomic analysis.

We divided our cohort into discovery (82 ASD plus 68 neurotypical control (NC)) and
validation datasets (40 ASD and 41 NC) for the following analyses.

2.2. Gut Microbiota Profiling

The bacterial DNA was isolated from stool samples by a QIAmp fast DNA stool mini
kit (Qiagen, Hilden, Germany) and quantified by a NanoDropTM 2000/2000c spectropho-
tometer (Thermo Scientific, Wilmington, MA, USA). The V3–V4 variable regions of the 16S
rRNA gene were amplified by using the following primers: 16S_F 5′-(TCG TCG GCA GCG
TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC AG)-3′ and 16S_R 5′-(GTC
TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC
C)-3′, as described in the MiSeq rRNA amplicon sequencing protocol (Illumina, San Diego,
CA, USA). The PCR amplifications were set up as denaturation at 95 ◦C for 30 s, annealing
at 55 ◦C for 30 s, and extension at 72 ◦C for 30 s, and a final extension step at 72 ◦C for 5 min,
for 32 cycles, using a Fast Start Hifi Taq kit (Roche Diagnostics, Mannheim, Germany). DNA
amplicons were purified by KAPA pure beads (Roche Diagnostics, Mannheim, Germany)
and barcoded by unique index combinations by Nextera primers (Illumina, San Diego,
CA, USA). The library amplicons were purified, quantified by a Quant—iT™ PicoGreen®

dsDNA assay kit (Thermo Fisher Scientific, Waltham, MA, USA), pooled, and diluted to a
final concentration of 7 nM before sequencing on an Illumina MiSeqTM platform (Illumina,
San Diego, CA, USA).

2.3. Bioinformatic Pre-Processing and Statistical Analyses for ASD-NC Comparison

For the comparison of ASD versus NC GM profiles, we selected 82 ASD and 68 age-
matched NC profiles downloaded from the BioProject PRJNA280490 (Figure 1). Therefore,
150 fastq files were pre-processed in QIIME2 v.2023.2, and with the DADA2 plugin. Ampli-
con sequence variants (ASVs) were produced and successively assigned taxonomically by
the Greengenes2 algorithm using the Greengenes nucleotide sequence database v2022.10.

Age and gender were evaluated as confounding factors by means of the microbiome
multivariable association with linear model 2 (MaAsLin2) algorithm [21].

Ecological analyses were conducted on absolute abundances normalized through the
random subsampling observations (rarefaction method) based on the minimum sample
depth. In the alpha diversity analysis, the microbial diversity of each sample was quantified
with Shannon–Wiener, Simpson, and Chao1 indexes, and the Mann–Whitney test was
applied for group comparisons. In the beta-diversity analysis, the PERMANOVA test was
applied to the distance matrix calculated with the Bray–Curtis dissimilarity algorithm.

The linear discriminant analysis (LDA) effect size (LEfSe) method [22] was performed
on ASVs, occurring in at least 25% of the samples, with a relative abundance > 0.001 to
identify bacterial genera differentially expressed among groups (p-adjusted ≤ 0.05 after
FDR correction, LDA score ≥ 3.0).

2.4. Dataset Collection

Seven cross-sectional studies characterizing the GM composition of patients with ASD
compared with neurotypical controls (NCs) and one dataset composed of 146 pediatric NCs
(PRJNA280490), were selected from the PubMed NCBI database, selecting projects exclu-
sively based on the V3–V4 sequencing of the 16S rRNA hypervariable regions on the MiSeq
Illumina platform. Raw sequence data belonging to PRJEB45948 [23], PRJEB29421 [24],
PRJNA578223 [25], PRJNA624252 [26], PRJNA769228 [27], PRJNA813424 [28], and PR-
JNA754695 [29] were download from the European Nucleotide Archive (ENA, https:

https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
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//www.ebi.ac.uk/ena/browser/home, accessed on 1 October 2023) and the Sequence Read
Archive database (SRA, https://www.ncbi.nlm.nih.gov/sra, accessed on 1 October 2023).
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sons. (B) Workflow of the batch effect correction. In the left panel (Discovery Phase), a selection of 
ASVs that classify an individual as either autistic or neurotypical control by applying conditional 
quantile regression (CQR) and random forest (RF) models to a 16S rRNA sequencing datasets. In 
the right panel (Validation Phase), validation of the selected set of ASVs and the CQR method using 
the Italian validation dataset and the whole validation dataset, respectively. 
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Figure 1. Graphical summary. (A) Scheme of the comparative workflow for ASD and NC groups.
From 82 fecal samples, the bacterial DNA was extracted and the V3–V4 hypervariable region of 16S
rRNA was amplified and sequenced on the MiSeq Illumina platform. Amplicon sequence variants
(ASVs) were obtained from a total of 150 fastq files (82 ASD fastq files and 68 NC fastq file age,
match-selected from PRJNA280490 BioProject) and were assigned taxonomically by the Greengenes
database v2022.10. The ecological and univariate analyses were conducted for statistical comparisons.
(B) Workflow of the batch effect correction. In the left panel (Discovery Phase), a selection of ASVs
that classify an individual as either autistic or neurotypical control by applying conditional quantile
regression (CQR) and random forest (RF) models to a 16S rRNA sequencing datasets. In the right
panel (Validation Phase), validation of the selected set of ASVs and the CQR method using the Italian
validation dataset and the whole validation dataset, respectively.
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The fastq files generated in this study were submitted to NCBI with code PRJNA1136218.
The OPBG-produced fastq files of PRJNA754695, PRJNA280490, and PRJNA1136218 were
merged to obtain a larger matrix. (Figure 1).

2.5. Bioinformatic Pre-Processing of the Overall Fastq Files

The fastq files were imported separately into QIIME2 v2023.2 [30] from each dataset,
resulting in a total of 1356 fastq files (678 paired-end fastq files) (Figure 1). The DADA2
plugin [31] was used to denoise and filter out the chimeras from the paired-end reads. The
resulting reads were then joined into ASVs. All forward and reverse reads were trimmed
at a Phred Score >20 and merged with an overlap of 12 nucleotides, to avoid any bias
introduced by differences in quality check (QC) and denoising/merging process parame-
ters. The sequences were taxonomically assigned by querying the Greengenes nucleotide
sequence database v2022.10 [32], using the greengenes2 plugin. The rooted phylogenetic
tree was constructed using the q2—phylogeny align—to—tree—mafft—fasttree plugin.

The bacterial count matrices (ASV tables), taxonomy data frames, and phylogenetic
trees were exported from QIIME2 and analyzed using R v4.3.2 for statistical purposes.

2.6. Merging Databases and Batch-Effect Correction

To reduce the technical batch effect due to different laboratory origin, the seven count
matrices were joined by geographic origin, obtaining a total of three different national ASV
matrices: Chinese dataset (three ASV matrices), Italian dataset (three ASV matrices), and
Korean dataset (one ASV matrix) (Figure 1). These count matrices were further combined to
create a unique ASV matrix with 3996 ASVs (whole dataset [WD]) to reduce both technical
and geographical batch effects.

Each dataset was normalized using the conditional quantile regression (CQR) method
with the ConQur R package v2.0 [8] (Figure 1).

The regress out-of-batch effect was performed by two steps as follows:

• Regression step.

Firstly, the linear regression determines the likelihood of each taxon’s presence to
robustly estimate the theoretical count distribution without batch effect.

The algorithm’s model assumes that the probability of observing a non-zero [8]:

Yi (Yi, π = P (Yi > 0|Xi)

where Xi = (ZiT, BiT) = concatenate p-dimension covariates, following a logistic regression
model [8]:

logit {P(Yi > 0|Xi)} = ZiTζ + BiT

USV Symbol Macro(s) Description
0392 Β \textBeta GREEK CAPITAL LETTER BETA

0393 Γ \textGamma GREEK CAPITAL LETTER GAMMA

0394 Δ \textDelta GREEK CAPITAL LETTER DELTA

0395 Ε \textEpsilon GREEK CAPITAL LETTER EPSILON

0396 Ζ \textZeta GREEK CAPITAL LETTER ZETA

0397 Η \textEta GREEK CAPITAL LETTER ETA

0398 Θ \textTheta GREEK CAPITAL LETTER THETA

0399 Ι \textIota GREEK CAPITAL LETTER IOTA

039A Κ \textKappa GREEK CAPITAL LETTER KAPPA

039B Λ \textLambda GREEK CAPITAL LETTER LAMDA

039C Μ \textMu GREEK CAPITAL LETTER MU

039D Ν \textNu GREEK CAPITAL LETTER NU

039E Ξ \textXi GREEK CAPITAL LETTER XI

039F Ο \textOmicron GREEK CAPITAL LETTER OMICRON

03A0 Π \textPi GREEK CAPITAL LETTER PI

03A1 Ρ \textRho GREEK CAPITAL LETTER RHO

03A3 Σ \textSigma GREEK CAPITAL LETTER SIGMA

03A4 Τ \textTau GREEK CAPITAL LETTER TAU

03A5 Υ \textUpsilon GREEK CAPITAL LETTER UPSILON

03A6 Φ \textPhi GREEK CAPITAL LETTER PHI

03A7 Χ \textChi GREEK CAPITAL LETTER CHI

03A8 Ψ \textPsi GREEK CAPITAL LETTER PSI

03A9 Ω \textOmega GREEK CAPITAL LETTER OMEGA

03AA Ϊ \textIotadieresis
\"{\textIota}

GREEK CAPITAL LETTER IOTA WITH DIALYTIKA

03AB Ϋ \"{\textUpsilon} GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA

03AC ά \'{\textalpha} GREEK SMALL LETTER ALPHA WITH TONOS

03AD έ \'{\textepsilon} GREEK SMALL LETTER EPSILON WITH TONOS

03AE ή \'{\texteta} GREEK SMALL LETTER ETA WITH TONOS

03AF ί \'{\textiota} GREEK SMALL LETTER IOTA WITH TONOS

03B0 ΰ \"{\textupsilonacute} GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS

03B1 α \textalpha GREEK SMALL LETTER ALPHA

03B2 β \textbeta GREEK SMALL LETTER BETA

03B3 γ \textgrgamma GREEK SMALL LETTER GAMMA

03B4 δ \textdelta GREEK SMALL LETTER DELTA

03B6 ζ \textzeta GREEK SMALL LETTER ZETA

03B7 η \texteta GREEK SMALL LETTER ETA

03B8 θ \texttheta GREEK SMALL LETTER THETA

03B9 ι \textgriota GREEK SMALL LETTER IOTA

03BA κ \textkappa GREEK SMALL LETTER KAPPA

03BB λ \textlambda GREEK SMALL LETTER LAMDA

03BC μ \textmu
\textmugreek

GREEK SMALL LETTER MU

03BD ν \textnu GREEK SMALL LETTER NU

03BE ξ \textxi GREEK SMALL LETTER XI

03BF ο \textomicron GREEK SMALL LETTER OMICRON

03C0 π \textpi GREEK SMALL LETTER PI

03C1 ρ \textrho GREEK SMALL LETTER RHO

03C2 ς \textgrsigma
\textvarsigma

GREEK SMALL LETTER FINAL SIGMA

03C3 σ \textsigma GREEK SMALL LETTER SIGMA

03C4 τ \texttau GREEK SMALL LETTER TAU

03C5 υ \textupsilon GREEK SMALL LETTER UPSILON

03C6 φ \textgrphi GREEK SMALL LETTER PHI

03C7 χ \textchi GREEK SMALL LETTER CHI

18

Bi = batch variable; Zi = set of characteristics, which includes the key variables
based on prior knowledge, such as clinical, demographic, and genetic features. ConQur
requires the inclusion of key variables because they play similar roles in the batch effect
removal procedure.

ζ and
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are the true logistic coefficients associated with the covariates and batch
variables, respectively.

Secondly, the linear quintile regression performed for each sample Xi the quintile
normalization on the original count distribution of taxon, obtaining an estimate batch-free
distribution. The linear quantile regression normalized the non-zero Yi as follows [8]:

Qwi (τ|Xi,Yi > 0) = ZiTα (τ) + BiTβ (τ)

where Wi|Yi > 0 = Yi|Yi > 0 + U, U-Uniform(0,1), α(τ) and β(τ) are the true quantile
coefficients at the τ-th quantile of Wi, which corresponds to a non-zero Yi.
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• Matching step.

Each sample’s count, belonging to theorical distribution, was matched with the cor-
responding count of the batch-free distribution at the same quantile level and, then, it
assumed the normalized value derived from the quantile distribution.

2.7. Performance Evaluation of the Batch Normalization Method

To assess the performance of the batch normalization method, we firstly calculated the
dissimilarity matrix with the Bray–Curtis algorithm on the two ASV tables, normalized and
not normalized. Then, we applied the PERMANOVA test on the normalized (R2

batch-free)
and not normalized (R2

batch) dissimilarity matrices, grouping samples by each BioProject
(R2

auth) and by ASD/NC stratification (R2
phen). Finally, to quantify the effectiveness of

the CQR method on the batch reduction, we calculated the delta variability (∆R2) by the
difference between R2

batch and R2
batch-free. Positive ∆R2 values indicated a reduction in

dissimilarity, while negative values indicated an increase in dissimilarity.
To estimate the variability of the batch effect, the PERMANOVA_R2 test (ConQur

R package) [8] was performed on the dissimilarity matrices obtained by applying the
Aitchison distance algorithm to the ASV tables. The PERMANOVA_R2 function quantified
the differences in ASV relative abundances, deriving both from the intrinsic character-
istics of samples (e.g., ASD/NC stratification) (i.e., KeyVariable) and from the BioPro-
ject batch (i.e., BatchVariable), before (KeyVariablebatch and BatchVariablebatch) and after
(KeyVariablebatch-free and BatchVariablebatch-free) the application of the batch normaliza-
tion on all count matrices. The ∆KeyVariable (KeyVariablebatch/KeyVariablebatch-free) and
∆BatchVariable (BatchVariablebatch/BatchVariablebatch-free) were compared to quantify the
effectiveness of the CQR method on the batch reduction.

2.8. The Application of Machine Learning Algorithm

We further assessed the above described approaches for the reduction in batch effect
with a machine learning (ML) algorithm. The random forest (RF) classification model was
used to identify the most important bacteria able to classify samples in the ASD and NC
groups. Firstly, the bacterial dataset was randomly divided into training and test sets (80%
and 20%, respectively), using the combination of ceiling and random_ordered R functions.
Secondly, the tuning step through iterative optimizations using the 10-fold cross-validation
(10-fold CV) method and the trainControl function of Caret R package v6.0-94 was applied
to find the optimal RF parameters. The optimization of additional parameters, such as
ntree and mtry, was carried out using the expand.grid and train functions of the Caret R
package. In the third step, the validation step of the RF model was obtained, generating
a confusion matrix (confusionMatrix function) on the test set using the same R package.
The confusion matrix was used to compute the performance of the RF model, measuring
accuracy (ACC), sensitivity (or true positive rate (TPR)), and specificity (or true negative
rate (TNR)) [33]:

ACC = TP + TN/TP + TN + FP + FN

TPR = TN/TN + FP

TNR = TP/TP + FN

TP—true positive; TN—true negative; FP—false positive; FN—false negative.
With the sensitivity and specificity metrics, the area under receiver optimization

characteristic (AUROC) value was calculated. The highest AUROC value was translated in
the better classification performance.

The classification of the importance features was achieved by the mean decreasing
Gini coefficient [34].
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2.9. Accuracy of CQR Method Evaluation

To test the accuracy of the CQR method, the top scoring ASVs, obtained by the RF
method, were tested on the validation dataset (40 ASD and 41 NC profiles). We applied
the same bioinformatic procedures described for the discovery dataset on raw sequences
to obtain the ASV matrix. The selected top scoring ASVs were used as features to run a
10-fold cross-validation by the RF method. The accuracy, sensitivity, specificity, and AUC
-ROC values were calculated.

2.10. CQR Validation Test

To validate the CQR method, we replaced the in-house Italian dataset (82 ASD plus
105 NC) with the validation dataset (40 ASD plus 41 NC). The obtained matrix was further
combined with the Chinese, Korean, and the remaining Italian matrices to produce a unique
ASV matrix (whole validation dataset (WVD)). The RF model was applied to the WVD
normalized by CQR and to the non-normalized WVD.

The AUC-ROC, accuracy, sensitivity, and specificity values were obtained pre- and
post-normalization to evaluate the performance of the method.

3. Results
3.1. Gut Microbiota Composition in ASD and NC Groups of In-House Dataset

Firstly, 82 patients with ASD were compared with 68 NCs. The average age of patients
with ASD was 6.89 years (SD = ±3.46) and NC subjects was 7.41 years (SD = ±3.52). The
gender ratio in the ASD group was 63 (76.83%) males to 19 (23.17%) females while, in the
NC group, it was 39 (57.35%) males to 29 (42.65%) females.

The remaining 40 patients with ASD and 41 NCs were used for external validation of
the methods and were not included in the GM compositional analysis.

From 82 patients with ASD and 68 NCs, a total of 15,782,713 reads and 2273 amplicon
sequence variants were obtained.

Alpha diversity analysis showed a bacterial diversity between the ASD and NC groups,
regardless of absence of statistical significance (p-value > 0.05) (Figure 2A–C), whilst for
beta diversity, statistically significant dissimilarity was observed (PERMANOVA test,
p-value < 0.05) (Figure 2D), suggesting different gut bacterial profiles between the ASD and
NC groups.

Regarding the analysis of differential bacterial abundance, at the genus level, pa-
tients showed a high prevalence of Phocaeicola_A_858004, Bacteroides_H, Faecalibacterium,
Dialister, Roseburia, Parasutterella, Acetatifactor, Dysosmobacter, Parabacteroides_B_862066,
Lawsonibacter, Haemophilus_D_735815, Enterocloster, Hungatella_A_128155, Anaerotruncus,
Phocea, Butyricimonas, and Clostridium_Q_134516, and a reduction in Bifidobacterium_388775,
Blautia_A_141781, Streptococcus, Collinsella, Copromorpha, Anaerobutyricum, SIO2C1, Nanosyn-
bacter, Pauljensenia, Gemella, Lancefieldella, Gordonibacter, Bulleidia, and Corynebacterium
(Figure 2E).

We attempted to identify a specific GM signature associated with ASD by removing
the potential effect of latent confounding variables (i.e., age and gender). Consequently,
after using a general linear model, we identified that Dorea A and Bifidobacterium 38,775
were associated with both case–control and age variables, while Mediterraneibacter A 155,507
was specifically associated with age (Supplementary Figure S1). No ASVs were associated
with the gender variable.
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Figure 2. Comparison of gut microbiota composition between ASD and NC groups. Alpha diversity
analysis was evaluated by Shannon–Wiener, Simpson, and Chao1 indexes, and the Mann–Whitney
test was used to compare ASD (red) and NC (green) groups (p-value > 0.05) (A–C). Principal co-
ordinate analysis (PCoA) shows the dissimilarity between ASD and NC groups calculated by the
Bray–Curtis dissimilarity algorithm (PERMANOVA test, p-value < 0.05) (D). Univariate analysis
performed with linear discriminant analysis effect size (LEfSe) shows genera differentially expressed
and statistically significant between ASD and NC groups with an LDA value > 3 (p-adjusted < 0.05) (E).

3.2. Main Characteristics of the Nine Selected Datasets

By combining the datasets from nine selected cross-sectional studies, we analyzed
a total of 678 16S rRNA gene sequencing data from 387 patients with ASD and 291 NCs.
The average age of the ASD and NC subjects was 6.3 and 6.6 years, respectively. The
gender ratio in the ASD group was 285 males to 102 females, while, in the NC group, it
was 145 males to 146 females (Table 1).
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Table 1. Characteristics of the selected datasets. Detailed information on the authors and year of
publication, demographic characteristics, and diagnostic methods used for ASD.

BioProject Country
ASD 1 NC 2

ASD
Diagnostic

Tools 3
ReferenceNumber of

Subjects
Age Average

(Years)
Number of

Subjects
Age Average

(Years)

PRJEB29421 Italy 11 3 14 3
DSM-5,

ADOS-2, ADI-R,
VABS, CARS

[24]

PRJEB45948 Korea 54 8.5 38 6.5
DSM-5,

ADOS-2, ADI-R,
SRS

[23]

PRJNA813424 Italy 6 14.5 6 15 DSM-5 [28]

PRJNA624252 China 29 4.4 20 4.3 ADOS-2, ADI-R [26]

PRJNA769228 China 138 6.11 60 6.65 DSM-5, ADOS,
CARS [27]

PRJNA578223 China 48 5 48 4 DSM-4, ADI-R,
CGI-S [25]

PRJNA280490 Italy n.a. n.a. 105 8 n.a.

PRJNA754695 Italy 19 7.16 n.a. n.a. DSM-5,
ADOS-2, ADI-R [29]

This Study Italy 82 6.89 68 7.41 DSM-5,
ADOS-2, ADI-R

1 ASD—autism spectrum disorder; 2 NC—neurotypical control subjects; 3 DSM-5—Diagnostic and Statistical
Manual of Mental Disorders, 5th Edition; ADOS—Autism Diagnostic Observation Schedule; ADI-R—Autism
Diagnostic Interview, revised; VABS—Griffiths Mental Development Scales; CARS—Childhood Autism Rating
Scale; SRS—Social Responsiveness Scale; DSM-4—Diagnostic and Statistical Manual of Mental Disorders, 4th Edition;
CGI-S—Clinical Global Impression Severity of Illness scale, n.a.—not applicable. Sequencing platform is shared
by all studies.

Joining datasets by geographical origin, the Italian dataset comprised 118 patients with
ASD and 125 NCs, with mean ages of 6.8 and 7.9 years, respectively. The Chinese dataset
consisted of 215 patients with ASD and 128 NCs, with mean ages of 5.6 and 5.4 years,
respectively. The Korean dataset included 54 patients with ASD and 38 NCs, with mean
ages of 8.5 and 6.5 years, respectively.

The sample sizes of these datasets ranged from 12 [28] to 198 [27] subjects. Moreover,
in all studies, the V3–V4 hypervariable regions were used for bacterial library construction
and sequenced on MiSeq Illumina sequencing platforms.

3.3. Reduction of the Technical Batch Effect on Datasets from Different Geographical Origins

To consider the geographical origin of ASD and NC sets, we evaluated the reduc-
tion in the technical batch effect on the Italian and Chinese datasets, separately. In the
Italian dataset, the microbial dissimilarity was ∆R2

Italian-BioProject = 0 (R2
batch = 0.028 and

R2
batch-free = 0.028) (Figure 3A,B). The bacterial dissimilarity between the ASD and NC

groups was ∆R2
Italian-ASD/NC = −0.001 (R2

batch = 0.021 and R2
batch-free = 0.022) (Figure 3C,D).

The same comparisons were carried out for the Chinese dataset, obtaining a
∆R2

Chinese-BioProject = 0.02 (R2
batch = 0.038 and R2

batch-free = 0.018) (Figure 3E,F) and
∆R2

Chinese-ASD/NC = −0.006 (R2
batch = 0.007 and R2

batch-free = 0.013) (Figure 3G,H), for
ASD/NC stratification.
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Figure 3. PCoA plot of the Bray–Curtis dissimilarity in Italian and Chinese datasets. Principal
coordinate analysis (PCoA) was performed on dissimilarity matrices produced by the Bray–Curtis
algorithm. In the left panel, the biplots show the PCoA applied to the Italian dataset pre- and post-
technical batch correction for the comparison between BioProjects (A,B) and between ASD and NC
groups (C,D). In the right panel, the biplots show the PCoA applied to the Chinese dataset pre- and
post-technical batch correction for the comparison between BioProjects (E,F) and between ASD and
NC groups (G,H). The R2 values, calculated by the PERMANOVA test, are statistically significant
(p-value < 0.05).

The PERMANOVA_R2 function for the Italian dataset resulted in ∆BatchVariableItalian = 0.001 and
∆KeyVariableItalian = −0.006 (pre-normalization: BatchVariablebatch = 0.013 and
KeyVariablebatch = 0.01; post-normalization: BatchVariablebatch = 0.012 and
KeyVariablebatch = 0.016). Concerning the Chinese dataset, the PERMANOVA_R2 func-
tion resulted in ∆BatchVariableChinese = 0.025 and ∆KeyVariableChinese = −0.011 (pre-
normalization: BatchVariablebatch = 0.038 and KeyVariablebatch = 0.007; post-normalization:
BatchVariablebatch = 0.013 and KeyVariablebatch = 0.018).

3.4. Reduction of the Technical and Geographical Batch Effect on the Whole Dataset

The same analysis was conducted on the whole dataset. The microbial dissimilarity
was ∆R2

BioProject = 0.032 (R2
batch = 0.068 and R2

batch-free = 0.036) (Figure 4A,B). The bacterial
dissimilarity between the ASD and NC groups was ∆R2

ASD/NC = −0.002 (R2
batch = 0.006

and R2
batch-free = 0.008) (Figure 4C,D).

The PERMANOVA_R2 function resulted in ∆BatchVariable = 0.006 and ∆KeyVariable =−0.008
(pre-normalization: BatchVariable = 0.053 and KeyVariable = 0.004; post-normalization:
BatchVariable = 0.047 and KeyVariable = 0.012).
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Figure 4. PCoA plot of the Bray–Curtis dissimilarity in whole dataset. Principal coordinate analysis
(PCoA) was performed on dissimilarity matrices produced by the Bray–Curtis algorithm. The biplots
show the PCoA performed on dissimilarity matrices pre- and post-technical and geographical batch
normalized for the comparison between BioProjects (A,B) and between ASD and NC groups (C,D).
The R2 values, calculated by the PERMANOVA test, are statistically significant (p-value < 0.05).

3.5. Bacterial Biomarker Identification by Geographical Origin by Random Forest Algorithm

The performance of the batch normalization method and the identification of bacterial
biomarkers of ASD gut microbiota was obtained by applying the RF classifier to the Italian,
Chinese, and Korean datasets, separately.

The model trained on the Chinese dataset provided a bacterial classification with accu-
racy, sensitivity, and specificity values of 0.897, 0.955, and 0.792 (Figure 5A). Moreover, the
AUC-ROC value was 0.98, indicating a good performance of the model. This performance
was comparable to the outcome achieved on the Italian and Korean datasets (Figure 5B,C).
The model trained on the Italian dataset was characterized by an accuracy value of 0.813, a
sensitivity value of 0.818, and a specificity value of 0.808, obtaining an AUC-ROC value
of 0.83. Regarding the Korean dataset, we obtained an accuracy value of 1, a sensitivity
value of 1, and a specificity value of 1, with an AUC-ROC value of 0.99, despite the smaller
number of samples compared with the other datasets.
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importance of the 1st 25 genera in the predictive model applied to Chinese (A), Italian (B), and Korean
(C) matrices were evaluated using the mean decreasing Gini coefficient. For each RF model, the
accuracy, sensitivity, specificity, and AUC-ROC values are reported. The Venn diagram (D) shows the
number of unique and shared most important features between datasets.

From the RF classifier analyses applied to each geographical dataset, we selected the 1st
25 most important features of each dataset. Comparing the feature lists, we showed that Bac-
teroides_H, Blautia_A_141781, Faecalibacterium, Phocaeicola_A_858004, Bifidobacterium_388775,
Alistipes_A_871400, and Gemmiger_A_73129 were shared in all datasets. This result indi-
cated a strong fingerprinting of ASD on the GM profile that overcame the geographical
origin of the dataset.

However, we identified 12 features only present in the Chinese dataset, and 9 features
exclusively present in the Italian and Korean datasets (Figure 5D). The Chinese and Italian
datasets shared four features, the Chinese and Korean datasets two features, and the Italian
and Korean datasets shared five features.



Biomedicines 2024, 12, 2350 13 of 19

3.6. Bacterial Biomarker Identification in ASD Regardless of Geographical Origin by Random
Forest Algorithm

We combined all the bacterial count matrices (WD matrix) to train a new RF model
to assess the impact of the increase in both dataset size and geographical origins on the
performance of the model.

Therefore, the WD matrix was normalized using the CQR method, and 70% of the
total samples were randomly selected for the training set. The new model classified
the 1st 25 important genera with high values of accuracy (0.889), sensitivity (0.928), and
specificity (0.827) (Figure 6A,B). Furthermore, the AUC-ROC value of 0.93 demonstrated the
maintenance of the good predictive ability of the RF model despite an increase in datasets
and the presence of geographical and technical batches. The good performance of CQR
normalization was further confirmed by comparing the top 25 bacterial features with those
resulting from other RF models obtained by geographical stratification of the datasets. Six
out of twenty-five bacterial features were shared, including Bacteroides_H, Faecalibacterium,
Gemmiger_A_73129, Blautia_A_141781, Bifidobacterium_388775, and Phocaeicola_A_858004.
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The accuracy, sensitivity, specificity, and AUC-ROC values of the RF model are reported (B).

3.7. Validation of the Six Top-Scoring ASVs and the CQR Method

For the feature validation, we tested the capability of the selected six bacterial taxa
to classify the validation of the Italian dataset (40 ASDs and 41 NCs) in ASD and NC
(Supplementary Figure S2A). The values of accuracy, sensitivity, specificity, and AUROC
were calculated.

This model showed good accuracy (accuracy = 0.875), sensitivity (sensitivity = 0.9286), speci-
ficity (specificity = 0.8), and AUC-ROC (AUROC = 0.85) values (Supplementary Figure S2B),
validating the previously obtained results.

For the CQR validation, the RF model, applied to the normalized WVD, performed
a feature classification with an accuracy = 07281, sensitivity = 0.9118, specificity = 0.4565,
and AUROC = 0.81 (Supplementary Figure S3A). The feature classification calculated for
the not-normalized WVD was characterized by accuracy = 0.6842, sensitivity = 0.7595,
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specificity = 0.5143, and AUROC = 0.61 (Supplementary Figure S3B). The highest RF scores
achieved after normalization validated the capability of the CQR method to harmonize
the data.

4. Discussion

The false positive results in studies on the human microbiota may arise from a wide
heterogeneity in the composition of the microbiota, and also from the use of different
technical approaches, and may produce a low concordance amongst studies in this field.
Then, the removal or reduction of the batch effects represents an interesting challenge for
microbiome studies. Herein, we explored the effects of technical and geographical varia-
tions on the results from gut microbiota analyses and proposed a bioinformatic workflow
to overcome these outcomes. The technical batch effect refers to differences in technical
procedures, including data collection, sequencing technologies, sample preparation, and
other experimental processes that differ from bench to bench. The geographical batch
effect includes differences in gut microbiota composition originating from population-
specific features, due to environmental factors, diet, local habits, and other socio-cultural
characteristics. These batch effects may confound the true microbial signatures, result-
ing in an aberrant identification of the microbial profile associated with physiological or
pathological conditions.

Therefore, we propose a strategy based on the application of appropriate open-source
tools, which aims at reducing the batch effect amongst gut microbiota datasets of ASD and
NC subjects, with different geographic (i.e., Italy, China, and Korea) and laboratory origins,
obtaining a more robust microbial profiling method.

Before the integration and normalization processes of the datasets, we compared
our original ASD data with a publicly available subset of NCs, observing two distinct
ecological and taxonomic profiles and confirming a specific gut microbiota composition in
patients with ASD. Our data showed high levels of Phocaeicola_A_858004, Bacteroides_H,
Faecalibacterium, Dialister, Roseburia, Parasutterella, Acetatifactor, Dysosmobacter, Parabac-
teroides_B_862066, Lawsonibacter, Haemophilus_D_735815, Enterocloster, Hungatella_A_128155,
Anaerotruncus, Phocea, Butyricimonas, and Clostridium_Q_134516, and a reduction in Bifi-
dobacterium_388775, Blautia_A_141781, Streptococcus, Collinsella, Copromorpha, Anaerobu-
tyricum, SIO2C1, Nanosynbacter, Pauljensenia, Gemella, Lancefieldella, Gordonibacter, Bulleidia,
and Corynebacterium.

In particular, the increase in Faecalibacterium, Bacteroides, Parabacteroides, Parasutterella,
Phocaeicola, Haemophilus, and Clostridium in patients with ASD was consistent with previ-
ously published findings [25,33,35].

Interestingly, Faecalibacterium is a late colonizer of gut microbiota in healthy subjects
and is present at very low levels until childhood [36]. The high levels of Faecalibacterium in
patients with ASD could indicate its gut premature colonization possibly at the expense
of other beneficial bacteria such as Bifidobacterium, which was decreased in ASD [24].
Interestingly, in NC patients, the presence of Bifidobacterium was strictly influenced by
age, with high abundances observed in the early years. This reinforces the crucial role of
Bifidobacterium in colonizing the healthy infant gut shortly after birth, where it helps in
the maturation of the immune system, facilitates the digestion of complex sugars in breast
milk, and contributes to a eubiotic GM [37–39]. The early colonization by Bifidobacterium is
associated with long-term benefits for metabolic health and protection against infections,
highlighting its importance during the critical windows of early development [39].

Moreover, the increase in Phocaeicola (previously named Bacteroides) was already
described in ASD [25]. Phocaeicola vulgatus was associated with the altered cortisol levels,
which may be involved in the pathogenesis of ASD through the hypothalamic–pituitary–
adrenal (HPA) axis pathway [40]. Moreover, this microorganism was positively correlated
with the levels of D-glutamine and D-glutamate in the ASD gut metabolome [40]. We can
conclude that high levels of P. vulgatus may contribute to the pathophysiology of ASD by
affecting the neurotransmitter imbalance.



Biomedicines 2024, 12, 2350 15 of 19

However, we showed the increase in Gram-negative bacteria, such as Bacteroides,
Parasutterella, Phocaeicola, Parabacteroides, and Prevotella, which are lipopolysaccharide-
(LPS-) producers. LPS has been found increased in the serum of patients with ASD and has
been associated with impaired social behavioral scores [41]. LPS stimulates the secretion of
proinflammatory cytokines from peripheral blood mononuclear cells and lymphoblasts of
children with ASD [42], probably contributing to both peripheral and brain inflammation
associated with the disease.

Interestingly, Bifidobacterium was decreased in ASD. This microorganism is a promoter
of healthy status for its ability to produce neuromodulators and influence the gut–brain
relationship through interaction with other commensal bacteria [43]. Recently, in a clinical
trial, the administration of Bifidobacterium CCFM1025 in patients with major depression
disorder (MDD) attenuated disease symptoms by regulating tryptophan metabolism and
gut eubiosis [44], acting on the gut–brain axis.

Our bioinformatic pipeline, based on the application of CQR normalization on datasets
assembled for geographical origin, resulted in being effective in reducing technical varia-
tions and improving the comparability of data across samples, strengthening the differences
between ASD and NC groups. Furthermore, by the CQR method, we normalized each
dataset according to the magnitude of the technical batches. Indeed, while the microbial
dissimilarity amongst Chinese BioProjects was higher than amongst Italian BioProjects, in-
dicating a high heterogeneity of the sequencing data from the selected Chinese BioProjects.
After normalization, a higher reduction in microbial dissimilarity was observed in Chinese
data than in Italian data. These results indicated that the initial technical batch effect was
quantified properly by CQR, avoiding an over- or underestimation in the batch reduction.
Moreover, these results were confirmed by the AUC-ROC prediction values, corroborating
the improvement in prediction performance, and also addressing skewed distributions.

Interestingly, by this analysis, we identified Bacteroides, Alistipes, Faecalibacterium,
Gemmiger, Blautia, and Bifidobacterium as biomarkers of ASD GM, independently from the
geographical origin, showing that the microbiota features associated with ASD were not
influenced by diet or socio-cultural origin.

Moreover, we characterized unique bacterial features in each dataset (Italian, Korean,
and Chinese datasets). These observations underscored that the gut microbiota was specific
to a distinctive population, not only inherently shaped by the host background but also by a
disease-related phenotype. This factor must be carefully considered in any microbiota study.

The application of the CQR method on the WD also performed well, since we ob-
served, with beta diversity analysis, a reduction in geographical batch effect, maintaining
the differences between the ASD and NC groups. This evidence was consistent with the
high performance of bacterial feature classification obtained by the AUC-ROC test. In fact,
the inclusion of subjects with different geographical origins increased the degrees of batch
effects. The RF model applied to the normalized data showed the accuracy values (i.e.,
AUC-ROC, specificity, and sensitivity values) comparable to those obtained separately by
the normalization of the Italian and Chinese datasets. This evidence established the high
robustness of the CQR method, which maintained its performance with a dataset charac-
terized by a higher batch effect degree and sample size. Then, the reduction of the batch
effect was critical to ensure accurate and reliable prediction, especially when integrating
data from different sources. In addition, the WD analysis revealed that Faecalibacterium,
Bacteroides, Bifidobacterium, Blautia, Gemmiger, and Phocaeicola were among the top 25 most
important bacterial features. The consistency of the results obtained by different approaches
(e.g., discrete geographical origin datasets vs. whole dataset) indicated an improvement in
the robustness of analysis prediction by batch normalization.

Furthermore, these results agreed with other studies that reported Faecalibacterium,
Bacteroides, and Gemmiger as biomarkers of gut microbiota of patients with ASD [45,46],
while Bifidobacterium and Blautia were associated with NC children [47,48].

Interestingly, Alistipes was not confirmed by WD analysis. The explanation could be
found in the dietary habits of patients [49]. Finally, the RF model assigned Parasutterella,
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Prevotella, and Parabacteroides as classifiers of the GM of patients with ASD, consistent with
other studies [25,32,50].

Other than the concordance of our results with the literature, we tested the importance
of these bacterial features that contributed to the case–control classification in another inde-
pendent dataset, showing a good accuracy in prediction. Furthermore, we demonstrated
that the application of the CQR method reduced the false positive and false negative rates.

Our results are promising, but there are some limitations. In order to obtain a dataset
as homogeneous as possible, we used strict inclusion criteria to select datasets, such as pedi-
atric age range, presence of sequences from both ASD and neurotypical subjects, selection
of V3–V4 hypervariable region sequencing of the 16S rRNA, and choice of only MiSeq Illu-
mina platform-based sequencing. Therefore, the resulting dataset was limited. Moreover,
most of the raw sequences, deposited in public databases, did not provide metadata, as the
most basic like gender and sex, and patient characteristics, like treatment, disease status,
symptoms, diet, and lifestyle habits. For these reasons, it was not possible to perform an
exhaustive analysis of confounding factors. Further studies on datasets enriched with more
anamnestic variables will reduce statistical error rates, producing stronger correlations and
validation of compositional and functional GM profiles for patients with ASD.

5. Conclusions

In conclusion, we reported an innovative, comprehensive, and robust bioinformatic
strategy that reduces batch effects in different datasets. With our approach, we demon-
strated an improvement in the AUC-ROC, accuracy, sensitivity, and specificity values
obtained after normalization compared with those obtained before normalization. Thus,
the use of the normalization method for the reduction in batch effects should be mandatory
for ensuring the reliability and reproducibility of research findings in microbiota studies.

Moreover, for the first time, Bacteroides_H, Faecalibacterium, Gemmiger_A_73129, Blau-
tia_A_141781, Bifidobacterium_388775, and Phocaeicola_A_858004 were identified as robust
bacterial biomarkers of GM for ASD, regardless of geographical origin of the subjects,
indicating a GM profile unaffected by dietary habits or socio-cultural differences. Un-
like previous research, often confounded by environmental factors, our findings reveal
biomarkers that remain consistent across diverse populations. This pivotal insight not
only highlights the novelty of our work but also represents a major leap forward ASD
diagnostics, offering more universal and reliable biological indicators, free of external
variables’ influence.

Continued efforts to refine methods for batch effect reduction will be essential for
advancing our understanding of microbial communities and their role in human health
and disease. Ultimately, by adopting rigorous approaches to address batch effects, we can
strengthen GM research and pave the way for more impactful standardization procedures
in the field of microbiome science.
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