The Expression of Genes CYP1A1, CYP1B1, and CYP2J3 in Distinct Regions of the Heart and Its Possible Contribution to the Development of Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. RNA Isolation and RT-PCR
2.3. Data Analysis
3. Results
3.1. Blood Pressure in OXYS, OXYSb, and Wistar Rats
3.2. CYP mRNA Levels in the Heart Chambers and Aorta of OXYS, OXYSb, and Wistar Rats
3.2.1. Levels of CYP1B1 mRNA
3.2.2. The Level of CYP2J3 mRNA
3.2.3. The Level of CYP1A1 mRNA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Yang, X.; Liu, K.; Zhang, X.; Zuo, X.; Ye, R.; Wang, Z.; Shi, R.; Meng, Q.; et al. Signaling pathways in vascular function and hypertension: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 168. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- Liberale, L.; Montecucco, F.; Tardif, J.C.; Libby, P.; Camici, G.G. Inflamm-ageing: The role of inflammation in age-dependent cardiovascular disease. Eur. Heart J. 2020, 41, 2974–2982. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018, 138, e426–e483. [Google Scholar] [CrossRef]
- Shi, Z.; He, Z.; Wang, D.W. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. Molecules 2022, 27, 3873. [Google Scholar] [CrossRef]
- Jamieson, K.L.; Endo, T.; Darwesh, A.M.; Samokhvalov, V.; Seubert, J.M. Cytochrome P450-derived eicosanoids and heart function. Pharmacol. Ther. 2017, 179, 47–83. [Google Scholar] [CrossRef]
- Esser-von Bieren, J. Eicosanoids in tissue repair. Immunol. Cell Biol. 2019, 97, 279–288. [Google Scholar] [CrossRef]
- Schwarz, D.; Kisselev, P.; Ericksen, S.S.; Szklarz, G.D.; Chernogolov, A.; Honeck, H.; Schunck, W.H.; Roots, I. Arachidonic and eicosapentaenoic acid metabolism by human CYP1A1: Highly stereoselective formation of 17(R),18(S)-epoxyeicosatetraenoic acid. Biochem. Pharmacol. 2004, 67, 1445–1457. [Google Scholar] [CrossRef]
- Schwarz, D.; Kisselev, P.; Chernogolov, A.; Schunck, W.H.; Roots, I. Human CYP1A1 variants lead to differential eicosapentaenoic acid metabolite patterns. Biochem. Biophys. Res. Commun. 2005, 336, 779–783. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Botta, E.; Holinstat, M. Eicosanoids in inflammation in the blood and the vessel. Front. Pharmacol. 2022, 13, 997403. [Google Scholar] [CrossRef]
- Kumar, A.; Behl, T.; Jamwal, S.; Kaur, I.; Sood, A.; Kumar, P. Exploring the molecular approach of COX and LOX in Alzheimer’s and Parkinson’s disorder. Mol. Biol. Rep. 2020, 47, 9895–9912. [Google Scholar] [CrossRef]
- Wang, D.; Dubois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [Google Scholar] [CrossRef]
- Wallace, J.L. Eicosanoids in the gastrointestinal tract. Br. J. Pharmacol. 2019, 176, 1000–1008. [Google Scholar] [CrossRef]
- Calder, P.C. Eicosanoids. Essays Biochem. 2020, 64, 423–441. [Google Scholar] [CrossRef]
- Colombero, C.; Cardenas, S.; Venara, M.; Martin, A.; Pennisi, P.; Barontini, M.; Nowicki, S. Cytochrome 450 metabolites of arachidonic acid (20-HETE, 11,12-EET and 14,15-EET) promote pheochromocytoma cell growth and tumor associated angiogenesis. Biochimie 2020, 171–172, 147–157. [Google Scholar] [CrossRef]
- Westphal, C.; Konkel, A.; Schunck, W.H. Cytochrome p450 enzymes in the bioactivation of polyunsaturated Fatty acids and their role in cardiovascular disease. Adv. Exp. Med. Biol. 2015, 851, 151–187. [Google Scholar] [CrossRef]
- Shoieb, S.M.; Dakarapu, R.; Falck, J.R.; El-Kadi, A.O.S. Novel Synthetic Analogues of 19(S/R)-Hydroxyeicosatetraenoic Acid Exhibit Noncompetitive Inhibitory Effect on the Activity of Cytochrome P450 1A1 and 1B1. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 613–624. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Shoieb, S.M.; El-Sherbeni, A.A.; El-Kadi, A.O.S. Subterminal hydroxyeicosatetraenoic acids: Crucial lipid mediators in normal physiology and disease states. Chem. Biol. Interact. 2019, 299, 140–150. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.A.; Wang, D.W. The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Adv. Drug Deliv. Rev. 2011, 63, 597–609. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Zordoky, B.N.; Tse, M.M.; El-Kadi, A.O. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab. Rev. 2013, 45, 173–195. [Google Scholar] [CrossRef]
- Capdevila, J.; Wang, W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr. Opin. Nephrol. Hypertens. 2013, 22, 163–169. [Google Scholar] [CrossRef]
- Dubey, R.K.; Tofovic, S.P.; Jackson, E.K. Cardiovascular pharmacology of estradiol metabolites. J. Pharmacol. Exp. Ther. 2004, 308, 403–409. [Google Scholar] [CrossRef]
- Agbor, L.N.; Walsh, M.T.; Boberg, J.R.; Walker, M.K. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega-3 polyunsaturated fatty acids. Toxicol. Appl. Pharmacol. 2012, 264, 351–360. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y.; Liang, H.; Wang, J.; Qi, L. Genome-wide association analysis of hypertension and epigenetic aging reveals shared genetic architecture and identifies novel risk loci. Sci. Rep. 2024, 14, 17792. [Google Scholar] [CrossRef]
- Malik, K.U.; Jennings, B.L.; Yaghini, F.A.; Sahan-Firat, S.; Song, C.Y.; Estes, A.M.; Fang, X.R. Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: A novel target for antihypertensive agents. Prostaglandins. Other Lipid Mediat. 2012, 98, 69–74. [Google Scholar] [CrossRef]
- Jennings, B.L.; Sahan-Firat, S.; Estes, A.M.; Das, K.; Farjana, N.; Fang, X.R.; Gonzalez, F.J.; Malik, K.U. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology. Hypertension 2010, 56, 667–674. [Google Scholar] [CrossRef]
- Jennings, B.L.; Montanez, D.E.; May, M.E., Jr.; Estes, A.M.; Fang, X.R.; Yaghini, F.A.; Kanu, A.; Malik, K.U. Cytochrome P450 1B1 contributes to increased blood pressure and cardiovascular and renal dysfunction in spontaneously hypertensive rats. Cardiovasc. Drugs Ther. 2014, 28, 145–161. [Google Scholar] [CrossRef]
- Zisaki, A.; Miskovic, L.; Hatzimanikatis, V. Antihypertensive drugs metabolism: An update to pharmacokinetic profiles and computational approaches. Curr. Pharm. Des. 2015, 21, 806–822. [Google Scholar] [CrossRef]
- Shoieb, S.M.; El-Kadi, A.O.S. Resveratrol attenuates angiotensin II-induced cellular hypertrophy through the inhibition of CYP1B1 and the cardiotoxic mid-chain HETE metabolites. Mol. Cell. Biochem. 2020, 471, 165–176. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, C.X.; Wang, L.; Tu, L.; Fang, X.; Zheng, C.; Edin, M.L.; Zeldin, D.C.; Wang, D.W. Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice. Diabetes 2010, 59, 997–1005. [Google Scholar] [CrossRef]
- Thum, T.; Borlak, J. Gene expression in distinct regions of the heart. Lancet 2000, 355, 979–983. [Google Scholar] [CrossRef]
- Maayah, Z.H.; El-Kadi, A.O. The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch. Toxicol. 2016, 90, 119–136. [Google Scholar] [CrossRef]
- Perepechaeva, M.L.; Grishanova, A.Y. The Role of Arachidonic Acid Metabolizing Cytochrome P450 in the Control of Cardiovascular Functions. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2024, 18, 192–213. [Google Scholar]
- Muraleva, N.A.; Devyatkin, V.A.; Kolosova, N.G. Phosphorylation of alphaB-crystallin in the myocardium: Analysis of relations with aging and cardiomyopathy. Exp. Gerontol. 2017, 95, 26–33. [Google Scholar] [CrossRef]
- Stefanova, N.A.; Kozhevnikova, O.S.; Vitovtov, A.O.; Maksimova, K.Y.; Logvinov, S.V.; Rudnitskaya, E.A.; Korbolina, E.E.; Muraleva, N.A.; Kolosova, N.G. Senescence-accelerated OXYS rats: A model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle 2014, 13, 898–909. [Google Scholar] [CrossRef]
- Igonina, T.N.; Ragaeva, D.S.; Tikhonova, M.A.; Petrova, O.M.; Herbeck, Y.E.; Rozhkova, I.N.; Amstislavskaya, T.G.; Amstislavsky, S.Y. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res. 2018, 1681, 75–84. [Google Scholar] [CrossRef]
- Kolosova, N.G.; Kozhevnikova, O.S.; Muraleva, N.A.; Rudnitskaya, E.A.; Rumyantseva, Y.V.; Stefanova, N.A.; Telegina, D.V.; Tyumentsev, M.A.; Fursova, A.Z. SkQ1 as a Tool for Controlling Accelerated Senescence Program: Experiments with OXYS Rats. Biochemistry 2022, 87, 1552–1562. [Google Scholar] [CrossRef]
- Perepechaeva, M.L.; Kolosova, N.G.; Stefanova, N.A.; Fursova, A.; Grishanova, A.Y. The influence of changes in expression of redox-sensitive genes on the development of retinopathy in rats. Exp. Mol. Pathol. 2016, 101, 124–132. [Google Scholar] [CrossRef]
- El-Sherbeni, A.A.; El-Kadi, A.O. Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem. Pharmacol. 2014, 87, 456–466. [Google Scholar] [CrossRef]
- Kolosova, N.G.; Stefanova, N.A.; Korbolina, E.E.; Fursova, A.; Kozhevnikova, O.S. The senescence-accelerated oxys rats--a genetic model of premature aging and age-dependent degenerative diseases. Adv. Gerontol. 2014, 27, 336–340. [Google Scholar]
- Nayeem, M.A. Role of oxylipins in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1142–1154. [Google Scholar] [CrossRef]
- Carrera, A.N.; Grant, M.K.O.; Zordoky, B.N. CYP1B1 as a therapeutic target in cardio-oncology. Clin. Sci. 2020, 134, 2897–2927. [Google Scholar] [CrossRef]
- Anderson, G.; Mazzoccoli, G. Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. Int. J. Mol. Sci. 2019, 20, 4068. [Google Scholar] [CrossRef]
- Gangadhariah, M.H.; Dieckmann, B.W.; Lantier, L.; Kang, L.; Wasserman, D.H.; Chiusa, M.; Caskey, C.F.; Dickerson, J.; Luo, P.; Gamboa, J.L.; et al. Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. Diabetologia 2017, 60, 1066–1075. [Google Scholar] [CrossRef]
- Solanki, M.; Pointon, A.; Jones, B.; Herbert, K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab. Dispos. 2018, 46, 1053–1065. [Google Scholar] [CrossRef]
- Lund, A.K.; Goens, M.B.; Kanagy, N.L.; Walker, M.K. Cardiac hypertrophy in aryl hydrocarbon receptor null mice is correlated with elevated angiotensin II, endothelin-1, and mean arterial blood pressure. Toxicol. Appl. Pharmacol. 2003, 193, 177–187. [Google Scholar] [CrossRef]
- Tsatsakis, A.M.; Zafiropoulos, A.; Tzatzarakis, M.N.; Tzanakakis, G.N.; Kafatos, A. Relation of PON1 and CYP1A1 genetic polymorphisms to clinical findings in a cross-sectional study of a Greek rural population professionally exposed to pesticides. Toxicol. Lett. 2009, 186, 66–72. [Google Scholar] [CrossRef]
- McClay, J.L. Epigenetic regulation of drug metabolism in aging. Aging 2021, 13, 16898–16899. [Google Scholar] [CrossRef]
- Barouki, R.; Morel, Y. Repression of cytochrome P450 1A1 gene expression by oxidative stress: Mechanisms and biological implications. Biochem. Pharmacol. 2001, 61, 511–516. [Google Scholar] [CrossRef]
- Barker, C.W.; Fagan, J.B.; Pasco, D.S. Down-regulation of P4501A1 and P4501A2 mRNA expression in isolated hepatocytes by oxidative stress. J. Biol. Chem. 1994, 269, 3985–3990. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Tian, X.; Zhao, Y.; Li, Y.; Wu, X. Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases. Antioxidants 2024, 13, 394. [Google Scholar] [CrossRef]
- Kolosova, N.G.; Shcheglova, T.V.; Sergeeva, S.V.; Loskutova, L.V. Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats. Neurobiol. Aging 2006, 27, 1289–1297. [Google Scholar] [CrossRef]
- Hussain, T.; Al-Attas, O.S.; Al-Daghri, N.M.; Mohammed, A.A.; De Rosas, E.; Ibrahim, S.; Vinodson, B.; Ansari, M.G.; El-Din, K.I. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol. Cell. Biochem. 2014, 391, 127–136. [Google Scholar] [CrossRef]
- Pfeffer, J.M.; Pfeffer, M.A.; Frohlich, E.D. Validity of an indirect tail-cuff method for determining systolic arterial pressure in unanesthetized normotensive and spontaneously hypertensive rats. J. Lab. Clin. Med. 1971, 78, 957–962. [Google Scholar]
Strain | Age, Month | Atrium | Ventricle | Aorta | ||||
---|---|---|---|---|---|---|---|---|
Right | Left | Mean ± SEM | Right | Left | Mean ± SEM | |||
Wistar | 1 | 0.26 ± 0.04 | 0.99 ± 0.09 £ | 0.65 ± 0.11 | 0.67 ± 0.17 | 0.63 ± 0.21 | 0.65 ± 0.13 | 0.74 ± 0.10 |
3 | 1.33 ± 0.08 # | 0.76 ± 0.13 £ | 1.02 ± 0.11 # | 1.18 ± 0.18 | 1.46 ± 0.13 # | 1.32 ± 0.11 # | 5.58 ± 1.36 # | |
12 | 0.54 ± 0.10 # | 1.75 ± 0.14 #£ | 1.10 ± 0.19 | 0.66 ± 0.15 # p = 0.056 | 1.56 ± 0.62 | 1.08 ± 0.31 | 0.17 ± 0.17 # | |
OXYS | 1 | 0.31 ± 0.07 | 0.57 ± 0.07 *£ | 0.44 ± 0.06 | 0.46 ± 0.11 | 0.36 ± 0.06 + | 0.39 ± 0.05 | 0.91 ± 0.13 |
3 | 0.82 ± 0.06 *# | 0.90 ± 0.16 | 0.87 ± 0.10 # | 0.96 ± 0.22 | 0.77 ± 0.10 *+# | 0.86 ± 0.12 *# | 2.22 ± 0.83 * | |
12 | 0.52 ± 0.12 # | 1.68 ± 0.18 #£ | 1.14 ± 0.20 | 0.49 ± 0.12 | 2.51 ± 0.24 # | 1.42 ± 0.32 # p = 0.056 £ | 0.92 ± 0.27 * | |
OXYSb | 1 | 0.42 ± 0.06 | 0.71 ± 0.09 £ | 0.56 ± 0.07 | 1.63 ± 0.39 * | 0.81 ± 0.14 £ | 1.16 ± 0.21 * | 0.96 ± 0.19 |
3 | 1.17 ± 0.16 # | 1.05 ± 0.11 # | 1.10 ± 0.09 # | 1.03 ± 0.18 | 1.18 ± 0.17 | 1.10 ± 0.12 | 2.21 ± 0.99 | |
12 | 0.75 ± 0.11 | 1.46 ± 0.22 £ | 1.13 ± 0.16 | 0.75 ± 0.18 | 2.44 ± 0.46 #£ | 1.60 ± 0.33 | 0.79 ± 0.44 |
Strain | Age, Month | Atrium | Ventricle | Aorta | ||||
---|---|---|---|---|---|---|---|---|
Right | Left | Mean ± SEM | Right | Left | Mean ± SEM | |||
Wistar | 1 | 0.57 ± 0.12 | 0.51 ± 0.06 | 0.54 ± 0.07 | 0.68 ± 0.14 | 0.88 ± 0.18 | 0.79 ± 0.12 | 1.93 ± 0.33 |
3 | 1.30 ± 0.10 # | 1.25 ± 0.25 # | 1.27 ± 0.16 # | 1.19 ± 0.10 # | 0.98 ± 0.16 | 1.09 ± 0.09 # p = 0.056 | 3.01 ± 0.54 | |
12 | 0.79 ± 0.16 # | 1.55 ± 0.18 £ | 1.17 ± 0.16 | 1.02 ± 0.20 | 1.74 ± 0.58 | 1.41 ± 0.33 | 1.38 ± 0.41 # | |
OXYS | 1 | 0.35 ± 0.05 | 0.44 ± 0.04 + | 0.39 ± 0.03 * p = 0.055 | 1.33 ± 0.35 | 0.92 ± 0.14 | 1.04 ± 0.14 | 1.83 ± 0.26 |
3 | 0.89 ± 0.07 *# | 0.88 ± 0.14 # | 0.89 ± 0.07 * p = 0.027 # | 0.82 ± 0.10 * + p = 0.051 # p = 0.064 | 0.51 ± 0.08 *+#£ | 0.66 ± 0.07 *+# | 1.24 ± 0.30 * | |
12 | 0.68 ± 0.13 | 1.35 ± 0.09 #£ | 1.01 ± 0.12 | 0.54 ± 0.12 | 2.40 ± 0.37 # | 1.40 ± 0.32 #£ | 1.65 ± 0.23 | |
OXYSb | 1 | 0.30 ± 0.05 | 0.69 ± 0.09 £ | 0.50 ± 0.07 | 1.25 ± 0.28 | 1.10 ± 0.29 | 1.17 ± 0.20 | 1.98 ± 0.36 |
3 | 1.07 ± 0.11 # | 0.96 ± 0.08 # | 1.02 ± 0.07 # | 1.10 ± 0.09 | 1.39 ± 0.17 | 1.23 ± 0.10 | 0.96 ± 0.22 *# | |
12 | 0.52 ± 0.12 # | 1.45 ± 0.20 #£ | 1.02 ± 0.18 | 0.75 ± 0.17 # p = 0.061 | 1.54 ± 0.31 £ | 1.11 ± 0.20 | 1.34 ± 0.32 |
Strain | Age, Month | Atrium | Ventricle | Aorta | ||||
---|---|---|---|---|---|---|---|---|
Right | Left | Mean ± SEM | Right | Left | Mean ± SEM | |||
Wistar | 1 | 0.03 ± 0.01 | 0.18 ± 0.02 £ | 0.11 ± 0.02 | 0.35 ± 0.09 | 0.11 ± 0.03 £ | 0.21 ± 0.05 | 0.25 ± 0.12 |
3 | 0.53 ± 0.16 # | 1.14 ± 0.24 # £ p = 0.055 | 0.84 ± 0.16 # | 0.46 ± 0.07 | 0.11 ± 0.03 £ | 0.27 ± 0.06 | 0.08 ± 0.03 | |
12 | 0 # | 0.19 ± 0.10 # | 0.10 ± 0.06 # | 0.21 ± 0.08 # | 0.51 ± 0.24 # | 0.33 ± 0.12 | 0.01 ± 0.01# p = 0.053 | |
OXYS | 1 | 0.05 ± 0.01 | 0.14 ± 0.03 £ | 0.09 ± 0.02 | 0.39 ± 0.19 | 0.10 ± 0.02 £ | 0.18 ± 0.06 | 0.12 ± 0.05 |
3 | 0.60 ± 0.16 # | 0.80 ± 0.12 # | 0.68 ± 0.11 # | 0.70 ± 0.06 * # p = 0.051 | 0.11 ± 0.02 £ | 0.48 ± 0.08 *# | 0.01 ± 0.01 | |
12 | 0 # | 0.03 ± 0.01 #£ | 0.02 ± 0.01 # | 0.27 ± 0.08 # | 0.37 ± 0.10 # | 0.32 ± 0.06 | 0.37 ± 0.25 | |
OXYSb | 1 | 0.03 ± 0.01 | 0.14 ± 0.04 £ | 0.08 ± 0.02 | 0.43 ± 0.16 | 0.09 ± 0.02 £ | 0.22 ± 0.08 | 0.13 ± 0.05 |
3 | 0.56 ± 0.10 # | 1.03 ± 0.11 #£ | 0.76 ± 0.10 # | 1.05 ± 0.17 #* | 0.13 ± 0.02 £ | 0.61 ± 0.14 *# | 0.08 ± 0.04 | |
12 | 0 # | 0.14 ± 0.10 # | 0.07 ± 0.05 # | 0.42 ± 0.12 # | 0.20 ± 0.04 | 0.30 ± 0.07 | 0.10 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perepechaeva, M.L.; Stefanova, N.A.; Grishanova, A.Y.; Kolosova, N.G. The Expression of Genes CYP1A1, CYP1B1, and CYP2J3 in Distinct Regions of the Heart and Its Possible Contribution to the Development of Hypertension. Biomedicines 2024, 12, 2374. https://doi.org/10.3390/biomedicines12102374
Perepechaeva ML, Stefanova NA, Grishanova AY, Kolosova NG. The Expression of Genes CYP1A1, CYP1B1, and CYP2J3 in Distinct Regions of the Heart and Its Possible Contribution to the Development of Hypertension. Biomedicines. 2024; 12(10):2374. https://doi.org/10.3390/biomedicines12102374
Chicago/Turabian StylePerepechaeva, Maria L., Natalia A. Stefanova, Alevtina Y. Grishanova, and Nataliya G. Kolosova. 2024. "The Expression of Genes CYP1A1, CYP1B1, and CYP2J3 in Distinct Regions of the Heart and Its Possible Contribution to the Development of Hypertension" Biomedicines 12, no. 10: 2374. https://doi.org/10.3390/biomedicines12102374
APA StylePerepechaeva, M. L., Stefanova, N. A., Grishanova, A. Y., & Kolosova, N. G. (2024). The Expression of Genes CYP1A1, CYP1B1, and CYP2J3 in Distinct Regions of the Heart and Its Possible Contribution to the Development of Hypertension. Biomedicines, 12(10), 2374. https://doi.org/10.3390/biomedicines12102374