The Relationship Between MOTS-c K14Q Polymorphism and Sarcopenia, Blood Lipids, and Mental Health in Older Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body Composition, Handgrip Strength, Falling Concern, and Balance Confidence
2.3. Blood Chemistry and Genotyping
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Wei, Z.; Wang, T. MOTS-c: A promising mitochondrial-derived peptide for therapeutic exploitation. Front. Endocrinol. 2023, 14, 1120533. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.C.; Lai, R.W.; Woodhead, J.S.T.; Joly, J.H.; Mitchell, C.J.; Cameron-Smith, D.; Lu, R.; Cohen, P.; Graham, N.A.; Benayoun, B.A.; et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat. Commun. 2021, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Natsume, T.; Kim, S.-J.; Tobina, T.; Miyamoto-Mikami, E.; Shiose, K.; Ichinoseki-Sekine, N.; Kakigi, R.; Tsuzuki, T.; Miller, B.; et al. The MOTS-c K14Q polymorphism in the mtDNA is associated with muscle fiber composition and muscular performance. Biochim. Biophys. Acta Gen. Subj. 2022, 1866, 130048. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yu, Q.; Chang, B.; Guo, Q.; Xu, S.; Yi, X.; Cao, S. MOTS-c interacts synergistically with exercise intervention to regulate PGC-1α expression, attenuate insulin resistance and enhance glucose metabolism in mice via AMPK signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166126. [Google Scholar] [CrossRef] [PubMed]
- Zempo, H.; Kim, S.-J.; Fuku, N.; Nishida, Y.; Higaki, Y.; Wan, J.; Yen, K.; Miller, B.; Vicinanza, R.; Miyamoto-Mikami, E.; et al. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. Aging 2021, 13, 1692–1717. [Google Scholar] [CrossRef]
- Russlies, J.; Fähnrich, A.; Witte, M.; Yin, J.; Benoit, S.; Gläser, R.; Günter, C.; Eming, R.; Erdmann, J.; Gola, D.; et al. Polymorphisms in the Mitochondrial Genome Are Associated with Bullous Pemphigoid in Germans. Front. Immunol. 2019, 10, 2200. [Google Scholar] [CrossRef]
- Kumagai, H.; Coelho, A.R.; Wan, J.; Mehta, H.H.; Yen, K.; Huang, A.; Zempo, H.; Fuku, N.; Maeda, S.; Oliveira, P.J.; et al. MOTS-c reduces myostatin and muscle atrophy signaling. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E680–E690. [Google Scholar] [CrossRef]
- Kumagai, H.; Miller, B.; Kim, S.J.; Leelaprachakul, N.; Kikuchi, N.; Yen, K.; Cohen, P. Novel insights into mitochondrial DNA: Mitochondrial microproteins and mtDNA variants modulate athletic performance and age-related diseases. Genes 2023, 14, 286. [Google Scholar] [CrossRef]
- Merry, T.L.; Chan, A.; Woodhead, J.S.T.; Reynolds, J.C.; Kumagai, H.; Kim, S.J.; Lee, C. Mitochondrial-derived peptides in energy metabolism. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E659–E666. [Google Scholar] [CrossRef]
- Hyatt, J.K. MOTS-c increases in skeletal muscle following long-term physical activity and improves acute exercise performance after a single dose. Physiol. Rep. 2022, 10, e15377. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.Y.; Bruyère, O. Health outcomes of sarcopenia: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0169548. [Google Scholar] [CrossRef]
- Dong, B.; Li, Q.; Zhang, T.; Liang, X.; Jia, M.; Fu, Y.; Bai, J.; Fu, S. Population genetic polymorphism of skeletal muscle strength related genes in five ethnic minorities in North China. Front. Genet. 2021, 12, 756802. [Google Scholar] [CrossRef]
- Priego, T.; Martín, A.I.; González-Hedström, D.; Granado, M.; López-Calderón, A. Role of hormones in sarcopenia. Vitam. Horm. 2021, 115, 535–570. [Google Scholar]
- Tzeng, P.L.; Lin, C.Y.; Lai, T.F.; Huang, W.C.; Pien, E.; Hsueh, M.C.; Lin, K.P.; Park, J.H.; Liao, Y. Daily lifestyle behaviors and risks of sarcopenia among older adults. Arch. Public. Health 2020, 78, 113. [Google Scholar] [CrossRef]
- Chiles Shaffer, N.; Simonsick, E.M.; Thorpe, R.J.; Studenski, S.A. The roles of body composition and specific strength in the relationship between race and physical performance in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hao, Q.; Hou, L.; Xia, X.; Zhao, W.; Zhang, Y.; Ge, M.; Liu, Y.; Zuo, Z.; Yue, J.; et al. Ethnic Groups Differences in the Prevalence of Sarcopenia Using the AWGS Criteria. J. Nutr. Health Aging 2020, 24, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Powell, L.E.; Myers, A.M. The activities-specific balance confidence (ABC) scale. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50A, M28–M34. [Google Scholar] [CrossRef]
- Jang, S.N.; Cho, S.I.; Ou, S.W.; Lee, E.S.; Baik, H.W. The validity and reliability of Korean fall efficacy scale (FES) and activities-specific balance confidence scale (ABC). J. Kor Geriatr. Soc. 2003, 7, 255–268. [Google Scholar]
- Chon, K.K. Preliminary development of Korean version of CES-D. Korean J. Clin. Psychol. 1992, 11, 65–76. [Google Scholar]
- Kang, Y.W.; Na, D.L.; Hahn, S.H. A validity study on the Korean mini-mental state examination (K-MMSE) in dementia patients. J. Korean Neurol. Assoc. 1997, 15, 300–308. [Google Scholar]
- Gerst, K.; Michaels-Obregon, A.; Wong, R. The impact of physical activity on disability incidence among older adults in Mexico and the United States. J. Aging Res. 2011, 2011, 420714. [Google Scholar] [CrossRef]
- Roth, S.M. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. Bonekey Rep. 2012, 1, 58. [Google Scholar] [CrossRef]
- Zempo, H.; Miyamoto-Mikami, E.; Kikuchi, N.; Fuku, N.; Miyachi, M.; Murakami, H. Heritability estimates of muscle strength-related phenotypes: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2017, 27, 1537–1546. [Google Scholar] [CrossRef]
- Jin, H.; Yoo, H.J.; Kim, Y.A.; Lee, J.H.; Lee, Y.; Kwon, S.-H.; Seo, Y.J.; Lee, S.H.; Koh, J.-M.; Ji, Y.; et al. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci. Rep. 2022, 12, 3501. [Google Scholar] [CrossRef] [PubMed]
- Handschin, C.; Chin, S.; Li, P.; Liu, F.; Maratos-Flier, E.; Lebrasseur, N.K.; Yan, Z.; Spiegelman, B.M. Skeletal muscle fiber type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 2007, 282, 30014–30021. [Google Scholar] [CrossRef]
- Kamei, Y.; Miura, S.; Suzuki, M.; Kai, Y.; Mizukami, J.; Taniguchi, T.; Mochida, K.; Hata, T.; Matsuda, J.; Aburatani, H.; et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 2004, 279, 41114–41123. [Google Scholar] [CrossRef]
- Lee, C.; Zeng, J.; Drew, B.G.; Sallam, T.; Martin-Montalvo, A.; Wan, J.; Kim, S.-J.; Mehta, H.; Hevener, A.L.; de Cabo, R.; et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015, 21, 443–454. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, L.; Lin, Y.; Rao, X.; Wang, X.; Hua, F.; Ying, J. Mitochondria-derived peptide MOTS-c: Effects and mechanisms related to stress, metabolism and aging. J. Transl. Med. 2023, 21, 36. [Google Scholar] [CrossRef]
- Aslam, M.A.; Ma, E.B.; Huh, J.Y. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023, 149, 155711. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 683) | Men (n = 345) | Women (n = 338) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A Allele (n = 648) | C Allele (n = 35) | ES | p | A Allele (n = 326) | C Allele (n = 19) | ES | p | A Allele (n = 322) | C Allele (n = 16) | ES | p | |
Age (years) | 74.1 ± 6.6 | 72.5 ± 7.0 | 0.248 | 0.239 | 73.9 ± 5.5 | 74.0 ± 5.3 | −0.015 | 0.969 | 74.1 ± 6.7 | 71.7 ± 5.6 | 0.361 | 0.160 |
Education (years) | 7.2 ± 4.4 | 7.6 ± 3.9 | −0.098 | 0.663 | 11.3 ± 3.9 | 8.7 ± 5.5 | 0.622 | 0.125 | 6.4± | 7.1± | −0.162 | 0.553 |
BMI (kg/m2) | 24.5 ± 3.1 | 24.9 ± 3.3 | −0.111 | 0.602 | 23.8 ± 2.5 | 24.7 ± 2.2 | −0.392 | 0.301 | 24.7 ± 3.2 | 24.9 ± 3.8 | −0.081 | 0.752 |
WC (cm) | 91.3 ± 13.4 | 91.6 ± 14.6 | 0.022 | 0.922 | 91.7 ± 11.6 | 99.2 ± 15.1 | −0.621 | 0.105 | 91.2 ± 13.7 | 87.8 ± 13.3 | 0.249 | 0.363 |
WHR | 0.91 ± 0.07 | 0.90 ± 0.08 | 0.199 | 0.375 | 0.92 ± 0.05 | 0.92 ± 0.04 | −0.129 | 0.748 | 0.91 ± 0.07 | 0.89 ± 0.09 | −0.187 | 0.201 |
Smoking, n (%) | 271 (41.9) | 14 (39.3) | 0.159 | 0.736 | 246 (75.5) | 15 (77.1) | 0.225 | 0.673 | 29 (8.9) | 2 (9.1) | 0.027 | 0.825 |
# of chronic diseases | 3.2 ± 1.7 | 3.1 ± 1.0 | 0.084 | 0.653 | 2.8 ± 1.1 | 3.4 ± 1.1 | −0.518 | 0.181 | 3.3 ± 1.0 | 3.0 ± 0.9 | 0.285 | 0.279 |
Variables | Total (n = 683) | Men (n = 345) | Women (n = 338) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A Allele (n = 648) | C Allele (n = 35) | ES | p | A Allele (n = 326) | C Allele (n = 19) | ES | p | A Allele (n = 322) | C Allele (n = 16) | ES | p | |
Blood chemistry profiles | ||||||||||||
FBG (mg/dL) | 114.8 ± 25.1 | 117.3 ± 34.9 | −0.097 | 0.644 | 118.8 ± 31.8 | 103.9 ± 7.3 | 0.021 | 0.193 | 114.1 ± 23.5 | 124.1 ± 41.2 | −0.406 | 0.114 |
TC (mg/dL) | 158.2 ± 37.4 | 177.5 ± 36.9 | 0.522 | 0.014 | 172.9 ± 35.5 | 172.0 ± 40.0 | 0.026 | 0.946 | 151.3 ± 35.2 | 178.4 ± 37.2 | 0.729 | 0.005 |
TG (mg/dL) | 128.1 ± 59.3 | 108.5 ± 41.6 | 0.335 | 0.112 | 137.4 ± 73.5 | 114.6 ± 50.7 | 0.318 | 0.400 | 125.3 ± 56.1 | 105.4 ± 37.7 | 0.377 | 0.142 |
HDLC (mg/dL) | 51.8 ± 13.5 | 50.2 ± 12.1 | 0.121 | 0.566 | 48.5 ± 12.0 | 53.6 ± 11.5 | −0.429 | 0.258 | 52.4 ± 13.7 | 48.4 ± 12.4 | 0.292 | 0.255 |
LDLC (mg/dL) | 86.4 ± 28.7 | 100.1 ± 33.6 | 0.411 | 0.038 | 97.0 ± 31.3 | 95.5 ± 28.2 | 0.049 | 0.897 | 81.8 ± 28.7 | 100.7 ± 34.0 | 0.558 | 0.030 |
Vitamin D (ng/mL) | 19.5 ± 9.8 | 19.4 ± 8.4 | 0.011 | 0.958 | 19.4 ± 8.7 | 20.6 ± 6.9 | −0.144 | 0.703 | 19.5 ± 10.1 | 18.8 ± 9.2 | 0.073 | 0.775 |
Nutritional intake | ||||||||||||
PRO (g/day) | 68.2 ± 34.7 | 71.7 ± 33.8 | 0.003 | 0.093 | 69.1 ± 35.1 | 73.0 ± 33.9 | 0.003 | 0.244 | 56.9 ± 27.2 | 48.7 ± 24.1 | 0.002 | 0.440 |
Fats (g/day) | 31.1 ± 31.1 | 33.8 ± 24.3 | 0.008 | 0.334 | 31.7 ± 31.9 | 34.5 ± 24.7 | 0.007 | 0.345 | 23.5 ± 16.6 | 21.5 ± 10.1 | 0.068 | 0.754 |
CHO (g/day) | 344.0 ± 114.0 | 326.6 ± 102.7 | 0.002 | 0.276 | 346.4 ± 115.5 | 329.1 ± 100.9 | 0.003 | 0.110 | 314.2 ± 88.8 | 280.4 ± 129.7 | 0.022 | 0.379 |
Physical activity | 0.396 | 0.438 | 0.445 | |||||||||
Insufficient, n (%) | 353 (54.5) | 23 (64.3) | 0.022 | 202 (62.1) | 10 (52.4) | 0.015 | 176 (54.7) | 10 (63.3) | 0.131 | |||
Sufficient, n (%) | 295 (45.5) | 12 (35.7) | 0.022 | 124 (37.9) | 9 (47.6) | 0.015 | 146 (45.3) | 6 (36.7) | 0.131 | |||
Fall risk parameters | ||||||||||||
Fall experience, n (%) | 161 (24.9) | 9 (26.7) | 0.009 | 0.878 | 73 (22.5) | 4 (21.0) | 0.128 | 0.491 | 81 (25.3) | 3 (20.4) | 0.025 | 0.703 |
Fall efficacy scale | 94.6 ± 9.0 | 97.2 ± 10.2 | −0.163 | 0.098 | 89.0 ± 14.1 | 88.2 ± 9.7 | −0.628 | 0.744 | 90.0 ± 13.6 | 92.1 ± 9.7 | 0.064 | 0.440 |
ABC scale | 80.5 ± 19.1 | 82.1 ± 16.0 | −0.088 | 0.640 | 90.0 ± 7.9 | 95.8 ± 6.8 | 0.263 | 0.056 | 78.7 ± 19.3 | 76.5 ± 16.1 | 0.126 | 0.253 |
Mental health parameters | ||||||||||||
K-MMSE score | 25.2 ± 3.8 | 25.8 ± 2.8 | −0.127 | 0.385 | 27.2 ± 2.1 | 26.7 ± 2.9 | −0.137 | 0.449 | 24.8 ± 3.9 | 25.3 ± 2.7 | −0.137 | 0.537 |
CESD−10 score | 7.0 ± 8.7 | 8.1 ± 9.3 | −0.156 | 0.532 | 6.5 ± 9.0 | 7.8 ± 11.7 | −0.241 | 0.674 | 7.1 ± 8.7 | 8.3 ± 8.6 | −0.129 | 0.572 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S. The Relationship Between MOTS-c K14Q Polymorphism and Sarcopenia, Blood Lipids, and Mental Health in Older Korean Adults. Biomedicines 2024, 12, 2384. https://doi.org/10.3390/biomedicines12102384
Kim S. The Relationship Between MOTS-c K14Q Polymorphism and Sarcopenia, Blood Lipids, and Mental Health in Older Korean Adults. Biomedicines. 2024; 12(10):2384. https://doi.org/10.3390/biomedicines12102384
Chicago/Turabian StyleKim, Shinuk. 2024. "The Relationship Between MOTS-c K14Q Polymorphism and Sarcopenia, Blood Lipids, and Mental Health in Older Korean Adults" Biomedicines 12, no. 10: 2384. https://doi.org/10.3390/biomedicines12102384
APA StyleKim, S. (2024). The Relationship Between MOTS-c K14Q Polymorphism and Sarcopenia, Blood Lipids, and Mental Health in Older Korean Adults. Biomedicines, 12(10), 2384. https://doi.org/10.3390/biomedicines12102384