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Abstract: (1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational
modifications, influencing various cellular processes, such as protein localization, stability, and
genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and
catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer.
We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and
the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The
aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression
and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting
SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to
develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of
SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve
outcomes for patients with advanced tumors.

Keywords: SUMOylation; thyroid cancer; therapeutic targets; SUMO inhibitor; TAK-981; drug
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1. Introduction

With over 821,000 cases worldwide in 2022 [1], thyroid cancer ranks as the seventh
most common cancer in terms of overall incidence and fifth in women. The incidence rate is
three times higher in women than in men. China alone accounted for over half of the global
incidence burden, with 466,000 new cases in 2022. Thyroid cancer is classified into three
main histological types: (1) differentiated thyroid cancer (DTC), which includes papillary,
follicular, and oncocytic carcinomas; (2) medullary thyroid cancer (MTC), sometimes
linked with multiple endocrine neoplasia type 2 syndromes; and (3) anaplastic thyroid
cancer (ATC), often evolving from differentiated thyroid cancer and associated with high
mortality [2]. A study across 25 countries found that the increase in thyroid cancer was
primarily confined to papillary carcinomas, which are often detected through intensive
thyroid gland screening [3]. For many years, the primary approach to treating thyroid
cancer has been the surgical removal of the thyroid gland.

In some cases, particularly for DTC, this surgery is followed by post-operative treat-
ment with radioactive iodine (RAI) and suppressive doses of thyroid replacement hormones.
Surgery often results in a cure for most patients with well-differentiated thyroid cancer.
Additionally, RAI therapy after surgery has been shown to enhance overall survival in
patients who are at a high risk of recurrence. In the management of metastatic thyroid can-
cer, there is a growing use of antiangiogenic multikinase inhibitors and targeted therapies
aimed at specific genetic mutations responsible for the cancer [4].

Protein post-translational modification (PTM) by small ubiquitin-like modifiers (SUMOs)
involves the wide-spread regulation of many cellular functions inside the cell of eukaryotic
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organisms. The SUMO protein is a member of the ubiquitin-like modifier (UbL) protein
superfamily: These proteins are composed of analogous small protein domains that are
conjugated to target proteins by creating an isopeptidic linkage between the lysine groups
of the substrate and the C-terminal end of the UbL protein. This linkage is characterized
by the presence of a distinctive diglycine motif at the C-terminus of the UbL protein [5–9].
Since their initial identification in 1996 [10], SUMO proteins have been found to exist in
five isoforms in mammalian cells: SUMO1, SUMO2, SUMO3, SUMO4, and SUMO5. While
SUMO1–3 are broadly expressed across human tissues, SUMO4 and SUMO5 exhibit more
restricted expression patterns, particularly in the testis and lymphocytes [11]. The dynamic
nature of SUMO modification (SUMOylation), a reversible modification process, plays a
critical role in modulating protein localization, stability, and function, thereby influencing
key biological pathways such as DNA repair, transcriptional regulation, and cellular stress
responses [12,13]. Recent studies have highlighted the multifaceted roles of SUMOylation
in cancer biology, particularly in thyroid cancer, where aberrant SUMOylation patterns
contribute to tumorigenesis and progression [14,15]. This review explores the intricate
mechanisms of SUMOylation and its implications in thyroid cancer, emphasizing potential
therapeutic strategies that target the SUMOylation pathway to improve patient outcomes.

2. SUMO Proteins and SUMO Catalytic Cycle
2.1. SUMO Family in Human

Essential for cellular homeostasis, SUMO proteins regulate various biological processes
via a dynamic SUMOylation–deSUMOylation cycle. SUMO proteins, first discovered in
1996, play a pivotal role in PTM in eukaryotic cells, with five isoforms—SUMO1–5—that
structurally resemble ubiquitin [16].

SUMO proteins, which come in five isoforms (SUMO1, SUMO2, SUMO3, SUMO4,
and SUMO5), are crucial in post-translational modification across human tissues. While
SUMO1–3 are ubiquitously expressed, SUMO4 and SUMO5 follow tissue-specific patterns,
with SUMO5 being particularly abundant in testis and blood lymphocytes [11]. SUMO2
and SUMO3, due to their high amino acid sequence similarity, are collectively referred
to as SUMO-2/3 [17,18]. SUMO1 typically modifies proteins related to physiological
status, while SUMO-2/3 is involved in stress-responsive protein modifications [19]. It is
hypothesized that SUMO-2/3 may compensate for SUMO1 in its typical protein targets [20].
Current research on SUMO4 and SUMO5 suggests potential associations with diabetes and
leukemia, respectively, though further investigation is ongoing [21].

2.2. SUMO Catalytic Cycle

SUMO proteins, initially present as inactive precursors with a molecular weight of
around 11 kDa, undergo activation via proteolytic cleavage catalyzed by enzymes such
as ULP1 in yeast or Sentrin/SUMO-specific protease 1 (SENP1) in humans. This cleavage
exposes a crucial diglycine motif for subsequent interactions [22,23]. SUMO activation
is mediated by the heterodimeric E1-activating enzyme (SAE1/SAE2), which forms a
thioester bond between the SUMO and its internal cysteine residue (Cys593) through ATP
hydrolysis [24–26]. Subsequently, the activated SUMO is transferred to the cysteine residue
at position 93 of UBC9, the sole E2-conjugating enzyme, via a transesterification reaction,
generating an E2-SUMO thioester [27–32]. UBC9 catalyzes the conjugation of SUMO to
lysine residues of target proteins, completing the SUMOylation process. This process is
facilitated by E3 ligases, which stabilize the E2-SUMO thioester conformation, enabling its
conjugation to the substrate lysine residue within a SUMO-interacting motif (SIM) [33–35].
This multi-step enzymatic cascade ensures the accurate and efficient modification of target
proteins by the SUMO [36–38].

DeSUMOylation, a reversible and dynamic process, is terminated by SUMO proteases
known as SENPs or Sentrin/SUMO-specific proteases, Figure 1. Six SENPs have been
identified in humans, with unique cellular locations and substrate specificities [39]. SENP1
and SENP2, localized primarily at the nuclear pore, can process all three SUMO isoforms
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(SUMO1, 2, and 3) and remove both mono- and polymeric SUMOylated proteins. By con-
trast, SENP3 to SENP7 exclusively process SUMO-2/3, with SENP6 and SENP7 exhibiting
sole hydrolase activity [40]. These proteases play a pivotal role in embryonic development,
reflecting their distinct functions [41–43]. Recent discoveries include SUMO proteases
deSUMOylating isopeptidase 1 (DESI1), DESI2, and USPL1, which have little sequence
identity with the ULP/SENP family [44,45]. Each SENP exhibits various cellular locations
and substrate specificities [39,46,47].
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Figure 1. The visualization of SUMOylation circle. SUMO precursors are processed by Sentrin-
specific protease 1 (SENP1), SENP2, and SENP5 to yield SUMO-GG, which is activated by SUMO E1
(SAE1/SAE2), transferred to SUMO E2 (UBC9), and assisted by a SUMO E3 ligase to conjugate to
substrates. SUMO can be removed from SUMO-conjugated substrates through SENPs.

3. The Multifaceted Functions of SUMOylation in Protein Localization, Stability, and
Genome Integrity

Over the past few years, SUMOylation has become a crucial regulator of diverse
cellular processes, including protein localization, stability, and genome integrity, with
important roles in transcriptional regulation.

3.1. SUMOylation in DNA End Resection and Genome Stability

Zhang et al. showed that MRE11 SUMOylation and ubiquitylation are dynamically
controlled by PIAS1 and SENP3 to facilitate DNA end resection and genome stability [12].
Additionally, the SUMOylation of MORC2, a chromatin-remodeling enzyme, is crucial for
chromatin remodeling and DNA repair in response to DNA damage [13]. These findings
underscore the importance of post-translational modifications, particularly SUMOylation,
in regulating DNA repair mechanisms and genome stability.

3.2. Role of SUMOylation in Maintaining Protein Stability

The dysregulation of the SUMOylation process can lead to the loss of HNF4α and
hepatic function, underscoring its vital role in maintaining the hepatocellular phenotype. It
has been established that the SUMOylation of HNF4α regulates its protein stability and
potentially its transcriptional activity [48]. Furthermore, the pathogenic mutations in the
TRAIP gene are associated with primordial dwarfism in patients [49]. SUMOylation has
been demonstrated as critical for ensuring the proper subcellular localization and protein
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stability of TRAIP, which exhibits various functions in the nucleus [50]. Notably, Hamard,
P.J., et al. discovered that the ATF7 transcription factor undergoes SUMOylation both
in vitro and in vivo. SUMOylation affects the intranuclear localization and transcriptional
activity of the ATF7 transcription factor by interfering with its interaction with TAF12, thus
impeding its access to specific promoters [51]. These findings underscore the significance
of SUMOylation in various biological processes.

3.3. Impact of SUMOylation on Receptors

In the intricate landscape of cellular regulation, SUMOylation emerges as a crucial
mechanism modulating the activities of various proteins. Among these, peroxisome-
proliferator-activated receptor γ (PPARγ) and pregnane X receptor (PXR) are pivotal players
in lipid metabolism and xenobiotic responses, respectively.

PPARγ, a ligand-activated nuclear receptor regulating sugar and lipid metabolism,
can be SUMOylated to modulate its activity [52]. The SUMOylation of PPARγ can inhibit
its activity, thus affecting lipid metabolism. In lung cancer cells, SUMO modification of
PPARγ induces lipid-metabolism-related gene expression, promoting lipid synthesis and
NADPH consumption. This process enhances β-oxidation and mitochondrial reactive
oxygen species (ROS) production, leading to tumor suppression [53].

In the liver, SUMOylation and ubiquitination of the nuclear receptor pregnane X re-
ceptor (PXR/NR1I2) regulate its biological functions, particularly in response to xenobiotic
or inflammatory stimuli. The nuclear receptor PXR/NR1I2 is a key regulator in xenobiotic
responses, involved in the metabolism and clearance of toxic substances, as well as inflam-
matory reactions. Specifically, ubiquitination promotes inflammatory responses, while
SUMOylation inhibits them [54].

3.4. Regulatory Role of SUMOylation in Ras Proteins

Recent research has shed light on the regulatory impact of Ras proteins via SUMOy-
lation, a process in which all three isoforms of Ras proteins (HRas, KRas, and NRas) are
modified by SUMO3 [55]. Identifying lysine 42 as the key site responsible for this modifica-
tion is of particular significance. Studies involving the KRas V12/r42 mutant discovered
that the mutation impedes the activation of the Raf/MEK/ERK signaling pathway, result-
ing in a decrease in cell migration and invasion rates in diverse in vitro cell models [56].
Additionally, blocking SUMO E2 in pancreatic cells undergoing transformation was found
to reduce cell migration dependent on the dosage, corresponding to diminished levels of
KRas SUMOylation and the expression of mesenchymal cell markers. Further evidence
from experiments using mice as model organisms has shown that introducing SUMO-
resistant mutants can impede tumor growth in vivo. Collectively, these findings support
the idea that SUMOylation plays a vital role in regulating the functions of Ras in processes
such as cell proliferation, differentiation, and malignant transformation. Thus, targeting
the SUMO modification system of Ras oncoproteins may offer a promising and innovative
therapeutic strategy for addressing various human malignancies.

4. SUMOylation and Thyroid Cancer
4.1. CCDC6 and SUMOylation

Cyclic AMP (cAMP)-response-element-binding protein 1 (CREB) is a 43 kDa stimulus-
induced transcription factor (TF) [57]. The overexpression of CREB is associated with
aberrant signal transduction caused by the deregulated expression of downstream genes
that control the hallmarks of cancer, such as proliferation, apoptosis, angiogenesis, metasta-
sis, immune surveillance, and metabolism, and the generation of tumor stem cells, which
lead to the initiation and progression of tumors. These different CREB activities result
in increased tumor growth, resistance to antiproliferative signals, decreased apoptosis,
enhanced angiogenesis, increased metabolism, and reduced immunogenicity.

The RET/papillary thyroid carcinoma 1 (PTC1) oncogene, frequently found in human
papillary thyroid carcinomas, involves the fusion of RET’s kinase domain with the initial
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101 amino acids of CCDC6, leading to allelic expression loss and influencing thyroid
cancer development [58]. This fusion reduces the CCDC6-mediated inhibition of CREB1,
resulting in increased CREB1 activity and the upregulation of its target genes, such as AREG
and cyclin A, thereby promoting thyroid tumorigenesis [59]. CCDC6, a tumor repressor
known for its pro-apoptotic effects [60,61], undergoes SUMOylation, influencing its tumor-
suppressive functions. SUMOylation leads to the cytoplasmic sequestration of CCDC6 and
a decrease in its interaction with CREB1 (Figure 2), thereby promoting CREB1-dependent
transcriptional activity and cellular proliferation [14]. This mechanism highlights the dual
role of SUMOylation in regulating tumor suppressor activity and promoting thyroid cancer
progression (Figure 2).
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4.2. PDGF-C and SUMOylation

Platelet-derived growth factor-C (PDGF-C), a key growth factor in cancer progression,
plays a crucial role in promoting growth, angiogenesis, and tumorigenesis in various
types of cancers [62–64]. Recent studies have shown that in thyroid cancer cells, the
levels of SUMOylated PDGF-C in the nucleus are significantly lower than normal thyroid
cells [65] (Figure 2). This decrease in SUMOylation may play a role in the development
of thyroid cancer by impacting growth, angiogenesis, and tumor formation. However,
further research is needed to fully understand the mechanisms involved, whether through
inhibited SUMOylation or increased deSUMOylation.

4.3. TFAP2A and SUMOylation

Recent findings indicate that the progression from papillary to anaplastic thyroid
cancer in cell models may be driven by the SUMOylation of transcription factor TFAP2A,
which alters gene expression patterns linked to anaplastic thyroid cancer [15]. Follow-up
studies using SUMO inhibitors, PYR-41 and anacardic acid, in murine models of anaplastic
thyroid cancer demonstrated reductions in tumor size and enhanced tumor-free survival
(Figure 2), suggesting that targeting this post-translational modification could potentially
ameliorate outcomes in anaplastic thyroid cancer. However, these promising outcomes
from cell and animal models need further validation and cautious interpretation before
clinical application.
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4.4. Deregulation of SUMOylation Machinery in Thyroid Cancer

A comprehensive analysis of the expression of SUMOylation machinery components
in papillary thyroid cancer (PTC) reveals the significant deregulation of SENP8, ZMIZ1,
SAE1, PIAS1, and PIAS2 in most cases [66] (Figure 2). Although these alterations do not
correlate with clinicopathological parameters, they likely contribute to the PTC phenotype,
underscoring the complex role of SUMOylation in thyroid cancer pathogenesis.

4.5. The Role of PIAS2b in Anaplastic Thyroid Carcinomas

The PIAS family (PIAS1-4) comprises nuclear, zinc-binding proteins distinguished by
a Siz/PIAS (SP)-RING domain that functions as an E3 SUMO ligase [67]. Among these,
PIAS2 is highly expressed in differentiated papillary thyroid carcinomas but significantly
reduced in anaplastic thyroid carcinomas (ATC), a highly lethal, undifferentiated cancer.
Recent research [68] identified PIAS2b as essential for mitosis in ATC cells. Silencing
PIAS2b with dsRNAi selectively induces cell death in these aggressive cancer cells by dis-
rupting spindle assembly, impairing chromosome–microtubule attachment, and enhancing
proteasome activity (Figure 2). This silencing leads to reduced levels and the SUMOylation
of key mitotic proteins (e.g., Tubulin gamma, PLK1, CDK1, PSMC5, TUBB3, and PPP2CA),
culminating in mitotic catastrophe. Notably, PIAS2b-dsRNAi specifically targets anaplastic
cancer cells, both thyroid and non-thyroid, while sparing normal or hyperplastic cells,
underscoring its potential as a therapeutic strategy for these aggressive cancers.

5. The Potential Application of SUMOylation in the Treatment of Thyroid Cancer

Thyroid cancer is a prevalent form of endocrine malignancy worldwide, showing an
increased incidence rate in recent years. While conventional treatment options like surgery
and radiation therapy are commonly used, some patients do not respond well to these
methods or face recurrence and metastasis after initial treatment. Differentiated thyroid
cancer (DTC) constitutes the majority of thyroid malignancies, representing roughly 80–90%
of diagnosed cases [69]. This category predominantly includes papillary and follicular
carcinomas. Total thyroidectomy (TT) and thyroid lobectomy (TL) are the main surgical
approaches to DTC, with low to intermediate risk of recurrence. Complications arising
from these procedures, notably injury to the recurrent laryngeal nerve and hypocalcemia
due to parathyroid gland dysfunction, can significantly affect the patient’s overall well-
being. In the pediatric population, as observed in adults, there has been a documented
increase in the incidence of thyroid cancer over the past few decades [70]. The risk of
surgical complications in children is elevated compared with the adult patient cohort.
Given the exceedingly low disease-specific mortality rate in pediatric DTC patients, it
is of the utmost importance to minimize the morbidity associated with treatment [71].
To enhance the effectiveness of thyroid cancer treatment, it is imperative to delve into
innovative therapeutic approaches and molecular targets. The SUMOylation pathway, a
crucial cellular modification process, has emerged as a promising target for thyroid cancer
therapy. By focusing on this pathway, researchers aim to develop new strategies that may
revolutionize the outcomes of thyroid cancer treatment and offer hope to patients battling
this disease.

The dual roles of SUMOylation on substrates disrupt normal cellular processes, thereby
playing a significant role in cancer promotion and suppression. On the one hand, SUMOyla-
tion primarily promotes oncogenic effects, driven by the deregulation of SUMO machinery
components and the abnormal SUMOylation of key oncoproteins and tumor suppressors.
Conversely, while SUMOylation does have tumor-suppressive effects, these are relatively
minor, indicating a need for further research in this area. Thus, a comprehensive investi-
gation into the targets and effects of SUMOylation will bolster confidence in the efficacy
of SUMOylation-based cancer therapies. A growing body of research strongly supports
the oncogenic roles of SUMOylation in tumor invasion, metastasis, angiogenesis, DNA
damage and repair, and metabolic reprogramming. These oncogenic mechanisms offer
potential targets and avenues for SUMOylation-based cancer therapies.
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5.1. Potential Therapeutic Targets in the SUMOylation Pathway
5.1.1. Targeting Tumor Invasion and Metastasis

The hallmark of tumor cell dissemination is the invasive metastatic cascade, the most
lethal aspect of tumors. Notably, the SUMOylation cascade regulates tumor metastasis by
promoting tumor angiogenesis and the epithelial–mesenchymal transition (EMT). Tumor
angiogenesis refers to the forming of new blood vessels that supply tumors with essential
oxygen and nutrients for growth and metastasis. Various angiogenic signaling pathways
regulate this process. Although the role of SUMOylation in tumor angiogenesis remains
unclear, evidence suggests its involvement. HEY1 (hairy/enhancer of split related with
YRPW motif), a transcription factor from the basic helix–loop–helix family, is recognized as
a key player in developmental angiogenesis. Researchers have found that SUMOylation
facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-
binding capacity in endothelial cells. Consequently, SUMOylation preserves HEY1’s role
as a repressive transcription factor that regulates numerous angiogenic genes, including
receptor tyrosine kinases (RTKs) and components of the Notch pathway [72]. Another
study involving HCC stem cells found that the deSUMOylation of hypoxia-inducible
factor (HIF-1α) and Oct4 reduced their nuclear accumulation, thereby inhibiting tumor
angiogenesis and maintaining stemness [73].

The EMT, characterized by enhanced invasiveness and metastatic potential, is regu-
lated by SUMOylation across various types of cancers. For example, ginkgolic acid inhibits
the proliferation, migration, and EMT of gastric cancer cells by blocking the SUMOylation
of IGF-1R (insulin-like growth factor 1 receptor), which is significantly upregulated in these
cells [74]. Conversely, SUMOylation can inhibit the EMT and tumor metastasis. Specifically,
the SUMOylation of annexin A6 slows cell migration and tumor growth by suppressing
the RHOU/AKT1-mediated EMT in hepatocellular carcinoma [75].

5.1.2. Targeting the DNA Damage Response

The DNA damage response (DDR) is crucial for maintaining genomic stability. The
inherent genomic instability of rapidly proliferating tumors presents therapeutic opportu-
nities to target DDR pathways, enabling the selective destruction of cancer cells through
additional replication stress, exogenous DNA damage, or DDR inhibition. Two primary
pathways, non-homologous end joining (NHEJ) and homologous recombination (HR), are
used by cells to repair the most severe form of DNA damage known as double-strand breaks
(DSBs). Studies have shown that post-translational modifications of proteins play a critical
role in regulating double-strand break repair. In the NHEJ repair pathway, the ubiquitin E3
ligase RNF168 acts as a key protein that responds promptly to DNA double-strand break
damage. SENP1 has been identified as a specific deSUMOylase of RNF168 and is highly
expressed in colorectal adenocarcinoma. SENP1 reduces the SUMOylation of RNF168 in
response to DNA damage, limiting its recruitment to damaged DNA sites and enhanc-
ing repair efficiency, leading to cancer cell resistance against DNA-damaging agents [76].
Conversely, TIP60 is rapidly deSUMOylated by SENP3, facilitating its interaction with
DNA-PKcs after irradiation, which promotes NHEJ repair. It is suggested that leaking
SENP3 levels increase tumor cell sensitivity to various DNA damage treatments [77].

5.1.3. Targeting RNA Transcription

Several transcription factors and co-transcriptional regulators have been reported as
SUMOylated proteins. The relationship between SUMOylation and RNA transcription is
primarily reflected in the regulatory effects of SUMOylation modifications on transcrip-
tion factors and the functional impact on RNA polymerase. Understanding the impact of
SUMOylation on RNA metabolism may yield new therapeutic strategies for cancer treat-
ment. Since most SUMOylation substrate proteins are localized in the nucleus, SUMOyla-
tion mainly inhibits global transcription activity [78]. Specifically, DAXX, a key regulator of
gene expression, interacts with core histones and various proteins to function as a transcrip-
tional co-repressor or co-activator [79], influencing genes involved in cell death, survival,
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and tumorigenesis. Its expression is elevated in several cancers, including prostate [80],
ovarian [81], and gastric cancer [82]. Notably, the SUMO1 modification of DAXX enhances
its recruitment to PML-NBs and promotes apoptosis in cancer cells [83]. Transcription
profiling indicates that SUMOylation represses global transcription by inhibiting transcrip-
tional elongation. SUMOs and MYC exert opposing effects on global gene expression by
modulating the dynamic processes of the SUMOylation and deSUMOylation of CDK9,
the catalytic subunit of the P-TEFb kinase, which is crucial for effective transcriptional
elongation. Specifically, the SUMOylation of CDK9 leads to transcriptional repression,
while MYC enhances global transcription by counteracting CDK9 SUMOylation [84]. As
an oncogene, MYC belongs to a superfamily of genes that encode frequently activated
oncoproteins in human cancers [85]. Since MYC promotes gene expression by inhibiting
CDK9 SUMOylation, targeting CDK9 SUMOylation may represent a viable therapeutic
strategy, especially since there are currently no approved direct inhibitors of MYC.

5.1.4. Targeting Immune Evasion

Many cancers evade the immune system through distinct immune evasion strate-
gies [86]. Targeting the SUMOylation cascade inhibits tumor immune evasion by alter-
ing the tumor microenvironment and reconstituting immune surveillance. ROS, central
factors in regulating the tumor microenvironment, also contribute to tumor immune eva-
sion [87,88]. Cytotoxic T-cells (CTLs) are key players in cellular defense within the adaptive
immune response. CTLs recognize foreign antigens processed and presented by the MHC
class I (MHC-I) antigen processing and presentation machinery (APM) of target cells. The
loss or down-regulation of the MHC-I APM is a common cause of primary and acquired
resistance to cancer immunotherapies. The pharmacological inhibition of SUMOylation
(SUMOi) not only drives the activation and IFN-γ secretion of CTLs but also amplifies the
IFN-γ-induced restoration of tumor-intrinsic MHC-I suppression, thereby reconstituting
immune surveillance [89]. In addition to immune cells, SUMOylation in tumor cells can also
facilitate tumor immune evasion. Specifically, the SUMOylation of programmed cell death
protein-1 ligand (PD-L1) by TRIM28, an E3 ubiquitin ligase and SUMO ligase, stabilizes
PD-L1 by hampering its ubiquitination and enhancing its SUMOylation, leading to T-cell
inactivation and immune evasion in gastric cancer [90]. Emerging data demonstrate that
protein modification by SUMO represents a novel target for activating antitumor immunity.
Combining tumor immunotherapy with SUMOylation inhibitors may provide a promising
strategy for overcoming resistance to immunotherapy.

5.1.5. Targeting Metabolic Reprogramming

Metabolic reprogramming is a hallmark of tumor cells, characterized by alterations
in metabolic pathways during their proliferation and progression [91]. The SUMOylation
cascade plays a crucial role in metabolic reprogramming, including the Warburg effect
and fatty acid metabolism [92]. Therefore, targeting the SUMOylation cascade presents a
promising strategy to suppress metabolic reprogramming, improve the tumor microen-
vironment, inhibit tumor growth, and enhance the sensitivity to antitumor drugs. The
Warburg effect, also known as aerobic glycolysis, represents a typical abnormality in
glucose metabolism within tumors and is regulated by SUMOylation. Specifically, the
SUMO1-induced SUMOylation of PKM2, through binding to the SUMO-interacting motif
site IKII265-268, promotes PKM2 dimerization and nuclear translocation, thereby facilitat-
ing glycolysis in hepatocellular carcinoma (HCC) [93]. However, the SUMOylation cascade
can also inhibit glycolysis in tumors. Hexokinase 2 (HK2), the first rate-limiting enzyme of
glycolysis, is SUMOylated at K315 and K492 in prostate cancer cells, which inhibits its bind-
ing to mitochondria and consequently reduces glycolysis in tumor cells [94]. In addition to
aerobic glycolysis, SUMOylation may disrupt fatty acid metabolism in tumors. Specifically,
SENP2, a deSUMOylating protease, enhances fatty acid degradation and consumption by
increasing the expression of PPARγ, CPT1A, ACSL1, and CD36 through deSUMOylating
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SETDB1, thereby generating more energy to support esophageal squamous cell carcinoma
(ESCC) proliferation [95].

5.2. Therapeutic Potential and Development of SUMOylation Inhibitors

The E1 enzyme plays a crucial role in the SUMOylation process. It is emerging as a
promising therapeutic target due to its involvement in essential biological functions that
support cancer cell survival and progression, such as proliferative signaling, cell cycle
regulation, and DNA damage response [96]. Preclinical studies have demonstrated that
inhibiting E1 enzymes can restrict tumor growth and enhance antitumor immune responses,
suggesting that targeting E1 enzymes represents a viable and rational approach for cancer
therapy [97]. Inhibition of SUMOylation has been shown to promote the production of
type I interferons (IFNs) and IFNγ [98], which is significant because activation of type I
IFN expression can stimulate dendritic cells, leading to immune-mediated tumor rejection
through CD8+ T-cell responses [99]. In addition to its immune-modulating effects, direct
targeting of SAE has been found to inhibit tumor cell proliferation. Genome-wide RNAi
screens have identified the genes encoding the SAE subunits (SAE1 and SAE2) as having
the strongest synthetic lethal interactions with c-Myc [100]. Researchers indicated that
inhibiting SAE activates the expression of the tumor suppressor miR-34, which targets the
mRNA of c-Myc and other oncogenic pathways [101]. Furthermore, SAE is also a critical
target for reducing cancer cell stemness [102].

The most successful approach in developing inhibitors of UbL E1 enzymes involves
targeting their ATP-binding sites. MLN-4924 (or pevonedistat) is the first molecule resulting
from this strategy, highly potent and specific in inhibiting E1 for UbL Nedd8, showing
efficacy in treating acute myeloid leukemia [103,104]. The success of MLN-4924 has paved
the way for the development of structurally related inhibitors specific to UbL E1 and
SUMO E1. For example, the SUMO E1 inhibitor ML-792 displays selective cytotoxicity
in c-Myc-overexpressing cells in preclinical studies [105]. ML-93, a derivative of ML-792,
demonstrates strong selectivity in inhibiting SUMOylation through a similar mechanism of
action in pancreatic cancer, which leads to G2/M phase arrest and promotes apoptosis [106].
Several natural products have also been identified that inhibit SUMO E1 activity, including
ginkgolic acid [74,107,108], davidiin [109], tannic acid [110], and kerriamycin B [111].
However, the effectiveness and specificity of these natural compounds are limited, as
indicated by their half maximal inhibitory concentration (IC50) values in the micromolar
range and their broad range of targets. A newly discovered SAE inhibitor, COH000, targets
a cysteine residue in the AAD without affecting the catalytic cysteine [112].

TAK-981, a first-in-class small molecule SUMOylation inhibitor, inhibits SAE similarly
to ML-792 by forming an irreversible adduct with SUMO protein in an enzyme-catalyzed,
ATP-dependent process. TAK-981 has been found to activate IFN1 signaling to promote
antitumor immune responses and is currently undergoing phase I clinical trials [113].
Specifically, an in vivo study revealed that TAK-981 enhanced the proportions of activated
CD8 T-cells and natural killer (NK) cells [114]. Furthermore, pretreatment with TAK-981
enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells
in combination with the anti-CD20 antibody rituximab [115]. TAK-981 also provokes
apoptosis and cell cycle arrest in acute myeloid leukemia [116].

The broad application of TAK-981 faces significant challenges, particularly regarding
the potential toxicity risks linked to the widespread presence of SUMO modifications. Both
systemic and local injections of TAK-981 can cause undesirable inflammation in normal
tissues, resulting in adverse events such as diarrhea and ulceration [117]. Furthermore, its
poor solubility and low bioavailability further restrict its clinical utility. Another challenge
is the inability of systemic or local injections to provide sustained release. Notably, recent
research proposes an injectable PDLLA-PEG-PDLLA (PLEL) nanocomposite hydrogel that
incorporates self-assembled TAK-981 and BSA nanoparticles for localized treatment of
residual tumors following iRFA. The sustained release of TAK-981 from this hydrogel
inhibits the expansion of residual tumors and significantly stimulates dendritic cell and
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cytotoxic lymphocyte-mediated antitumor immune responses while ensuring biosafety.
The development of an injectable drug delivery hydrogel holds promise for enhancing
the efficacy and expanding the clinical applications of the SUMOylation inhibitor [118]
(Table 1).

Table 1. SUMOylation Inhibitors.

Inhibitor 1 Target Cancer Type Refs.

ZHAWOC8697 SENP1 and
SENP2 - [119]

Ursolic acid SENP1 Hepatocellular
carcinoma [120]

SENP12-(4-Chlorophenyl)-2-
oxoethyl 4-benzamidobenzoate

derivatives
SENP1 Prostate cancer [120]

1-[4-(N-benzylamino)
phenyl]-3-phenylurea

derivatives
SENP1 Cervical carcinoma [120]

Gallic acid SENP1 Colorectal cancer [121,122]
BW467C60 SENP1 - [123]
Triptolide SENP1 Prostate cancer [124]

Momordin Ic SENP1
Acute myeloid

leukemia, colon cancer,
prostate cancer

[125]

Ginkgolic acid E1
Gastric cancer,
Breast cancer,

Uveal melanoma
[126]

Anacardic acid E1

Thyroid cancer,
nonpromyelocytic

acute myeloid
leukemia, breast cancer,

colon cancer, B-cell
lymphoma

[126]

Kerriamycin B E1 - [111]
Davidiin E1 Gastric cancer [109]

Tannic acid E1 - [110]
compound 15 E1 - [127]

COH000 E1 - [112]

ML-792 E1
Hepatocellular

carcinoma, pancreatic
cancer

[105]

ML-93 E1 Pancreatic cancer [106]

TAK-981 E1

Leukemia, acute
myeloid, hepatocellular

carcinoma, chronic
lymphocytic leukemia,

glioblastoma,
pancreatic cancer,
multiple myeloma

[128]

1 A plethora of natural and synthetic SUMOylation inhibitors have been identified.

Several studies have reported that SENPs’ aberrant expression is associated with the
development and progression of cancer [129–131]. SENPs are cysteine proteases with
isopeptidase activity, play a crucial role in maintaining the balance between the pools of
SUMOylated and unSUMOylated proteins and in SUMO recycling. MiR-145-mediated
down-regulation of SENP1 induced quiescence of prostate cancer cells and reversed SENP1-
promoted tumorigenesis in mice. This highlights the potential of miR-145 as a therapeutic
molecule against cancer [132]. Thus, targeting SENPs could offer a promising strategy in
cancer treatment by modulating the SUMOylation process.
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Knockdown of SENP6 has been found to induce the radiosensitization of liver cancer
cells, highlighting its potential to enhance the sensitivity of cancer cells to anticancer
therapy [133]. In addition to impeding tumor growth, the silencing of SENP can play a
crucial role in enhancing the effectiveness of anticancer treatments. The current research
focuses on the discovery of SENP inhibitors with a specific emphasis on developing isoform-
selective inhibitors, which poses a significant challenge. Various strategies have been
employed in the design and development of SENP inhibitors, including non-peptidyl
low-molecular-weight inhibitors [134], virtual-screening-assisted low-molecular-weight
inhibitors [135], and natural compounds extracted from plants [124]. Despite these efforts,
developing effective SENP inhibitors continues to be a complex and challenging task of
cancer research.

Furthermore, a study identifies BMP8A, RGS8, and SERPIND1 as key biomarkers asso-
ciated with SUMOylation in PTC, suggesting potential targets for therapeutic intervention
and prognosis in PTC research [136]. Developing a nomogram based on the SUMOylation
score could provide valuable insights for individualized treatment strategies in thyroid can-
cer. In lung adenocarcinoma, high SUMOylation scores correlate with poor prognosis [137],
emphasizing the significance of understanding SUMOylation patterns in predicting patient
outcomes. Their connection to immune response and drug sensitivity further underscores
the importance of these biomarkers in PTC research. According to a recent study, protein
SUMOylation levels in thyroid tumor tissues were higher than those in paired nontumor
tissues, and the higher the SUMOylation in tumor tissues, the shorter the overall survival
time of the patients, especially among males [138].

6. Conclusions and Future Perspective

The study of SUMOylation in thyroid cancer has illuminated its pivotal role in tu-
morigenesis and progression, opening up promising avenues for therapeutic intervention.
Our comprehensive review underscores the dual nature of SUMOylation, highlighting its
capacity to both promote and suppress oncogenic processes. This complexity suggests that
nuanced strategies targeting SUMOylation could yield significant therapeutic benefits.

Key findings of this review emphasize the aberrant SUMOylation patterns in thy-
roid cancer, particularly in differentiated and anaplastic subtypes, and the potential to
exploit these modifications for targeted therapies. The involvement of SUMOylation
in crucial cellular processes—such as DNA repair, transcription regulation, and protein
stability—underscores its broad impact on cancer biology and its potential as a therapeutic
target. The deregulation of SUMO machinery components and the SUMOylation of spe-
cific proteins like CCDC6, PDGF-C, and TFAP2A offer novel insights into thyroid cancer
pathogenesis and progression.

Future research should focus on elucidating the detailed molecular networks and
pathways modulated by SUMOylation in thyroid cancer, considering the heterogeneity
among different subtypes. Additionally, developing specific inhibitors of the SUMOylation
pathway, including SUMO E1 enzyme inhibitors and SENP protease modulators, could
provide innovative therapeutic options. It is crucial to integrate these strategies with
existing treatment modalities to enhance efficacy and overcome resistance.

Furthermore, preclinical and clinical trials are necessary to validate the safety and
effectiveness of targeting SUMOylation in thyroid cancer patients. Such trials will pave the
way for personalized treatment approaches, taking into account individual SUMOylation
profiles and tumor characteristics. By advancing our understanding of SUMOylation’s
role in thyroid cancer, we can develop more precise and effective therapies, ultimately
improving patient outcomes and quality of life. The potential of SUMOylation-based
therapies to revolutionize the treatment landscape underscores the need for continued
exploration and innovation in this promising field.
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