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Abstract: Despite all the progress made by science in the prevention and treatment of cardiovascular
diseases and cancers, these are still the main reasons for hospitalizations and death in the Western
world. Among the possible causes of this situation, disorders related to hyperinsulinemia and
insulin resistance (Hyperin/IR) are still little-known topics. An analysis of the literature shows
that this condition is a multiple risk factor for type 2 diabetes, cardiovascular diseases, cellular
senescence and cancer, and neurodegenerative diseases. Hyperin/IR is progressively increasing
worldwide, and its prevalence has now exceeded 50% of the general population and in overweight
children. Asymptomatic or poorly symptomatic, it can last for many years before manifesting itself
as diabetes, cardiovascular disease, neoplasm, cognitive deficit, or dementia, therefore leading to
enormous social and healthcare costs. For these reasons, a screening plan for this pathology should
be implemented for the purpose of identifying people with Hyperin/IR and promptly starting them
on preventive treatment.
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1. Background

Notwithstanding the notable and continuous scientific advances made in the preven-
tion and treatment of cardiovascular pathologies and tumors, they are currently the main
causes of hospital admissions and deaths [1]. Furthermore, the aging of the population
appears to be associated with a notable increase in neurodegenerative diseases. This entails
significant social and healthcare costs.

Increased levels of circulating insulin (here referred to as Hyperin) secondary to
insulin resistance (IR) represent a condition that predisposes to many diseases. This
determines a silent pandemic, which produces enormous healthcare costs and an increase
in hospitalizations and deaths.

Unfortunately, Hyperin/IR is a condition rapidly growing worldwide, and its preva-
lence has now exceeded 50% in the general population and is continuously growing [2,3].
In a recent study in Latin America, the prevalence of insulin resistance among overweight
children and children with obesity was 57% and 72%, respectively [4].

This disorder has been commonly associated with the onset of type 2 diabetes, but
its high prevalence and the multiple metabolic and cellular actions of insulin prompt
consideration of its possible consequences in other important fields of clinical medicine.

This review of the literature on the topic aims to demonstrate how Hyperin associated
with IR, if neglected, can cause serious and often irreversible damage to our body. The
manuscripts used for the review were searched on medical literature databases such as
PubMed, Scopus, Web of Science, etc., using the following keywords: Insulin resistance,
hyperinsulinemia, type 2 diabetes, treatments, adverse effects, risk factor, cardiovascular
disease, cellular senescence, cancer, and neurodegenerative disease.
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Only peer-reviewed manuscripts published in English and in extenso from the year
1980 to 2024 in well-regarded journals were used.

2. Definition and Causes of Insulin Resistance

IR can be defined as a condition in which a given quantity of insulin produces a
reduced metabolic result, in terms of glycemic control, compared to what is expected [3–5].
For this reason, in order to maintain normal glycemic values, the pancreas of subjects
affected by IR are forced to secrete greater quantities of insulin, with the result being that
Hyperin is a constant and fundamental characteristic of IR. On the other hand, Hyperin
contributes to the onset of IR through various molecular mechanisms, thus generating a
vicious circle that is self-sustaining and tends to worsen.

The mechanisms through which IR can develop in our body and those linked to
Hyperin damage of some organs are very complex and still not completely clarified. There
may be a defect at the receptor or, more likely, post-receptor level. However, there are also
some certainties. We know two of the pathways triggered by the binding of insulin to its
receptors, their mechanisms, and what happens to these pathways at the post-receptor level
in the case of IR. They are the phosphoinositide 3 kinase (PI3K) and the mitogen-activated
protein kinase (MAPK) pathways.

Insulin determines its multiple metabolic and non-metabolic actions through binding
to its transmembrane receptors located on the target cells of its action. The intracellular
domain of the insulin receptor belongs to the tyrosine kinase receptor protein family. The
interaction of insulin and its receptors determines the activation of numerous protein
kinases and gene transcription factors. Among these, the most important and best known,
as already mentioned, are the PI3K pathway, which mainly regulates metabolic effects and
the secretion of nitric oxide (NO), and the MAPK pathway, which is instead responsible for
gene expression effects, cell growth and differentiation, and the production of endothelin-1
(ET-1) at the vascular level [3,5,6].

In the presence of an IR condition, there is mostly a malfunction at the PI3K post-
receptor level, which mainly regulates the metabolic actions and the formation of NO, while
the functioning of MAPK is little or not at all altered so that the non-metabolic actions of
insulin and, in particular, the stimulating action on cell proliferation and on the secretion of
ET-1 are promoted due to the chronic effects of Hyperin. Therefore, the different behaviors
of these two pathways resulting from IR determine, over time, very important alterations
in the target organs of insulin [3,5].

There are many causes that can produce IR, although it is likely that not all of them are
known. Visceral obesity is a very important risk factor for the development of IR that plays
a crucial role in the pathogenesis of this condition. Increased visceral fat releases large
quantities of free fatty acids into the circulation. They alter insulin signaling pathways in
their main target organs. In the liver, they determine an increased production of glucose due
to reduced storage of the latter in the form of glycogen, increased production of triglycerides,
and low-density lipoprotein cholesterol (LDLc). The increase in triglycerides and LDLc
and the reduction in HDL cholesterol, which is characteristic of the IR condition, presents
a profoundly atherogenic profile [7,8]. Free fatty acids also reduce insulin sensitivity at
the muscle level by inhibiting insulin-mediated glucose uptake. The increased level of free
fatty acids and glucose also produces an increase in oxidative stress and the formation of
advanced glycation end-products. In addition to the mechanism linked to the increased
production of free fatty acids, adipose tissue increases the degree of IR determining a
chronic pro-inflammatory state. Adipose tissue is an active endocrine–paracrine organ.
In the presence of visceral adiposity, alterations in the effects of leptin occur, leading
to vascular inflammation, increased oxidative stress, and the hypertrophy of vascular
smooth muscle cells, alterations all predisposing to the development and progression of
atherosclerosis. Furthermore, there is a reduction in the production of adiponectin, which
is an anti-inflammatory peptide whose circulating levels are inversely correlated with the
degree of IR [9–11].
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There are certainly genetic causes, but they are the minority. Among these, type A
IR syndrome is a rare genetic disorder characterized by severe IR. In affected women, the
main features of the condition appear during adolescence. Many affected women do not
start menstruating by age 16 (primary amenorrhea), or their cycles are scanty and irregular.
They develop ovarian cysts and excessive growth of body hair (hirsutism). Acanthosis
nigricans is also often present. Unlike most people with IR, these individuals are generally
not overweight. The characteristics of type A IR syndrome are more subtle in males.
Some of them have low blood sugar as the only initial sign, and others may also have
acanthosis nigricans. In most cases, males with this condition seek medical attention only
in adulthood, when diabetes appears. IR syndrome type A is estimated to affect 1 in 100,000
people worldwide. Because women have more evident health problems associated with
this condition, it is diagnosed more often in women than in men [12].

Although it is not yet perfectly clear whether the IR appears first and then the hyperin-
sulinemia (as one might think) or vice versa, these two conditions are, in the vast majority
of cases, chronically associated and are rapidly and constantly growing throughout the
world. Furthermore, since it is asymptomatic or poorly symptomatic, it goes unrecognized
for years, and constitutes what could be defined as a silent pandemic [3,5]. Over the
centuries, there has been a notable change in our lifestyle, characterized by a progressive
increase in caloric intake in favor of foods rich in carbohydrates and highly processed, with
a simultaneous reduction in physical activity, and this begins in children and persists into
adulthood. This notable change in lifestyle, also associated with the increased stress and
competitiveness of modern life, which, as is known, stimulates the secretion of diabetogenic
hormones (above all, cortisol and GH), has produced a progressive increase and spread of
IR and Hyperin [13]. Some studies have shown that high-sodium diets impair insulin sensi-
tivity, although the results are not entirely consistent [14]. Also, many drugs induce insulin
resistance. Among the best known there is cortisol [15]. Growth hormone (GH) therapy
antagonizes insulin’s action in the target tissues, consequently increasing glucose produc-
tion from the skeletal muscle and liver, while decreasing glucose uptake from adipose
tissue. Therefore, insulin secretion is increased to compensate for the increase in glycaemia
after GH administration [16]. Furthermore, it has been shown that protease inhibitors can
increase IR by altering GLUT-4, which is the most important transporter of glucose in the
target cells, stimulated by the action of insulin [17]. Also, atypical antipsychotics can induce
insulin resistance and postprandial hormonal dysregulation independently from weight
gain [18].

A very recent review article highlighted that adipose tissue-derived extracellular
vesicles represent a possible new mechanism of cross-talk between organs. These vesicles
contain proteins, lipids, and nucleic acids that can modify the phenotype and function of
the target organs of insulin action. These vesicles released from adipose tissue can lead to
the development of IR, non-alcoholic fatty liver, and polycystic ovary syndrome. In the
near future, this mechanism could become a therapeutic target for the treatment of these
pathologies [19].

3. Diagnosis

The euglycemic–hyperinsulinemic clamp technique gives us the diagnostic certainty
of IR, but it is not conceivable that it should be employed for mass screening, so it is used
almost exclusively for scientific research purposes [20]. However, there are many surrogate
indices of IR that can be used for this purpose. Although there are many that are all useful,
at least three surrogate indices are simple to obtain and are reliable [Table 1].

The three indices include the homeostatic model assessment index (HOMA-IR), which
is calculated through the simultaneous fasting measurement of glycemia and insulinemia,
with a cut-off of 2.5 in adults and 3.6 in children; the triglyceride–glucose index (TyG),
which is obtained by simultaneously measuring triglycerides and fasting blood sugar, with
a cut-off value of 8; and the ratio between triglycerides and HDLc with a cut-off of 2.75 in
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men and 1.65 in women. These three surrogate indices of IR have also been shown to be
excellent independent markers of adverse cardiovascular events [20–22].

Table 1. Indices of IR and their formulas.

IR Index Index Acronym Formula Normal Values

Homeostatic model
assessment index HOMA-IR Fasting blood glucose (mg/dL) × Fasting

insulin (mU/L)/405 0.23–2.5

Triglyceride–glucose index TyG Ln [Fasting triglycerides (mg/dL) × Fasting
blood glucose (mg/dL)]/2 <8.0

Triglycerides/HDLc ratio Ty/HDLc Fasting triglycerides (mg/dL)/Fasting HDL
cholesterol (mg/dL)

<2.75 for men; <1.65 for
women

Those mentioned in Table 1 are the simplest and most practical indices, but for a
more complete diagnosis, there are also other interesting biomarkers that are related to
IR/Hyperin, including respiratory metabolites to assess systemic metabolic dysregula-
tion [23], serum levels of molecules potentially related to cognitive decline (βA42 and
PSEN1) [24], adiponectin [25], and the inflammation marker NHR (Neutrophils to the
HDL/Cholesterol Ratio Index) [26]. For an even more individualized prognosis and to
guide therapeutic strategies, the study of the expression of IR biomarker genes in muscles
is becoming increasingly interesting [27]. Finally, since the intestinal bacterial flora is
fundamental in the development of insulin resistance [28], the study of the microbiota
and microbiota-derived metabolites could be of great prognostic interest in monitoring
prevention and therapeutic interventions.

4. Effects of Hyperinsulinemia Associated with Insulin Resistance

Excess insulin in the blood associated with IR has repercussions on many districts
precisely because this hormone has pleiotropic metabolic and epigenetic effects.

4.1. Cardiovascular Effects

Hyperinsulinemia associated with IR determines an alteration of circulatory home-
ostasis defined as endothelial dysfunction. It is caused by the prevailing synthesis and
secretion of ET-1, compared to a reduced availability of NO, by the cells of the wall of the
arteries and arterioles [Figure 1]. This causes vasoconstriction with the reduction in circu-
latory flows to the tissues. Furthermore, hyperinsulinemia, acting as a growth stimulus,
determines the increase in vascular thickness and parietal stiffening, a phenomenon that is
prodromal of the development and worsening of hypertension and atherosclerosis [29,30].
Hyperin/IR, in addition to the alteration of glucose metabolism and the direct actions of
insulin at the renal level, at the level of the sympathetic nervous system, and as a growth
factor, also determines a triad of frankly pathological factors at the cardiovascular level,
namely high triglyceride levels, low HDLc levels, and the appearance of small and dense
lipoproteins which, together with the endothelial dysfunction already described, contribute
to the formation and progression of atherosclerotic plaque [31,32].

In addition, in IR conditions, there is solid evidence of the fact that Hyperin is an
important cause of arterial hypertension through the renal reabsorption of sodium and
increased sympathetic tone [33,34]. Insulin receptors are located in the renal tubules,
and it has been seen that their stimulation by insulin determines increased Na+ and
water reabsorption.

In addition to this, a close relationship has been demonstrated between the increased
levels of circulating insulin and the enhanced activity of the sympathetic nervous system.
This chronic disorder can eventually lead to the concentric remodeling of the LV, a recog-
nized predictor of heart failure with preserved ejection fraction (HFpEF) [Figure 2] [35–37].
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Figure 1. Insulin resistance with associated hyperinsulinemia increases ET-1 secretion and decreases
NO availability, therefore producing vasoconstriction, reduced district blood flow, and endothe-
lial dysfunction.

Arterial hypertension was associated with both increased insulin levels and enhanced
sympathetic activity, with a relationship demonstrated both in the whole population and
after correction for BMI and body fat. Furthermore, it has been assessed that, by lowering
insulin levels in obese subjects, decreases in plasma norepinephrine and blood pressure
values can be obtained [33].

A fairly recent study, performed in 88 hypertensive Sub-Saharan African patients
with myocardial hypertrophy, has shown that obesity and Hyperin/IR predicted the
increase in left ventricular mass. Therefore, the authors suggested that could be particularly
important to correct obesity and IR/Hyperin to counteract the development of LVH in
these patients [35].

Another study was performed in Japan, where 210 normotensive subjects and 180 pa-
tients with mild or moderate hypertension were studied using echocardiography and
measurements of glycemic metabolic parameters. The sum of glucose or Hb A1c levels in
the whole group of subjects and the sum of insulin levels (or insulin values 2 h post-load)
in non-diabetic subjects were highly related to the relative LV wall thickness values, inde-
pendently of age, systolic blood pressure, and BMI. Therefore, the authors concluded that
hyperglycemia and Hyperin could stimulate LV concentric remodeling in normotensive
subjects and in patients with mild or moderate hypertension. In a study by our group
performed using Doppler echocardiography, 59 patients with IR/Hyperin showed both
increased LV mass and relative wall thickness, together with LV diastolic dysfunction.
All these parameters improved following the treatment with an insulin-sensitizing sub-
stance [3,38].



Biomedicines 2024, 12, 2416 6 of 13Biomedicines 2024, 12, 2416 6 of 14 
 

 
Figure 2. Insulin resistance with associated hyperinsulinemia, by producing endothelial dysfunc-
tion, increased sympathetic tone, and anti-natriuretic action, causes arterial hypertension, which, 
together with the stimulation of myocardiocyte growth by insulin, produces the pathologic concen-
tric remodeling of LV. LV: left ventricle; HFpEF: heart failure with preserved ejection fraction. The 
image of LV concentric remodeling is from Patrick J. Lynch, medical illustrator, reproduced under 
Creative Commons Attribution 2.5 License 2006. 
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perin/IR stimulates cellular senescence in metabolic target organs such as the adipose tis-
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Figure 2. Insulin resistance with associated hyperinsulinemia, by producing endothelial dysfunction,
increased sympathetic tone, and anti-natriuretic action, causes arterial hypertension, which, together
with the stimulation of myocardiocyte growth by insulin, produces the pathologic concentric remod-
eling of LV. LV: left ventricle; HFpEF: heart failure with preserved ejection fraction. The image of
LV concentric remodeling is from Patrick J. Lynch, medical illustrator, reproduced under Creative
Commons Attribution 2.5 License 2006.

4.2. Effects on Cellular Senescence and Cancer

Hyperinsulinemia associated with IR has many other negative actions. Among these,
the action on cellular senescence and the development of tumors should not be overlooked.
Senescent cells are characterized by the fact that they stop dividing and undergo specific
changes, both in their appearance and activity. They produce specific molecules, contribut-
ing to the aging state of the entire organism. Cellular senescence is due to several factors,
including oxidative stress and the presence of DNA damage. In particular, replicative
senescence is linked to the so-called telomere attrition, a process that leads to chromosomal
instability and promotes the onset of tumors [39].

It should be noted that increased cellular senescence is present in adult subjects with
obesity, type 2 diabetes, and non-alcoholic fatty liver, regardless of age. In particular,
Hyperin/IR stimulates cellular senescence in metabolic target organs such as the adipose
tissue, muscle, liver, and brain in humans [Figure 3].

Among various published studies, one that was carried out on cultured human hep-
atocytes under chronic hyperinsulinemia and in knockout mice for insulin receptors in
the liver (LIRKO mice) demonstrated a direct relationship between hyperinsulinemia and
the senescence of hepatocytes, which was very interesting. This study also demonstrated
that the dangerous effects of chronic Hyperin on the cellular senescence of hepatocytes
can be blocked by reducing the number of insulin receptors or by the senolytic substances
desatinib and quercetin [40–42].
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in hyperinsulinemic subjects, and that insulin increases its expression and release by en-
dothelial cells in vitro. Insulin induced the activation of p38 MAPK and cFOS. Further-
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Figure 3. Hyperinsulinemia associated with IR causes cellular senescence in target organs of insulin
actions. Both the increased circulating levels of insulin and cellular senescence stimulate cancer devel-
opment by upregulating p38MAPK and MAPK/ERK signaling. P38MAPK: P38 mitogen-activated
protein kinases; MAPK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinase.

Age predisposes to the development of many types of cancer; in fact, the incidence
of numerous tumors increases with age, even if the underlying relationship has not yet
been fully clarified. However, there is growing scientific demonstration that the increase in
senescent cells in our body contributes to the advancement of tumors [43–45]. Recently, it
has been shown that senescence acts as a tumor promoter and stimulates skin cancer by
upregulating p38MAPK and MAPK/ERK signaling, upon which the high insulin levels
associated with IR also act [46]. Insulin binds not only to its own receptors but also to
those of insulin-like growth factor-1 (IGF-1), thus acting as a growth factor with pathologic
consequences on the development of tumors [47,48].

In addition, there is a stimulating effect of Hyperin on the production of angiopoietin-
2 (ANG-2) and therefore on angiogenesis which, in turn, is a mechanism necessary for
tumor growth. In fact, a recent study has shown that serum levels of ANG-2 are higher
in hyperinsulinemic subjects, and that insulin increases its expression and release by en-
dothelial cells in vitro. Insulin induced the activation of p38 MAPK and cFOS. Furthermore,
hyperinsulinemic plasma caused endothelial inflammation, which was reversed by an
ANG-2-blocking antibody [49].

The careful observation of patients with cancer has established that Hyperin is a factor
of great importance influencing the development of obesity, type 2 diabetes, and cancer.
Both obesity and diabetes are considered risk factors for tumor onset and progression and
the formation of metastases in many types of cancer. Furthermore, cancers are associated
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with difficult healing, a greater number of relapses, and greater mortality in patients with
obesity or diabetes [50].

Patients with diabetes and/or subjects with metabolic syndrome have a doubled risk of
developing cancer and cancer-related deaths [51–53]. Furthermore, it has also been reported
in non-diabetic and non-obese subjects that Hyperin itself is related to increased cancer
deaths, and therefore the authors underline that a treatment to reduce circulating insulin
levels could be an important therapeutic approach for the prevention of cancer [48,53].

4.3. Effects on Brain

Another problem that should not be underestimated regarding the damage caused
by hyperinsulinemia associated with IR is the very close relationship that exists between
it and neurodegenerative diseases, although the mechanisms that link the two patholo-
gies are not yet fully clarified. It has long been known that diabetes is associated with
neurodegenerative diseases, probably because chronic hyperglycemia forms advanced
glycation end-products, which in turn are able to modify key proteins such as amyloid
β, tau, α-synuclein, and prions [54]. However, hyperinsulinemia may also play a role
in itself, which would be of greater importance as an early phenomenon to be identified
and corrected.

There are numerous pathophysiological hypotheses, partly well supported by the
scientific literature, which try to explain the intricate mechanisms that associate Hyperin/IR
with brain damage [55–57].

As regards the relationship between insulin and the brain, it must be remembered
that, until a few years ago, it was believed that the brain was an organ insensitive to insulin
actions. Instead, over the last 20 years, a considerable amount of the scientific literature has
accumulated, which demonstrates that insulin penetrates the brain crossing the blood–brain
barrier, where it binds to its specific receptors and regulates some important functions of
the central nervous system such as the stimulation of appetite, cognitive behavior, and
depression. It also controls some important systemic functions such as the production of
glucose by the liver, lipogenesis and lipolysis, and the response of the sympathetic system
to episodes of hypoglycemia [58]. Insulin binds to its receptors localized in different regions
of the brain and initiates a series of phosphorylation reactions using two different receptor
substrates (IRS-1 and -2) which, in turn, activate subsequent metabolic pathways. PI3K and
protein kinase B (Akt) are kinases activated at the post-receptor level when insulin binds to
its receptors and, in this way, acts on neuronal plasticity, survival, and neurotransmitter
trafficking. Insulin also activates MAPK, which controls cell growth and proliferation. It
should be underlined that the hippocampus, which is involved in cognitive function, and
the hypothalamus, which controls peripheral metabolism, are characteristically rich in
insulin receptors [59–62].

There are numerous epidemiological studies that highlight how the prevalence of
Hyperin/IR is very high in patients with cognitive deficits or Alzheimer’s disease, reaching
and exceeding the value of 81% of cases overall. In further detail regarding the close
relationship between cognitive deficits, AD, and type 2 diabetes mellitus, it has been
seen that these pathologies have multiple risk factors, comorbidities, and hypothetical
pathophysiological mechanisms in common, so much so that, provocatively, it has been
proposed to call AD type 3 diabetes mellitus [63–65]. Studies based on post-mortem
examinations of the brains of subjects with cognitive deficits or Down syndrome have
highlighted clear signs of IR in them, such as a significant reduction in receptors for insulin
in the hippocampus, cortex, and hypothalamus [66].

Furthermore, a very interesting study carried out in Vervet monkeys showed that,
shifting from a state of health to a stage of prediabetes and, subsequently, to frank diabetes,
cerebral metabolism is altered with an increase in glucose and a decrease in amino acids
and acylcarnitine. This alteration of metabolism stimulates the production and aggregation
of amyloid β in a similar way in type 2 diabetes and AD, clarifying how some mechanisms
present in diabetes can lead to cognitive deficits and dementia [67].
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4.4. Effects on the Liver and Ovaries

There are important connections between liver function, Hyperin, and IR. In fact, as
we have already seen, the liver is a very relevant organ from a metabolic point of view
and has a fundamental role in the regulation of glucose and lipid metabolism. Impaired
liver function leads to impaired hepatic metabolism that promotes the development of IR,
which, in turn, is a common feature of both the development of non-alcoholic fatty liver
disease (NAFLD) and the development of type 2 diabetes. There is a complex bidirectional
relationship between NAFLD and diabetes. In particular, patients with NAFLD and IR
have a high risk of developing diabetes early, while the majority of patients with type 2
diabetes more easily develop non-alcoholic fatty liver, non-alcoholic steatohepatitis, and
other serious liver complications such as cirrhosis and hepatocellular carcinoma [68,69].

PCOS is a syndrome that has important metabolic and gynecological implications,
including menstrual and conception difficulties. Affected women have a marked IR, which
is independent of obesity, of a genetic nature, classified among the forms of type A IR. This
form of IR in women is mostly recognized in adolescence due to the delay and alterations
of the menstrual cycle. In women with IR and PCOS, insulin acts as a co-gonadotropin via
a receptor that modulates ovarian steroidogenesis. Furthermore, the genetic alteration of
insulin signaling in the brain contributes to impaired ovulation. For this reason, it has been
suggested to treat this syndrome with insulin-sensitizing substances [70,71].

5. Possibilities of Treatment

There are many treatment options available once we identify the subjects with IR/
Hyperin. There is no need to wait because waiting may result in the patient developing
diabetes. In fact, in most cases, Hyperin associated with IR precedes the development of the
described events by several years, even up to 15, and this can occur even in children [3,4,23].
For this reason, we must use a broad-based strategy, educating and acting effectively. We
must educate the general population, even children, toward a more healthy lifestyle, with a
balanced and more adequate caloric intake, accompanied by moderate, but constant over
time, physical activity (walking at least 4000/6000 steps per day). It is not our intention to
discuss in depth in this review the mechanisms by which physical exercise improves insulin
sensitivity, but it is known that muscle training determines numerous beneficial adaptations
in the affected skeletal muscles, including an increase in GLUT-4 expression [72].

Although it has not been perfectly clarified what the best amount and type of muscular
exercise is to reduce IR, it has been verified that radical lifestyle changes lead to a long-term
improvement in insulin sensitivity and reduce the incidence of overt type 2 diabetes in
subjects with impaired glucose tolerance [73].

Unfortunately, this type of intervention may, in many cases, not be sufficient for
various reasons, including the fact that many people are unable to constantly correct their
lifestyle. Therefore, at this point, we are forced to intervene by helping the patient with
the administration of insulin-sensitizing substances. In previous works we have reviewed
many effective substances to choose from, both drugs and natural substances, depending
on the tastes and characteristics of the patient [74–77].

Back in 2012, we provocatively published a manuscript entitled “Insulin resistance: Is
it time for primary prevention?”, in the hope of inducing medical societies and national
health authorities to take the problem into consideration [78]. Although little has been
done, and precisely because of that, we still believe that the importance of the topic requires
greater awareness on the part of the scientific and medical world. Scientific societies discuss
the assessment of residual risk in subjects in whom the classic risk parameters appear
to have been brought back to target. The concept of lowering total cholesterol and LDL
cholesterol values in high-risk subjects is therefore further stressed.

Furthermore, the impact of the risk linked to chronic inflammation is being evaluated
by studying markers such as C-reactive protein and interleukin-6, and the intervention on it
with anti-inflammatory drugs. This begs the question of why neglect a risk factor such as IR
with associated hyperinsulinemia, given that, among other things, it has been demonstrated
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that it itself causes chronic inflammation and produces significant damage over time? A
large, controlled intervention study of IR associated with hyperinsulinemia is needed to test
whether improving IR and reducing insulin levels can produce a prognostic improvement.

6. Conclusions

From the analysis of the available literature, it is clear that Hyperin/IR is an important
risk factor for many pathologies. Therefore, with the aim of improving IR and reducing
hyperinsulinemia, the early screening for IR in the general population should be recom-
mended by medical societies and national health authorities in order to identify individuals
affected by this condition and promptly begin preventive treatment. Lifestyle interventions
through a balanced diet low in carbohydrates and constant physical exercise are well known
preventive procedures. In case of insufficient compliance with those recommendations,
the addition of insulin-sensitizing substances (drugs and/or food supplements) should be
applied in the identified subjects in order to counteract the risk of diabetes, cardiovascular
diseases, neoplasms, and neurodegenerative diseases.
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