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Abstract: Background: Cuproptosis is a copper-induced mitochondrial cell death, and regulating
cuproptosis is becoming a rising cancer treatment modality. Here, we attempted to establish a
cuproptosis-associated lncRNAs (CRLs) signature (CRlncSig) to predict the survival, immune land-
scape, and treatment response in ovarian cancer (OC) patients. Methods: A series of statistical
analyses were used to identify the key CRLs that are closely related to the prognosis, and a prog-
nostic CRlncSig was constructed. The predictive accuracy of the CRlncSig was further validated
in an independent Gene Expression Omnibus (GEO) set. Then, we compared the immune cell in-
filtration, immune checkpoints, tumor microenvironment (TME), tumor mutational burden (TMB),
drug sensitivity, and efficacy of immunotherapy between the two subgroups. We further built a
nomogram integrating the CRlncSig and different clinical traits to enhance the clinical application
of the CRlncSig. Results: Nine hub CRLs, namely RGMB-AS1, TYMSOS, DANCR, LINC00702,
LINC00240, LINC00996, DNM1P35, LINC00892, and TMEM254-AS1, were correlated with the overall
survival (OS) of OC and a prognostic CRlncSig was established. The CRlncSig classified OC pa-
tients into two risk groups with strikingly different survival probabilities. The time-dependent ROC
(tdROC) curves demonstrated good predictive ability in both the training cohort and an independent
validation cohort. Multivariate analysis confirmed the independent predictive performance of the
CRlncSig. We constructed a nomogram based on the CRlncSig, which can predict the prognosis of OC
patients. The high-risk score was characterized by decreased immune cell infiltration and activation
of stroma, while activation of immunity was observed in the low-risk subgroup. Moreover, patients
in low-risk subgroups had more Immunophenoscore (IPS) and fewer immune escapes compared to
high-risk subgroups. Finally, an immunotherapeutic cohort confirmed the value of the CRlncSig in
predicting immunotherapy outcomes. Conclusions: The developed CRlncSig may be promising for
the clinical prediction of OC patient outcomes and immunotherapeutic responses.
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1. Introduction

Ovarian cancer (OC) is a heterogeneous disease with the highest mortality rate and the
worst prognosis of any gynecological malignancy [1]. Although it accounts for only 3% of all
female cancers, the annual incidence of OC worldwide is estimated at 21,750 new cases and
an estimated 13,940 deaths per year [2]. Given the complex molecular and genetic changes
and variable responses to treatment, OC is a severe concern for women. At present, there
is no screening tool for OC, and with diagnosis often occurring at later stages, metastasis
and recurrence are quite high in these patients. The standard treatment for OC is surgery
followed by combination chemotherapy. However, most patients in advanced stages of
the disease will relapse and develop chemoresistance within a few years [3]. The 5-year
survival rate for early-stage OC is 92%, which drops to around 29% for advanced-stage
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OC [4]. Therefore, novel markers are warranted to enhance the prognostication of OC
patients and identify innovative therapeutic interventions.

Copper (Cu) is an essential transition metal that strongly influences basic cellular
processes, including oxygen metabolism, mitochondrial respiration, and iron uptake [5,6].
Studies have proved that copper levels frequently increased in cancer, and that the dyshome-
ostasis of copper may cause cytotoxicity, altering intracellular copper levels that affect tumor
progression [7,8]. Tsvetkov et al. [9] identified a unique form of regulatory cell death (RCD)
that is copper-dependent and distinct from apoptosis, autophagy, ferroptosis, necroptosis,
and pyroptosis. This copper-dependent death is mediated by the direct binding of copper to
the lipoylated components of the tricarboxylic acid (TCA) cycle, which results in the abnor-
mal aggregation of lipoylated protein and the loss of iron–sulfur cluster proteins, resulting
in proteotoxic stress and ultimately cellular death. Cuproptosis-related genes (CRGs) could
regulate tumor cell proliferation, invasion, and metastasis [10]. Given that copper drooping
is more inflammatory than other types of RCD, understanding how cuproptosis is initiated
and propagated may help identify cuproptosis-associated therapeutic interventions and
possible combination treatments for human cancer [11]. Presently, the roles of CRGs in OC
remain largely unknown and cannot be ignored.

Long noncoding RNAs (lncRNA) are RNA molecules with a transcript length of more
than 200 nt that have no protein-coding potential [12]. Growing evidence has indicated
the intimate relevance between the aberrant expression of lncRNAs and tumorigenesis,
metastasis, and drug resistance [13–15]. Although many lncRNAs have been experimentally
shown to be linked to cell death [16–18], reports evaluating the relationship between CRGs
and lncRNAs in OC are lacking. Accordingly, it is an objective of this study to identify
prognostic cuproptosis-related lncRNAs (CRLs) and determine the CRLs with the potential
of regulating cuproptosis in OC.

In our study, we built a cuproptosis-associated lncRNAs signature (CRlncSig) to
predict clinical outcomes and explored that this CRlncSig is related to immune microen-
vironment infiltration and immunotherapy. Our findings provide new insights into the
biological functions and molecular mechanisms of cuproptosis in OC and also suggest the
potential benefit of immunotherapy in OC patients.

2. Materials and Methods
2.1. Data Obtained and Analysis

The RNA sequencing data of OC tissues and normal ovarian tissues were obtained
from The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/, accessed on
10 August 2022) and Genotype-Tissue Expression (GTEx; https://xenabrowser.net/datapages/,
accessed on 10 August 2022) databases. The data type was HTseq-FPKM and the gene ex-
pression level was processed by log2(count + 1). After integrating the data from GTEx and
TCGA, 88 normal tissues and 379 tumor tissues were used for subsequent analysis. Clinico-
pathological traits were obtained from TCGA-OV and patients with unavailable clinical
information were removed. The GSE9891 dataset (https://www.ncbi.nlm.nih.gov/geo/,
accessed on 10 August 2022) was obtained from the Gene Expression Omnibus (GEO)
database. The TCGA dataset was employed to build the risk model, and the GEO dataset
was employed to validate the reliability of the model.

2.2. Screening for Cuproptosis-Related lncRNAs (CRLs)

We obtained 19 cuproptosis-related genes (CRGs) from previous literature [19] and
they are displayed in Table S1. The R package “corrplot” (version 0.92) was employed
to assess the correlation between the extracted lncRNAs and the CRGs derived from the
TCGA-OV dataset. Furthermore, CRLs were identified based on the established criteria of
p < 0.001 and |R| ≥ 0.3, utilizing Pearson correlation analysis for this purpose.

https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
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2.3. Construction and Validation of CRlncSig in OC

In the training cohort, CRLs correlated with OS were selected by univariate Cox
regression analysis. Then, LASSO Cox regression analysis was conducted to select the
optimal candidates. After combining the expression levels of each specific gene, we
constructed a CRlncSig for each patient and weight it in a LASSO Cox regression analysis
based on its estimated regression coefficient (β).

Risk score = ∑N
i=1 Exp × Coef. Exp and Coef represented the expression level and

regression coefficient of corresponding CRLs, respectively. Patients were divided into low-
and high-risk groups based on the median risk score. Kaplan–Meier (K–M) survival analysis
was then conducted to compare the difference between survival curves. Concordance index
(C-index) and area under the receiver operating characteristic (ROC) curves (AUC) were em-
ployed to evaluate the predictive accuracy of the CRlncSig. Principal Component Analysis
(PCA) is a widely used tool for narrowing down and separating computer vision attributes.
PCA and t-SNE analyses were performed to assess the grouping ability of the CRlncSig
using the “Rtsne” (version 0.17) and “ggplot2” packages (version 3.5.1). In addition, the
GSE9891 dataset was further utilized for validating the performance of the CRlncSig.

2.4. Building and Validation of a Prognostic Nomogram

The potential prognostic variables (age, FIGO stage, tumor size, and grade) with
significant differences (p < 0.05) in univariate analysis were screened for the Cox regression
model for multivariate analysis. Then, a prognostic nomogram was built utilizing these
independent prognostic indicators. ROC analysis was performed using the “timeROC”
packages (version 0.4) to verify the efficacy of the nomogram. Calibrations were plotted by
comparing estimated versus observed survival.

2.5. TME Infiltration Level Analysis

To investigate the immune microenvironment (TME) of OC patients in different risk
subgroups, the CIBERSORT method [20] was adopted to evaluate the infiltration degrees of
22 subtypes of infiltrating immune cells. We further investigated the relationship between
risk score and immune cells by Spearman’s correlation analysis. Moreover, the relationship
between the CRlncSig and TME score was studied by ESTIMATE algorithm [21].

2.6. Immunotherapeutic Response Prediction

We assessed whether common immune checkpoint activation differs between the two
subgroups. The tumor immune dysfunction and exclusion (TIDE) algorithm (http://tide.dfci.
harvard.edu//, accessed on 10 August 2022) was employed to predict inhibitory responses
to PD-1 and CTLA4 immune checkpoints in two risk populations [22]. The possibility of
patients benefiting from immunotherapy can be inferred by immunophenoscore (IPS) [23].
The IPS of TCGA-OV was obtained through TCIA (https://tcia.at/, accessed on 10 August
2022) database and employed to assess the response status of OC patients to immunother-
apy. Meanwhile, an immunotherapeutic cohort (IMvigor210 cohort) was included in our
study. The CRlncSig was fitted in the IMvigor210 cohort to validate its value in predicting
immunotherapeutic response.

2.7. Correlation Analysis of CRlncSig with Tumor Mutation Burden (TMB)

The distributions of TMB among the various risk score groups were examined by
“ggpubr” package (version 0.6.0). Patients were categorized into various TMB groups,
and the difference in OS of patients with different mutational burdens was compared.
Additionally, a combined assessment of TMB and risk scores was conducted to evaluate
the survival outcomes of OC patients.

http://tide.dfci.harvard.edu//
http://tide.dfci.harvard.edu//
https://tcia.at/
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2.8. Drug Sensitivity Prediction

To explore the response of different risk score groups to diverse drugs, we analyzed
the correlation between the semi-inhibitory concentration (IC50) of frequently utilized
medicines and CRLncSig using the “pRRophetic” package (version 0.5) [24].

2.9. Gene Set Enrichment Analysis (GSEA)

GSEA analysis was performed by GSEA software (version: 4.2.3) to explore the
possible biological pathways involved in CRlncSig in OC. We acquired the annotated gene
set “c2.cp.kegg.v7.4.symbols.gmt” from the Molecular Signatures Database to enable the
GSEA software to assess pertinent molecular mechanisms and pathways in relation to
gene expression profiles and classifications. For each analysis, we conducted 1000 gene set
permutations to derive a normalized enrichment score (NES), which served as the basis
for ranking the pathways enriched in each phenotype. Gene sets exhibiting an adjusted
p-value < 0.05 were deemed significant.

2.10. Statistical Analysis

All analyses were done using R software (version 4.1.0). Wilcoxon tests were utilized
to compare the difference between the two groups, and the Kruskal–Wallis test was used
to compare more than two groups. ROC analysis was performed using the “timeROC”
packages (version 0.4) to assess the predictive power of prognostic model. Spearman’s
correlation analysis was used to test the correlation between CRGs and lncRNAs. The
KM method was used to create survival curves for progression experiments, and log-rank
tests were employed to assess the significance of differences. Univariate and multivariate
Cox regression analyses were implemented to identify independent predictors of OS.
p < 0.05 was considered statistically significant.

3. Results
3.1. Identification of CRLs in OC

A total of 379 cases of TCGA-OV, 88 cases of TCGA-GTEx normal tissue, and 273 cases
of GSE9891 OC were enrolled. Nineteen CRGs were selected according to the previous
reports. We detected the expression of the 19 CRGs between OC and adjacent normal
tissues and observed that all CRGs were aberrantly expressed in the OC (Figure 1A). The
expression of ATP7A, ATP7B, CDKN2A, DBT, DLAT, DLD, FDX1, LIPT2, MTF1, NLRP3,
PDHB, and SLC31A1 was significantly upregulated in OC tissues, while DLST, GCSH,
GLS, LIAS, LIPT1, NFE2L2, and PDHA1 were downregulated (Figure 1A), confirming the
dysregulated cuproptosis process in OC. Then, a co-expression network of CRGs and
lncRNAs was performed to select CRLs. In consequence, a total of 941 CRLs were identified
(Figure 1B; Table S2). After intersecting the expression profiles of these CRLs with the
GSE9891 cohort, 132 CRLs were identified in the training cohort.

3.2. Construction and Validation of the CRlncSig Based on CRLs

Based on the 132 CRLs, we performed a univariate Cox regression analysis and identified
22 OS-related CRLs (Figure 1C). Subsequently, the LASSO method further narrowed down
the candidate genes, and nine CRLs with optimal λ values were screened (Figure 1D,E). In the
end, the nine CRLs (RGMB-AS1, TYMSOS, DANCR, LINC00702, LINC00240, LINC00996,
DNM1P35, LINC00892, and TMEM254-AS1) were selected to develop the predictive CRlncSig
(Figure 1D,E). A heatmap depicting the relationships between 19 CRGs and nine CRLs
was plotted in Figure 2F. Afterward, the risk score was determined as follows: The risk
score = (−0.1051 × RGMB-AS1) + (−0.1623 × TYMSOS) + (−0.1284 × DANCR) +(0.2921 ×
LINC00702) + (−0.0956 × LINC00240) + (−0.5539 × LINC00996) + (−0.1166 × DNM1P35) +
(−0.6233 × LINC00892) + (−0.1340 × TMEM254-AS1).
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Figure 1. Identification of cuproptosis-related lncRNAs (CRLs) and construction of prognostic
CRlncSig in OC. * p < 0.05; ** p < 0.01; *** p < 0.001. (A) The expression of 19 CRGs in OC tissues
and adjacent normal tissues. (B) Sankey relational diagram for cuproptosis-related genes and CRLs.
(C) HR and 95% CI of the 22 CRLs using univariate Cox regression. (D) A coefficient profile plot was
produced against the log (lambda) sequence in the LASSO model. The optimal parameter (lambda)
was selected as the first black dotted line indicated. (E) The trajectory of each independent variable
with lambda. (F) Heat map of the Pearson’s correlation between the differentially expressed-lncRNAs
and the differentially expressed cuproptosis-associated genes. All analyses were repeated at least
three times.
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Figure 2. Internal and external validation of the prognostic CRlncSig. (A,B) Risk scores and survival
status of each case in the training (A) and validation cohorts (B). (C–E) The OS (C) and PFS (D) of patients
were ranked by risk score in the training cohort, and the OS (E) of patients was ranked by risk score
validation cohort. (F,G) ROC curve for the prediction of OC survival in the training (F) and validation
cohorts (G). (H) The concordance index (C-index) curves of the CRlncSig. (I–L) PCA and t-SNE analyses
in the training (I,J) and validation cohorts (K,L). All analyses were repeated at least three times.
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The distribution of risk scores was visually analyzed (Figure 2A). The Kaplan–Meier
curves confirmed that patients with higher risk scores had significantly poor OS and PFS
compared with patients with lower risk scores (Figure 2C,D). The tdROC analyses at 3 years
(AUC = 0.730) and 5 years (AUC = 0.718) were conducted and suggested an outstanding
performance of the CRlncSig in predicting OS (Figure 2F). The C-index also demonstrated
the prognostic efficacy of CRlncSig was better than clinical characteristics (Figure 2H). PCA
and t-SNE analyses were performed, and the result revealed a clear distribution between
the two risk groups (Figure 2I,K).

3.3. Validation of the CRlncSig

To assess the performance of the CRlncSig in OC patients, we implemented one
external GEO data set (GSE9891). As illustrated in Figure 2B, the risk of death gradually
increases as the risk score increases. The K–M method demonstrated that the CRlncSig
could stratify patients efficiently (Figure 2E). The ROC method also could validate the
robustness of the signature in the GSE9891 cohort (Figure 2G). A clear separation of these
two subgroups of patients was observed in the PCA and t-SNE analyses (Figure 2J,L).

3.4. Development of a Prognostic Nomogram

Univariate and multivariate Cox analyses indicated that the CRlncSig was a powerful
and independent indicator in the training (Figure 3A,B) and validation cohorts (Figure 3C,D).
To facilitate the clinical practice of the CRlncSig, we developed a novel prognostic nomo-
gram incorporating age, FIGO stage, and risk score (Figure 3E). ROC curves demonstrate
that the efficacy of the nomogram was higher than that of the FIGO stage (Figure 3F,G).
The calibration plot demonstrated the consistency of the predicted OS and observed OS
(Figure 3H). The decision curve analysis (DCA) curve results also validated the prominent
predictive efficacy of the CRlncSig (Figure 3I).

3.5. Immune Landscape in OC Patients with Different Risk Groups

To investigate the correlation between the CRlncSig and antitumor immunity in
OC, the CIBERSORT algorithm was employed to evaluate the component disparity of
immunocytes in OC patients. We discovered remarkably higher levels of CD8+ T cells,
activated memory CD4+ T cells, M1 macrophages, activated NK cells, memory B cells,
and mast cells resting (Figure 4A; p < 0.05). In contrast, the high-risk subgroup exhibited
increased expression of M2 macrophages, activated mast cells, resting memory CD4+ T
cells, naïve B cells, and monocytes (Figure 4A; p < 0.05). Additionally, we found remarkable
correlativity between the risk score and multiple immunocytes such as M1 macrophages
(R = −0.25, p < 0.001), CD8+ T cells (R = −0.15, p = 0.006), activated memory CD4+ T cells
(R = −0.18, p = 0.001), activated NK cells (R = −0.27, p < 0.001), and M2 macrophages
(R = 0.15, p = 0.006) (Figure 4B–F). Through the ESTIMATE algorithm, we quantified the
entire infiltrations of immune and stromal cells between the two risk groups. Our results
showed that the low-risk group had a higher immune score, while the high-risk group had
a higher stromal score (Figure 4G,H).

3.6. Immunotherapeutic Response Prediction

We further looked at the value of the CRlncSig in predicting immunotherapeutic
response. We first compared the expression of major immune checkpoints in two risk
groups. The result indicated that the expression of HAVCR2, PD-1, PD-L1, and CTLA4 was
higher in the low-risk group than those in the high-risk group (Figure 5A). We further used
TIDE to assess the response to immunotherapy in the two risk groups. Patients in high-risk
groups led a statistically significant increase in TIDE score (Figure 5B), which means their
tumors were more likely to acquire immune escape. To explore the correlation between
CRlncSig and immunotherapy response, we examined the IPS scores after anti-CTLA-4/PD-
1 therapy, and we found that the low-risk score group had higher IPS scores (Figure 5C–F),
indicating that the low-risk group could achieve better immunotherapy results. We next
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evaluated the prognostic value of the risk score for immune checkpoint therapy by assigning
patients to the IMvigor210 cohort. The prognosis of patients with low-risk scores was
significantly better than those with high-risk scores (Figure 5G). Patients in the low-risk
subgroup had a higher response rate than those in the high-risk subgroup (Figure 5H), and
patients who responded to immunotherapy had lower risk scores (Figure 5I).
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of the univariate and multivariate Cox analysis in the training (A,B) and validation cohorts
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** p < 0.01; *** p < 0.001. (F,G) Comparison of the ROC curves for predicting three- and five-year
survival in the CRlncSig (F) and FIGO stage (G). (H) Calibration curves of the nomogram prediction
of 3-year and 5-year OS of patients with OC. (I) Decision curve analysis (DCA) of the CRlncSig. All
analyses were repeated at least three times.
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** p < 0.01; *** p < 0.001 (B–F) Spearman’s correlation analysis between the CRlncSig and the abun-
dance of immunocytes. (G,H) Comparison of the immune score (G) and stromal score (H) between
low- and high-risk groups. R: Spearman coefficient. All analyses were repeated at least three times.
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* p < 0.05; ** p < 0.01; *** p < 0.001 (B) Comparison of the tumor immune dysfunction and exclusion (TIDE)
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risk scores in different anti-PD-L1 clinical response groups. All analyses were repeated at least three times.
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3.7. Correlation Analysis of the CRlncSig with TMB

We derived the TMB scores of OC patients based on the somatic mutation data of
TCGA. We noted that the high low-risk score group had a greater TMB than the low
low-risk score group and that the risk score was negatively correlated with TMB, but not
significantly different (Figure 6A,B). Moreover, patients in the low TMB group had poorer
OS (Figure 6C). Likewise, we discovered that the low-risk score group with a high TMB
demonstrated greater survival (Figure 6D).
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3.8. Drug Sensitivity Prediction

To further investigate whether the risk score could predict drug sensitivity in OC
patients, we compared IC50 levels in two groups of some chemotherapeutic drugs or
inhibitors commonly used in a clinical setting. We found that the high-risk score group
had lower IC50s for Pazopanib, Imatinib, and Dasatinib, indicating that patients with high-
risk scores benefited more from these three drugs (Figure 7A–C). Meanwhile, Paclitaxel,
Gefitinib, and Gemcitabine may have a better potential for treating low-risk patients
(Figure 7D–F).
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high- (G) and low-risk groups (H) were analyzed using GSEA software. All analyses were repeated
at least three times.

3.9. Functional Analysis of the CRlncSig

The GSEA of the high-risk group was mainly enriched in the stromal and cancer-
related pathways, including ECM receptor interaction, focal adhesion, pathways in cancer,
and the WNT signaling pathway (Figure 7G). Meanwhile, the GSEA of the low-risk group
was mainly enriched in the immune response, including natural killer cell-mediated cyto-
toxicity, antigen processing and presentation, and primary immunodeficiency (Figure 7H).
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4. Discussion

OC is a heterogeneous group of neoplasm with distinct clinicopathological and
molecular features and prognosis [25]. Despite optimal surgery and appropriate first-
line chemotherapy, many patients with OC will experience a recurrence and chemotherapy
resistance [26], and the five-year survival rate is approximately 45% [27]. Therefore, a possi-
ble breakthrough in improving the outcomes and extending the survival of patients with OC
could result from the development of new and practicable prognostic biomarkers and treat-
ment targets. In recent years, researchers have discovered dozens of RCD modes, among
which apoptosis, ferroptosis, pyroptosis, and necroptosis are the most widely studied in
OC [28–30]. Cuproptosis is a copper-triggered modality of mitochondrial cell death distinct
from other types of cell death [9]. As a new type of RCD, cuproptosis can serve as an alterna-
tive and attractive therapeutic for supporting anticancer immunity [9]. Recent studies have
begun to elucidate the intricate connections between cuproptosis, mitochondrial function,
and lncRNAs, emphasizing the need for a comprehensive understanding of these relation-
ships. For instance, research has highlighted the role of CRLs in cancer, revealing that
alterations in mitochondrial respiration can influence tumor behavior and patient prognosis.
In uterine corpus endometrial carcinoma, a model incorporating CRLs was developed to
enhance prognostic predictions and guide treatment strategies [31]. These findings are
echoed in hepatocellular carcinoma, where a novel lncRNA signature related to cuproptosis
was shown to predict patient prognosis and immunotherapy effectiveness, highlighting the
interplay between cuproptosis and immune responses in malignancies [32]. Furthermore,
the implications of cuproptosis extend beyond specific cancer types. A comprehensive
analysis in pancreatic adenocarcinoma revealed that cuproptosis-related lncRNAs could
stratify patients based on their prognostic outcomes, emphasizing the importance of mito-
chondrial respiration in tumor dynamics [33]. The study also demonstrated that certain
lncRNAs could modulate glycolytic pathways, thus influencing cancer cell proliferation
and survival, which is a critical aspect of tumor metabolism. Overall, the integration of
cuproptosis with mitochondrial respiration and lncRNA dynamics presents a promising
avenue for advancing cancer therapies. Future research should focus on elucidating the
specific metabolic pathways involved in cuproptosis and the regulatory roles of lncRNAs,
as these insights could lead to novel therapeutic strategies aimed at targeting metabolic
vulnerabilities in cancer cells.

The application of bioinformatics in tumor research is becoming increasingly widespread,
mainly reflected in data analysis and the discovery of biomarkers. Through high-throughput
sequencing technology, researchers can deeply analyze the genomic characteristics of tu-
mors, thereby revealing the mechanisms of tumor occurrence and development. Recent
advancements in computational techniques, particularly atomistic molecular dynamics and
density functional tight binding (DFTB), have significantly enhanced our understanding of
molecular interactions in biological systems, including cancer [34]. These methods allow
researchers to simulate the dynamic behavior of biomolecules at an atomic level, providing
insights that can inform experimental design and therapeutic strategies. Moreover, the
integration of these advanced simulation techniques with experimental data can lead to a
more nuanced understanding of the molecular mechanisms underlying cancer progression
and treatment resistance. By elucidating the structural and energetic aspects of molecular
interactions, researchers can identify novel therapeutic targets and design more effective
inhibitors. This study mainly focused on developing a prognostic CRlncSig using a biologi-
cal approach, and clarified the important role of the CRlncSig in clinical outcomes, immune
landscape, response prediction to different therapies, and tumor mutation landscape, which
allowed for accurately evaluating the prognosis of OC patients and developing more ef-
fective therapeutic strategies. First, we comprehensively analyzed the expression profile
of 19 CRGs via the integrated analysis of TCGA and GTEx databases. These CRGs are
all expressed aberrantly in OC, indicating cuproptosis is involved in the progression of
OC. Then, correlation analysis identified 132 CRLs and univariate Cox analysis revealed
22 prognostic CRLs. Through LASSO regression analysis, a novel prognostic CRlncSig
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integrating nine CRLs was generated. In the training cohort, we observed an obvious dif-
ference in OS between the two groups. This result was confirmed in an independent GEO
cohort, indicating a good reproducibility of this CRlncSig in OC. Compared with traditional
FIGO staging, it showed better prognostic predictive power in OC patients. The signature
was confirmed as an independent prognostic factor in OC patients. Additionally, we also
constructed a CRlncSig-based nomogram, which can predict the prognosis of OC patients
more accurately and increase the clinical utility. Moreover, we observed obvious differences
in immune cell subpopulations, TME characteristics, expression of the immune checkpoint,
and immunotherapeutic response between the two risk groups. The predictive value of the
risk score for checkpoint immunotherapy was also confirmed in the IMvigor210 cohort.

In the present study, the CRlncSig was constructed based on nine CRLs, includ-
ing RGMB-AS1, TYMSOS, DANCR, LINC00702, LINC00240, LINC00996, DNM1P35,
LINC00892, and TMEM254-AS1. Some of these lncRNAs have been reported in previous
literature. For instance, lncRNA DANCR (also known as ANCR) is a cancer-associated
lncRNA, and dysregulation of DANCR affects cancer cell proliferation, apoptosis, migra-
tion, and invasion through different mechanisms, including acting as a miRNA sponge,
stabilizing mRNA, and interacting with proteins [35]. Pei et al. [36] observed that DANCR
expression was elevated in OC tissues and accelerated the proliferation and migration of
OC cells by negatively regulating UPF1 expression. Similarly, DANCR as an oncogene
promotes OC progression via targeting miR-145 [37]. LINC00702 can promote the progres-
sion of OC by interacting with EZH2 to suppress the transcription of KLF2 [38]. LncRNA
RGMB-AS1 has been reported to play oncogenic or anti-oncogenic roles in the tumorigene-
sis and progression of various malignancies [39–41]. Zhang et al. [42] demonstrated that
lncRNA RGMB-AS1 can inhibit malignant behavior and EMT in nasopharyngeal carcinoma
by binding to forkhead box A1. Evidence confirmed that LINC00240 can enhance cervical
cancer progression by inducing miR-124-3p/STAT3/MICA-mediated natural killer T (NKT)
cell tolerance [43]. As the roles of most lncRNAs in the CRlncSig have not yet been reported
in OC, our findings may provide some useful insights for further in-depth studies. Further
research is required to disclose the roles of the above nine lncRNAs in the development of
OC via a cuproptosis mechanism.

GSEA could assist in the investigation of the underlying functions through the subtle
expression changes of multiple genes. As illustrated in Figure 7G,H of GSEA, the low-
risk group seemingly harbored immune activation pathways, while the high-risk group
mainly enriched in stromal and carcinogenesis pathways. Accumulating evidence has
revealed crosstalk between copper metabolism and antitumor immunity [44]. Florida
et al. [44] verified that copper supplementation promoted the expression of PD-L1 mRNA
and protein levels in cancer cells. RNA sequencing showed that copper regulates key
signaling pathways mediating PD-L1-driven cancer immune escape.

However, no clear studies have shown a direct relationship between cuproptosis and
TME in OC. After enriching several immune-related pathways, we compared the different
activations of anticancer immune responses between two risk groups with OC. The TME
score between the two groups was significantly different. The low-risk score was correlated
with immune activation and the high-risk score exhibited a significant stroma activation
status. Through TME immune infiltration analysis, we found that the risk score exhibited
remarkably negative correlations with CD8+ T cells, M1 macrophages, activated memory
CD4+ T cells, and activated NK cells. Many studies have confirmed that the infiltration
of the CD4+ T cell and CD8+ T cell are significantly correlated with a better prognosis for
patients with OC [45]. The effect of adoptive T cell therapy in the treatment of OC has
been confirmed by phase I experiments, although most patients can only maintain a short
response due to T cell inhibition or depletion [46]. Moreover, a positive correlation between
risk scores and M2 macrophages, activated mast cells, and monocytes was observed.
The infiltration of high-density M2-like tumor-associated macrophages (TAMs) in OC is
predictive of poor prognosis [47]. It can secrete various cytokines, chemokines, enzymes,
and exosomes to microRNAs, thereby inducing the progression and chemoresistance of
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OC [47]. M2-like TAMs can promote early transcoelomic metastasis of OC in the peritoneum
by assisting the spheroid formation and cancer cell attachment to the metastatic area—the
omentum [48]. Overall, the weakened anti-tumor immunity in the high-risk group may
explain the poor prognosis of OC patients.

Immunotherapy has become a new promising approach for treating OC, especially
immune checkpoint inhibitors (ICIs), which have become an effective treatment [49,50].
Checkpoint inhibitor therapy, such as PD-1 and PD-L1, has achieved good clinical efficacy
in OC [51,52]. In addition, several trials of the PD-1/PD-L1 blockade in OC are underway,
including in combination with antiangiogenic or targeted PARP inhibitors [53–55]. In
patients with OC, the clinical effect of the combined application is usually superior to that
of a single immune checkpoint blockade [56]. We found that the expression of HAVCR2,
CTLA4, PD-1, and PD-L1 was remarkably elevated in the low-risk group, indicating that
low-risk patients may respond more readily to immunotherapy. We further found that
the high-risk group has a higher TIDE score, suggesting a greater likelihood of immune
escape. The IPS score further demonstrated a poor immunotherapy response in the high-
risk group, which is consistent with previous findings. Evidence suggests that patients
with a high TMB status demonstrate durable clinical responses to immunotherapy. In
this work, the low-risk score group was significantly correlated with higher TMB and was
more sensitive to anti-CTLA4 and anti-PD-1 therapy. Finally, an immunotherapeutic cohort
(IMvigor210) confirmed the value of the CRlncSig in predicting immunotherapy outcomes.
Taken together, patients with low-risk scores may benefit more from immunotherapy.

This investigation is not without its drawbacks. First, the data for constructing the
CRlncSig are all from public databases. Therefore, the expression of these CRlncSig CRLs
needed to be validated in clinical specimens. Second, the number of samples we retrieved
from the TCGA database and GEO database is relatively small, and the reliability of the
CRlncSig established in this study needs to be further validated by including a larger
sample size of clinical trials. Third, since cuproptosis was newly discovered, some CRLs we
identified have not been reported yet, especially in immunotherapy, thus basic experiments
to investigate their functions are needed.

5. Conclusions

We constructed an effective CRlncSig and nomogram, which may contribute to risk
stratification and prognostic assessment. The CRlncSig performed excellently in assessing
TME characteristics and immunotherapy outcomes in OC patients, suggesting its potential
application in future immunotherapy.
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