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Abstract: Background/Objectives: Predicting post-COVID-19 diabetes is crucial for enhancing
patient care and public health. This study investigates the role of metabolic factors in predicting
the glycemic outcomes in patients recovering from moderate to severe COVID-19. Methods: We
conducted a retrospective analysis of 135 patients without pre-existing diabetes, selected from
a cohort of 1980 individuals hospitalized between January 2020 and December 2022. Metabolic
parameters, including blood glucose, Homeostasis Model Assessment of Insulin Resistance (HOMA-
IR), Triglyceride/Glucose (TyG) index, and high-sensitivity C-reactive protein (hs-CRP), were assessed
at discharge and followed up after 4 months (T4) and 12 months (T12). Results: Statistical analysis
revealed significant correlations of initial glycemia, HOMA-IR, and hs-CRP with the subsequent
glycemic levels at T4 and T12. Multiple regression analysis confirmed that initial glycemia, HOMA-
IR, and hs-CRP were strong predictors of elevated glycemia, while the TyG index did not show a
significant predictive value. Conventional diabetes risk factors, including body mass index (BMI)
and lipid profiles, showed low predictive power for post-COVID-19 glycemia. Conclusions: This
research highlights the critical role of metabolic and inflammatory pathways in managing glycemic
control in COVID-19 patients. Markers like blood glucose, HOMA-IR, and hs-CRP are significant
predictors of blood glucose levels, while the TyG index appears less helpful in this context. Early,
targeted interventions based on these markers can improve patient outcomes and reduce the risk of
post-COVID-19 complications like diabetes.

Keywords: post-COVID-19 diabetes; glycemic outcomes; metabolic factors; HOMA-IR; hs-CRP; TyG
index; insulin resistance; predictive analysis; COVID-19 recovery

1. Introduction

Predicting the development of diabetes (DM) after COVID-19 is not just valuable
but also essential for optimizing patient care, reducing the burden of diabetes-related
complications, and improving overall public health outcomes. It allows for proactive
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management, personalized healthcare, and better resource allocation, ultimately leading to
a more effective and efficient healthcare delivery. After the COVID-19 pandemic, numer-
ous studies have demonstrated changes in the metabolic profile, with an increase in the
incidence of diabetes. Previous studies indicated that DM is associated with an increased
risk of severe COVID-19, acute respiratory distress syndrome (ARDS), and in-hospital
mortality [1–3]. People with persistent long COVID symptoms can experience pulmonary
and extrapulmonary manifestations, including the occurrence of DM. More intriguingly, a
recent meta-analysis reported that newly diagnosed DM is frequently seen in patients with
COVID-19 [4]. The world has expressed concern about a two-way relationship between
these two conditions [5,6]. A follow-up of children with COVID-19 has identified that the
incidence of newly diagnosed type 1 DM has increased [7]. Individuals with DM are at
greater risk of severe outcomes if they contract COVID-19. This includes increased rates of
hospitalization, need for intensive care, and mortality [8].

Additionally, DM can impair the immune response, making it harder for the body
to fight off infections, including COVID-19. This can lead to more severe disease pro-
gression [9]. Chronic hyperglycemia is associated with increased inflammation, which
can exacerbate the inflammatory response seen in severe COVID-19 cases [10]. Some
patients who contract COVID-19 have been observed to develop DM even though the
classical risk factors for DM are not present. This could be due to the virus’s direct damage
to pancreatic beta cells, stress-induced hyperglycemia, or the use of certain medications
(e.g., steroids) [11]. Moreover, patients with pre-existing DM may experience severe compli-
cations like diabetic ketoacidosis and a hyperosmolar hyperglycemic state when presenting
with COVID-19. These conditions often require significantly higher doses of insulin and
more intensive medical management [12].

Predicting the development of DM after a COVID-19 infection can be highly useful
for several reasons. Identifying individuals at risk of developing post-COVID-19 DM
can enable early interventions, such as lifestyle modifications (diet and exercise) and
pharmacologic therapy, to prevent or delay the onset of DM. By monitoring individuals
identified as at-risk for early signs of hyperglycemia, healthcare professionals can be vigilant
and attentive, allowing for timely medical intervention and management. Prediction
models can help healthcare providers create personalized treatment plans that address
both the acute effects of COVID-19 and the potential for developing DM [13].

Healthcare systems can allocate resources more effectively by identifying patients
who may require more intensive follow-up and management. The early detection and
management of DM can prevent or reduce the risk of complications such as cardiovascular
disease, neuropathy, nephropathy, and retinopathy, which are commonly associated with
uncontrolled DM.

Predicting the development of DM can provide valuable data for public health officials
to understand the long-term impacts of COVID-19 on population health.

Purpose of the Study

Experimental observations and data from the literature suggest that blood glucose
values, or even the onset of DM, are influenced by both metabolic factors and comorbidi-
ties [14–16]. In our study, we aimed to investigate these hypotheses by examining the
influence of metabolic factors (blood glucose values, HOMA-IR, TyG index) during the
acute phase of COVID-19 infection in a group of patients who were subsequently followed
up at 4 months and 12 months. Additionally, we considered the comorbidities present
before the COVID-19 infection that could contribute to the onset of DM or at least influence
elevated glycemic levels.

To make an effective prediction, we used clinical and biological data from a cohort
admitted with moderate and severe forms of COVID-19 at the Cardiological Rehabilitation
Clinic in Timisoara, Romania.
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2. Materials and Methods

A retrospective study was performed on a cohort of patients hospitalized between
January 2020 and December 2022 at the Cardiovascular Rehabilitation Center of the Institute
of Cardiovascular Diseases, Timisoara, Romania. The inclusion/exclusion criteria are
presented in Figure 1.

Biomedicines 2024, 12, x FOR PEER REVIEW 3 of 10 
 

2. Materials and Methods 
A retrospective study was performed on a cohort of patients hospitalized between 

January 2020 and December 2022 at the Cardiovascular Rehabilitation Center of the Insti-
tute of Cardiovascular Diseases, Timisoara, Romania. The inclusion/exclusion criteria are 
presented in Figure 1. 

 
Figure 1. Inclusion/exclusion criteria (created with BioRender.com). * Abbreviations: PCR—poly-
merase chain reaction; SARS-CoV-2—severe acute respiratory syndrome coronavirus 2; DM—
diabetes mellitus. 

2.1. Clinical Variables and Laboratory Parameters 
Demographic data and epidemiological factors such as gender, age, body mass index, 

smoking status, hypertension status, or other previous cardiovascular comorbidities, 
along with clinical and laboratory data, were analyzed. This included an evaluation of 
cardiovascular risk factors, as well as a review of personal pathological history and comor-
bidities. Inflammatory marker analysis and the biochemical function test Basic Metabolic 
Panel (BMP), including the determination of glucose, calcium, electrolytes (Sodium, Po-
tassium, Chloride, Bicarbonate, Blood Urea Nitrogen (BUN) and Creatinine), Estimated 
Glomerular Filtration Rate (eGFR), Alanine Aminotransferase (ALT) and Aspartate Ami-
notransferase (AST), Alkaline Phosphatase (ALP), bilirubin, albumin, complete blood 
count, were carried out. Hemoglobin A1c (HbA1c), insulin levels, HOMA-IR, and TyG 
index were also analyzed. Fasting serum samples were collected at specific intervals, 
stored at −80 °C, and tested for proinsulin, HbA1c, and basal blood glucose. Additionally, 
during the arginine stimulation test and at 4 and 12 months (T0, T4, T12), they were ana-
lyzed for insulin, C-peptide, and glucagon. Insulin secretion was measured using an in-
travenous arginine stimulation test, with blood samples taken at baseline and 2, 5, 10, and 
30 min after a 5 g arginine injection. The Acute Insulin Response to Glucose (AIRglucose) 
was calculated, and beta cell function and insulin resistance were assessed using the insu-
lin-to-proinsulin ratio, HOMA-IR, and TyG index. 

Insulin resistance was calculated using the HOMA-IR formula and the Triglycer-
ide/Glucose (TyG) index equation. 

HOMA-IR = fasting insulin [(µU/mL) × fasting glucose (mg/dL)]/405 (1)

TyG = Ln [TG (mg/dL) × fasting glucose (mg/dL)/2] (2)

  

Figure 1. Inclusion/exclusion criteria (created with BioRender.com). Abbreviations: PCR—polymerase
chain reaction; SARS-CoV-2—severe acute respiratory syndrome coronavirus 2; DM—diabetes mellitus.

2.1. Clinical Variables and Laboratory Parameters

Demographic data and epidemiological factors such as gender, age, body mass index,
smoking status, hypertension status, or other previous cardiovascular comorbidities, along
with clinical and laboratory data, were analyzed. This included an evaluation of cardiovas-
cular risk factors, as well as a review of personal pathological history and comorbidities.
Inflammatory marker analysis and the biochemical function test Basic Metabolic Panel
(BMP), including the determination of glucose, calcium, electrolytes (Sodium, Potassium,
Chloride, Bicarbonate, Blood Urea Nitrogen (BUN) and Creatinine), Estimated Glomerular
Filtration Rate (eGFR), Alanine Aminotransferase (ALT) and Aspartate Aminotransferase
(AST), Alkaline Phosphatase (ALP), bilirubin, albumin, complete blood count, were carried
out. Hemoglobin A1c (HbA1c), insulin levels, HOMA-IR, and TyG index were also ana-
lyzed. Fasting serum samples were collected at specific intervals, stored at −80 ◦C, and
tested for proinsulin, HbA1c, and basal blood glucose. Additionally, during the arginine
stimulation test and at 4 and 12 months (T0, T4, T12), they were analyzed for insulin,
C-peptide, and glucagon. Insulin secretion was measured using an intravenous arginine
stimulation test, with blood samples taken at baseline and 2, 5, 10, and 30 min after a 5 g
arginine injection. The Acute Insulin Response to Glucose (AIRglucose) was calculated,
and beta cell function and insulin resistance were assessed using the insulin-to-proinsulin
ratio, HOMA-IR, and TyG index.

Insulin resistance was calculated using the HOMA-IR formula and the Triglyceride/
Glucose (TyG) index equation.

HOMA-IR = fasting insulin [(µU/mL) × fasting glucose (mg/dL)]/405 (1)

TyG = Ln [TG (mg/dL) × fasting glucose (mg/dL)/2] (2)

2.2. Statistical Analysis

Our data were stored in an Excel spreadsheet. To assess the influence of metabolic
parameters on the prediction of glycemic values post-COVID-19, we performed multiple
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linear regressions with the dependent variable being glycemia at the 4-month (Glyc-T4)
control and at the 12-month (Glyc-T12) control. The significance level for the correlation
coefficient in both simple and multiple linear regression was set at p = 0.05. The independent
variables were the following metabolic parameters determined during hospitalization for
an acute episode of COVID-19, just before discharge when the acute episode was considered
cured: blood glucose, Triglyceride/Glucose index (TyG), Homeostasis Model Assessment
for Insulin Resistance (HOMA-IR), and high-sensitivity C-reactive protein (hs-CRP).

Since comorbidities prior to COVID-19 infection could have an impact on elevated
blood glucose values, another multiple linear regression was performed with the same
dependent variables (Glyc-T4 and Glyc-T12) but a different set of independent variables:
blood glucose at discharge from the acute episode of COVID-19, body mass index (BMI),
waist/hip ratio (W/H), and the lipid profile consisting of the values of total cholesterol
(TC), triglyceride (TG), LDL-cholesterol (LDLc), and HDL-cholesterol (HDLc).

2.3. Ethics Approval and Patient-Informed Consent

Written informed consent was obtained from all patients for routine admission to our
tertiary university hospital for future research and study purposes. Before commencing
the study, ethics approval was obtained from the Ethics Committee for Scientific Research
of the Cardiovascular Institute of Timisoara (ref. nr. 2193/25 March 2024). The study was
carried out following the Declaration of Helsinki.

3. Results

The data were processed, leading to the following descriptive statistics results. The
blood glucose values are shown in Table 1. The average blood glucose values at T4 and
T12 increased compared to the initial average value. The application of the paired t-test
showed that these increases were statistically significant (Table 1).

Table 1. Differences between Glyc-T0 and Glyc-T4 and Glyc-T0 and Glyc-T12.

Glyc-T0 Glyc-T4 Glyc-T12

Mean 104.8 ± 33.7 116.2 ± 34.45 119.3 ± 33.1
Pearson correlation with Glyc-T0 0.865 0.770

P(T ≤ t) two-tail 9.25 × 10−12 1.12 × 10−11

Glyc-T0—initial glycemia; Glyc-T4—glycemia at the 4-month control; Glyc-T12—glycemia at the 12-month control.

As a first analysis, we examined the pairwise correlations between multiple measure-
ments at discharge and glycemia at T4 and T12. We observed that glycemia at T4 and T12
correlated with initial glycemia, HOMA-IR, and hs-CRP, measured at discharge after the
acute episode of COVID-19, with correlation coefficients greater than 0.3 (see Table 2).

Table 2. Pairwise correlation between the studied parameters.

Glyc-T12 Glyc-T4 Glyc-T0 TyG HOMA-IR hs-CRP T0 W/H BMI TC TG HDLc LDLc

Glyc-T12 1
Glyc-T4 0.949 1
Glyc-T0 0.770 0.865 1

TyG 0.418 0.430 0.444 1
HOMA-IR 0.617 0.581 0.340 0.170 1
hs-CRP T0 0.539 0.493 0.227 0.220 0.638 1

W/H 0.100 0.057 0.001 −0.063 0.030 0.041 1
BMI 0.150 0.108 0.066 −0.016 0.089 −0.003 0.294 1
TC −0.145 −0.143 −0.111 0.217 −0.092 −0.077 0.007 −0.067 1
TG 0.015 −0.012 −0.044 0.828 −0.040 0.073 −0.114 −0.076 0.376 1

HDLc −0.120 −0.117 0.015 −0.407 −0.119 −0.195 −0.094 0.019 0.186 −0.362 1
LDLc −0.135 −0.121 −0.090 0.028 −0.075 −0.084 0.130 −0.016 0.790 0.108 0.016 1

Glyc-T12—glycemia at the 12-month control; Glyc-T4—glycemia at the 4-month control; Glyc-T0—initial glycemia;
TyG—Triglyceride/Glucose index; HOMA-IR—Homeostasis Model Assessment for Insulin Resistance; hs-CRP
T0—high-sensitivity C-reactive protein at T0; W/H—waist/hip ratio; BMI—body mass index; TC—total cholesterol;
TG—triglyceride; HDLc—HDL-cholesterol; LDLc—LDL-cholesterol. Bold values highlight important findings.
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We used multiple regression analysis to build a better predictive model of long-term
glycemia. We performed multiple regressions predicting glycemia at T4 and T12 with the
following independent variables: glycemia at T0, TyG, HOMA-IR, hs-CRP, W/H, BMI, TC,
TG, LDLc, and HDLc.

The R value for the T4 prediction was 0.933, while for the T12 prediction, it was 0.886.
For the T4 prediction, we observed that three coefficients were significantly predictive:
glycemia at T0, HOMA-IR, and hs-CRP. For T12, we observed the same three coefficients
being significantly predictive: Glyc-T0, HOMA-IR, and hs-CRP (Table 3).

Table 3. Multiple regression—prediction of glycemia dependence on all factors at T4 and T12.

Glyc-T4 Glyc-T12

R 0.933 0.886

Coefficients p-Value Coefficients p-Value

Intercept 29.79 0.673 −51.60 0.557

Glyc-T0 0.792 3.72 × 10−21 0.580 5.04 × 10−10

TyG −5.828 0.720 10.01 0.621
HOMA-IR 1.659 2.05 × 10−5 2.026 2.77 × 10−5

hs-CRP T0 0.293 4.14 × 10−5 0.338 0.00013

W/H 18.11 0.368 38.84 0.121
BMI 0.157 0.319 0.305 0.121
TC 0.022 0.651 0.0053 0.932
TG 0.0075 0.835 −0.0076 0.865

HDLc −0.214 0.069 −0.071 0.623
LDLc −0.038 0.426 −0.042 0.474

Glyc-T4—glycemia at the 4-month control; Glyc-T12—glycemia at the 12-month control; Glyc-T0—initial glycemia;
TyG—Triglyceride/Glucose index; HOMA-IR—Homeostasis Model Assessment for Insulin Resistance; hs-CRP
T0—high-sensitivity C-reactive protein at T0; W/H—waist/hip ratio; BMI—body mass index; TC—total cholesterol;
TG—triglyceride; HDLc—HDL-cholesterol; LDLc—LDL-cholesterol. Bold values highlight important findings.

In a follow-up multiple regression analysis, we examined the dependence of blood
glucose at T4 on blood glucose at T0, TyG, HOMA-IR, and hs-CRP. Applying multiple linear
correlation analysis led to the results presented in Table 4. A strong multiple correlation
was observed. We noted that the parameters of blood glucose at T0, HOMA-IR, and
hs-CRP provided strongly significant contributions (all p < 0.001), while the contribution
of TyG appeared to be insignificant (p > 0.05). Similarly, we examined the dependence
of the T12 glucose values on the same parameters and observed a very strong multiple
correlation. Consistent with the findings from the T4 glucose analysis, the contributions of
blood glucose at T0, HOMA-IR, and hs-CRP were significant, while the TyG contribution
remained insignificant (p > 0.05) (Table 4).

Table 4. Multiple linear regression allowing for the estimation of Glyc-T4 and Glyc-T12 dependence
on metabolic factors—selected by prediction significance.

Glyc-T4 Glyc-T12

R 0.929 0.876

Coefficients p-Value Coefficients p-Value

Intercept 17.99 6.17 × 10−6 33.56 1.19 × 10−10

Glyc-T0 0.767 9.53 × 10−46 0.618 4.82 × 10−28

HOMA 1.713 8.82 × 10−6 2.082 1.61 × 10−5

hs-CRP T0 0.313 8.63 × 10−6 0.362 3.76 × 10−5

Glyc-T4—glycemia at the 4-month control; Glyc-T12—glycemia at the 12-month control; Glyc-T0—initial glycemia;
HOMA—Homeostasis Model Assessment; hs-CRP T0—high-sensitivity C-reactive protein at T0. Bold values
highlight important findings.
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Even though TyG has been reported [17,18] as a reliable surrogate marker of insulin
resistance and an independent predictor of DM, our results do not provide evidence for its
significance in predicting the evolution of glycemia. If TyG is eliminated from the above
table, after recalculations, the results are those in Table 5.

Table 5. Multiple linear correlation allowing for the estimation of Glyc-T4 and Glyc-T12 dependence
on conventional diabetes risk factors.

Glyc-T4 Glyc-T12

R 0.204 0.244

Coefficients p-Value Coefficients p-Value

Intercept 114.6 0.048 85.72 0.120

W/H 16.27 0.762 39.45 0.443
BMI 0.444 0.293 0.572 0.155
TC −0.027 0.837 −0.024 0.846
TG −0.006 0.883 0.0074 0.848

HDLc −0.295 0.316 −0.245 0.382
LDLc −0.066 0.603 −0.082 0.496

Glyc-T4—glycemia at the 4-month control; Glyc-T12—glycemia at the 12-month control; W/H—waist/hip ratio;
BMI—body mass index; TC—total cholesterol; TG—triglyceride; HDLc—HDL-cholesterol; LDLc—LDL-cholesterol.

Hence, we could write the resulting relations for the predicted values pred_Glyc-T4
(Figure 2) and pred_Glyc-T12:

Pred_Glyc-T4 = 17.99 + 0.767 × Glyc-T0 + 1.713 × HOMA + 0.313 × hs-CRP-T0 (3)

Pred_Glyc-T12 = 33.56 + 0.618 × Glyc-T0 + 2.082 × HOMA + 0.362 × hs-CRP-T0 (4)
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Glyc-T0—initial glycemia.

A similar plot was used to predict Glyc-T12. A second track mentioned in the study’s
hypothesis is the dependence of blood glucose variations on conventional DM risk factors
prior to the COVID-19 infection, which could impact changes in blood glucose values.
These comorbidities are reflected by W/H, BMI, and lipid profile. Applying multiple linear
correlation analyses for T4 blood glucose showed a low correlation coefficient. Similarly,
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for blood glucose at T12, a low correlation coefficient was found (Table 5). As shown in the
tables, none of the coefficients had a statistically significant contribution.

4. Discussion

Research shows an increased likelihood of developing DM after COVID-19, especially
in the first six months post-infection and in patients with more severe illness [19–22]. The
probability of DM onset appears to increase with the intensity of the infection, with critically
ill patients at the highest risk [23–25]. According to Xie et al. [21], certain groups, such as
elderly individuals, Black patients, and those with conditions like cardiovascular disease,
obesity, or hypertension, face a heightened risk of post-COVID-19 diabetes.

Our findings indicated that the blood sugar levels recorded at admission were strong
indicators of future glycemic issues, highlighting the need for early blood sugar monitoring
in patients hospitalized with COVID-19. Additionally, insulin resistance, measured using
HOMA-IR, was a reliable predictor of elevated blood glucose, suggesting that individuals
with higher resistance at the onset of illness are more prone to developing hyperglycemia.
While the hyperinsulinemic–euglycemic clamp remains the gold standard for evaluating
insulin sensitivity, HOMA-IR is widely used for its practicality [26–28]. Furthermore, hs-
CRP, a marker of inflammation, was identified as a significant predictor of blood sugar
imbalances in our study, reflecting the role of inflammation in the metabolic issues seen
during COVID-19.

While Geetha et al. [29] have found no correlation between other inflammatory mark-
ers like ferritin, lactate dehydrogenase (LDH), and D-dimer with new-onset hyperglycemia,
our data point to the importance of inflammation in glycemic control during the infec-
tion. Elevated hs-CRP levels indicate that the immune response triggered by the virus
can interfere with normal glucose metabolism, worsening the condition in patients with
COVID-19. Despite previous studies suggesting that the TyG index helps predict type 2
DM, it did not show predictive value for higher blood sugar in our cohort of COVID-19
patients. Park et al. [30] reported that both TyG and HOMA-IR were linked to an increased
risk of DM, with TyG often being more accurate for early detection. However, our study
found that markers like HOMA-IR and hs-CRP were more effective in predicting glycemic
disturbances in COVID-19. Frailty has been associated with an increased risk of hospital-
ization in diabetic patients, and the combined effects of the SARS-CoV-2 pandemic and
type 2 DM have been shown to contribute significantly to frailty. In this context, a study
compared clinical and laboratory indices of frail and non-frail diabetic patients during the
COVID-19 pandemic, as defined by the Edmonton Frail Scale scores. The results revealed
significant differences between the frail and the non-frail groups in terms of blood urea,
serum creatinine, eGFR, plasma albumin, TC, TG, HbA1c, mean platelet volume (MPV),
and monocyte/lymphocyte ratio (MLR). These findings suggest that frailty in diabetic
patients during COVID-19 can be linked to specific metabolic and inflammatory markers,
whose determination is essential for managing both DM and frailty in this population [31].

Our research highlights the critical need for early blood sugar monitoring and using
indicators such as HOMA-IR and hs-CRP to assess patients at risk of developing glycemic
complications during COVID-19. Although the TyG index is valuable in other contexts,
it appears less effective in predicting hyperglycemia during COVID-19 than markers like
HOMA-IR and inflammation levels. This approach can help healthcare providers better
identify at-risk patients and intervene promptly to manage blood sugar and improve the
recovery outcomes.

5. Conclusions

This research highlights the complex interplay between metabolic and inflammatory
pathways in COVID-19 and underscores the potential benefits of early and targeted inter-
ventions. In addition to blood glucose at T0, HOMA-IR and hs-CRP significantly contribute
to predicting blood glucose at T4 and T12; however, the TyG index does not have additional
predictive power compared to these factors.
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The study emphasizes the need for a multifaceted approach to managing COVID-19
patients, where understanding and monitoring the glycemic control play a central role.
Tailoring interventions based on markers like blood glucose levels, HOMA-IR, and hs-CRP
could lead to better outcomes. The findings also suggest that not all commonly used
markers (like the TyG index) are universally applicable, highlighting the importance of
context-specific research.

Additionally, the inflammatory marker hs-CRP was found to predict worse glycemic
control in COVID-19 patients, reflecting how inflammation interacts with metabolic pro-
cesses. On the other hand, markers like the TyG index, though beneficial in non-COVID-19
populations for predicting insulin resistance, do not hold the same predictive power in the
context of COVID-19. This underscores the importance of context-specific research and
intervention strategies.

In summary, COVID-19 exacerbates metabolic and inflammatory disturbances, making
early and targeted interventions essential to managing glycemic control and mitigating the
risk of complications like DM in post-COVID-19 recovery.

These findings underscore the intricate relationship between metabolic factors, in-
flammation, and glycemic control, particularly post-COVID-19 recovery. Monitoring and
managing these parameters can provide valuable insights for predicting and mitigating the
risk of DM onset and managing the blood glucose levels in post-COVID-19 patients. By
leveraging this knowledge, healthcare providers can develop more effective, personalized
treatment plans to improve patient outcomes.
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Abbreviations

AIRglucose Acute insulin response to glucose
ALP Alkaline phosphatase
ALT Alanine aminotransferase
ARDS Acute respiratory distress syndrome
AST Aspartate aminotransferase
BMI Body mass index
BMP Basic metabolic panel
BUN Blood urea nitrogen
COVID-19 Coronavirus disease
DM Diabetes mellitus
eGFR Estimated glomerular filtration rate
Glyc-T0 Initial glycemia
Glyc-T4 Glycemia at the 4-month control
Glyc-T12 Glycemia at the 12-month control



Biomedicines 2024, 12, 2642 9 of 10

HbA1c Glycated hemoglobin
HDLc HDL-cholesterol
HOMA-IR Homeostasis Model Assessment of Insulin Resistance
hs-CRP High-sensitivity C-reactive protein
LDH Lactate dehydrogenase
LDLc LDL-cholesterol
MLR Monocyte/lymphocyte ratio
MPV Mean platelet volume
PCR Polymerase chain reaction
SARS-Cov-2 Severe acute respiratory syndrome coronavirus 2
TC Total cholesterol
TG Triglyceride
TyG Triglyceride/Glucose
W/H Waist/hip ratio
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