HB-EGF Plasmatic Level Contributes to the Development of Early Risk Prediction Nomogram for Severe COVID-19 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Plasma Collection
2.3. Clinical Data Collection
2.4. HB-EGF Quantification
2.5. Statistics
3. Results
3.1. Patients’ Characteristics
3.2. HB-EGF Quantification Results
3.3. HB-EGF Correlations
3.4. Selection of the Risk Prediction Biomarkers
3.5. COVID-19 Severity Prediction Risk Model, Nomogram Validation, and Decision Curve Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín-Sánchez, F.J.; Martínez-Sellés, M.; García, J.M.M.; Guillén, S.M.; Rodríguez-Artalejo, F.; Ruiz-Galiana, J.; Cantón, R.; Ramos, P.D.L.; García-Botella, A.; García-Lledó, A.; et al. Insights for COVID-19 in 2023. Rev. Esp. Quimioter. 2023, 36, 114–124. [Google Scholar] [CrossRef]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2022, 55, 101762. [Google Scholar] [CrossRef]
- Perreau, M.; Suffiotti, M.; Marques-Vidal, P.; Wiedemann, A.; Levy, Y.; Laouénan, C.; Ghosn, J.; Fenwick, C.; Comte, D.; Roger, T.; et al. The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients. Nat. Commun. 2021, 12, 4888. [Google Scholar] [CrossRef]
- Ahmad, F.; Kannan, M.; Ansari, A.W. Role of SARS-CoV-2 -induced cytokines and growth factors in coagulopathy and thromboembolism. Cytokine Growth Factor Rev. 2022, 63, 58–68. [Google Scholar] [CrossRef]
- Dao, D.T.; Anez-Bustillos, L.; Adam, R.M.; Puder, M.; Bielenberg, D.R. Heparin-Binding Epidermal Growth Factor–Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. Am. J. Pathol. 2018, 188, 2446–2456. [Google Scholar] [CrossRef]
- Higashiyama, S.; Lau, K.; Besner, G.; Abraham, J.; Klagsbrun, M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J. Biol. Chem. 1992, 267, 6205–6212. [Google Scholar] [CrossRef] [PubMed]
- Marikovsky, M.; Breuing, K.; Liu, P.Y.; Eriksson, E.; Higashiyama, S.; Farber, P.; Abraham, J.; Klagsbrun, M. Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc. Natl. Acad. Sci. USA 1993, 90, 3889–3893. [Google Scholar] [CrossRef] [PubMed]
- Asakura, M.; Kitakaze, M.; Takashima, S.; Liao, Y.; Ishikura, F.; Yoshinaka, T.; Ohmoto, H.; Node, K.; Yoshino, K.; Ishiguro, H.; et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nat. Med. 2002, 8, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Markesbery, M.; Harding, P. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): A regulator of several pathways. Semin. Cell Dev. Biol. 2014, 28, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.S.; Lim, R.L.; Liu, J.; Ong, H.H.; Tan, V.J.; Lim, H.F.; Chung, K.F.; Adcock, I.M.; Chow, V.T.; Wang, D.Y. Respiratory Viral Infections in Exacerbation of Chronic Airway Inflammatory Diseases: Novel Mechanisms and Insights From the Upper Airway Epithelium. Front. Cell Dev. Biol. 2020, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Carlin, C.R. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front. Cell. Infect. Microbiol. 2022, 11, 820355. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.M.; Goh, B.H.; Lee, W.L. Attenuating influenza a virus infection by heparin binding EGF-like growth factor. Growth Factors 2020, 38, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, T.; Coleman, C.M.; Frieman, M.B. Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection. J. Virol. 2017, 91, e00182-17. [Google Scholar] [CrossRef]
- Batista, F.d.M.; Puga, M.A.M.; da Silva, P.V.; Oliveira, R.; dos Santos, P.C.P.; da Silva, B.O.; Tatara, M.B.; Tsuha, D.H.; Pires, M.A.d.S.; Gonçalves, C.C.M.; et al. Serum biomarkers associated with SARS-CoV-2 severity. Sci. Rep. 2022, 12, 15999. [Google Scholar] [CrossRef]
- Feng, Y.; Ling, Y.; Bai, T.; Xie, Y.; Huang, J.; Li, J.; Xiong, W.; Yang, D.; Chen, R.; Lu, F.; et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am. J. Respir. Crit. Care Med. 2020, 201, 1380–1388. [Google Scholar] [CrossRef]
- Moatar, A.I.; Chis, A.R.; Romanescu, M.; Ciordas, P.-D.; Nitusca, D.; Marian, C.; Oancea, C.; Sirbu, I.-O. Plasma miR-195-5p predicts the severity of Covid-19 in hospitalized patients. Sci. Rep. 2023, 13, 13806. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 16 June 2023).
- Starke, K.R.; Reissig, D.; Petereit-Haack, G.; Schmauder, S.; Nienhaus, A.; Seidler, A. The isolated effect of age on the risk of COVID-19 severe outcomes: A systematic review with meta-analysis. BMJ Glob. Health 2021, 6, e006434. [Google Scholar] [CrossRef] [PubMed]
- Caccuri, F.; Bugatti, A.; Zani, A.; De Palma, A.; Di Silvestre, D.; Manocha, E.; Filippini, F.; Messali, S.; Chiodelli, P.; Campisi, G.; et al. SARS-CoV-2 Infection Remodels the Phenotype and Promotes Angiogenesis of Primary Human Lung Endothelial Cells. Microorganisms 2021, 9, 1438. [Google Scholar] [CrossRef]
- Vagapova, E.R.; Lebedev, T.D.; Prassolov, V.S. Viral fibrotic scoring and drug screen based on MAPK activity uncovers EGFR as a key regulator of COVID-19 fibrosis. Sci. Rep. 2021, 11, 17658. [Google Scholar] [CrossRef]
- Engler, M.; Albers, D.; Von Maltitz, P.; Groß, R.; Münch, J.; Cirstea, I.C. ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. Life Sci. Alliance 2023, 6, e202201880. [Google Scholar] [CrossRef]
- Schreiber, A.; Viemann, D.; Schöning, J.; Schloer, S.; Zambrano, A.M.; Brunotte, L.; Faist, A.; Schöfbänker, M.; Hrincius, E.; Hoffmann, H.; et al. The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cell. Mol. Life Sci. 2022, 79, 65. [Google Scholar] [CrossRef]
- Fang, L.; Li, G.; Liu, G.; Lee, S.W.; Aaronson, S.A. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J. 2001, 20, 1931–1939. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.T.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta Mol. Cell Res. 2007, 1773, 1263–1284. [Google Scholar] [CrossRef]
- Hult, E.M.; Gurczynski, S.J.; O’dwyer, D.N.; Zemans, R.L.; Rasky, A.; Wang, Y.; Murray, S.; Crawford, H.C.; Moore, B.B. Myeloid- and Epithelial-derived Heparin-Binding Epidermal Growth Factor-like Growth Factor Promotes Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2022, 67, 641–653. [Google Scholar] [CrossRef]
- Fox, S.E.; Li, G.; Akmatbekov, A.; Harbert, J.L.; Lameira, F.S.; Brown, J.Q.; Heide, R.S.V. Unexpected Features of Cardiac Pathology in COVID-19 Infection. Circulation 2020, 142, 1123–1125. [Google Scholar] [CrossRef]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Iwanski, J.; Kazmouz, S.G.; Li, S.; Stansfield, B.; Salem, T.T.; Perez-Miller, S.; Kazui, T.; Jena, L.; Uhrlaub, J.L.; Lick, S.; et al. Antihypertensive drug treatment and susceptibility to SARS-CoV-2 infection in human PSC-derived cardiomyocytes and primary endothelial cells. Stem Cell Rep. 2021, 16, 2459–2472. [Google Scholar] [CrossRef]
- Bulfamante, G.P.; Perrucci, G.L.; Falleni, M.; Sommariva, E.; Tosi, D.; Martinelli, C.; Songia, P.; Poggio, P.; Carugo, S.; Pompilio, G. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of COVID-19 patients without clinical signs of cardiac involvement. Biomedicines 2020, 8, 626. [Google Scholar] [CrossRef]
- Perez-Bermejo, J.A.; Kang, S.; Rockwood, S.J.; Simoneau, C.R.; Joy, D.A.; Silva, A.C.; Ramadoss, G.N.; Flanigan, W.R.; Fozouni, P.; Li, H.; et al. SARS-CoV-2 infection of human iPSC–derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci. Transl. Med. 2021, 13, eabf7872. [Google Scholar] [CrossRef] [PubMed]
- Ushikoshi, H.; Takahashi, T.; Chen, X.; Khai, N.C.; Esaki, M.; Goto, K.; Takemura, G.; Maruyama, R.; Minatoguchi, S.; Fujiwara, T.; et al. Local overexpression of HB-EGF exacerbates remodeling following myocardial infarction by activating noncardiomyocytes. Lab. Investig. 2005, 85, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Ma, Y.; Feng, J.; Dong, W.; Yang, Q.; Lu, D.; Zhang, L. Heparin-Binding EGF-Like Growth Factor Induces Heart Interstitial Fibrosis via an Akt/mTor/p70s6k Pathway. PLoS ONE 2012, 7, e44946. [Google Scholar] [CrossRef]
- Fattahi, S.; Khalifehzadeh-Esfahani, Z.; Mohammad-Rezaei, M.; Mafi, S.; Jafarinia, M. PI3K/Akt/mTOR pathway: A potential target for anti-SARS-CoV-2 therapy. Immunol. Res. 2022, 70, 269–275. [Google Scholar] [CrossRef]
- Saha, A.; Bajpai, A.; Krishna, V.; Bhattacharya, S. Evolving Paradigm of Prothrombin Time Diagnostics with Its Growing Clinical Relevance towards Cardio-Compromised and COVID-19 Affected Population. Sensors 2021, 21, 2636. [Google Scholar] [CrossRef]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Araya, S.; Mamo, M.A.; Tsegay, Y.G.; Atlaw, A.; Aytenew, A.; Hordofa, A.; Negeso, A.E.; Wordofa, M.; Niguse, T.; Cheru, M.; et al. Blood coagulation parameter abnormalities in hospitalized patients with confirmed COVID-19 in Ethiopia. PLoS ONE 2021, 16, e0252939. [Google Scholar] [CrossRef] [PubMed]
- Tekle, E.; Gelaw, Y.; Dagnew, M.; Gelaw, A.; Negash, M.; Kassa, E.; Bizuneh, S.; Wudineh, D.; Asrie, F. Risk stratification and prognostic value of prothrombin time and activated partial thromboplastin time among COVID-19 patients. PLoS ONE 2022, 17, e0272216. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Svensson, K.J.; Kucharzewska, P.; Christianson, H.C.; Sköld, S.; Löfstedt, T.; Johansson, M.C.; Mörgelin, M.; Bengzon, J.; Ruf, W.; Belting, M. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2–mediated heparin-binding EGF signaling in endothelial cells. Proc. Natl. Acad. Sci. USA 2011, 108, 13147–13152. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, F.; Wang, B.; Liao, M. A nomogram predicting the severity of COVID-19 based on initial clinical and radiologic characteristics. Futur. Virol. 2022, 17, 221–229. [Google Scholar] [CrossRef]
- Tang, W.; Yao, R.; Zheng, F.; Huang, Y.; Zhou, G.; Chen, R.; Li, N. Nomogram prediction of severe risk in patients with COVID-19 pneumonia. Epidemiol. Infect. 2021, 149, e251. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, Z.; Wang, P.; Wu, Y.; Liu, Y.; Liu, J. Development and validation of a predicted nomogram for mortality of COVID-19: A multicenter retrospective cohort study of 4711 cases in multiethnic. Front. Med. 2023, 10, 1136129. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, W.; Cai, Y.; Lin, J.; Yan, C.; Bai, M.; Cao, Y.; Ke, S.; Liu, Y. Nomogram-based prediction model for survival of COVID-19 patients: A clinical study. Heliyon 2023, 9, e20137. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, X.; Li, M.; Gu, L.; Xie, Z.; Gu, W.; Xu, F.; Bao, Y.; Liu, R.; Hu, S.; et al. Nomogram to identify severe coronavirus disease 2019 (COVID-19) based on initial clinical and CT characteristics: A multi-center study. BMC Med. Imaging 2020, 20, 111. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-L.; Wu, C.; Xie, J.-G.; Zhang, B.; Kui, X.; Jia, D.; Liang, C.-N.; Zhou, Q.; Zhang, Q.; Gao, Y.; et al. Development and validation of a nomogram for predicting the disease progression of nonsevere coronavirus disease 2019. J. Transl. Intern. Med. 2021, 9, 131–142. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, X.; Zhang, B.; Zhu, B.; Wang, J. A nomogram prediction of outcome in patients with COVID-19 based on individual characteristics incorporating immune response-related indicators. J. Med. Virol. 2022, 94, 131–140. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Zheng, Z.; Wu, K.; Zheng, J. Construction and validation of a machine learning-based nomogram: A tool to predict the risk of getting severe coronavirus disease 2019 (COVID-19). Immun. Inflamm. Dis. 2021, 9, 595–607. [Google Scholar] [CrossRef]
- Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest 2020, 158, 97–105. [Google Scholar] [CrossRef]
COVID-19 Total (n = 75) | COVID-19 Moderate (n = 50) | COVID-19 Severe (n = 25) | p-Value Moderate vs. Severe | |
---|---|---|---|---|
Age (Median, IQR) | 60 (48.5–71) | 53 (46.5–64) | 71 (56–76) | 0.0043 a |
Gender (Males/Females) | 1.14 | 1.0 | 1.5 | 0.4681 b |
Hospitalization days (Median, IQR) | 11 (8.5–15) | 11 (8.25–14.75) | 10 (9–15) | 0.9978 a |
Associated pathologies n (%) | ||||
Hypertension | 36 (48.65) | 20 (40.00) | 16 (66.67) | 0.0466 b |
Obesity | 10 (13.51) | 8 (16.33) | 2 (8.00) | 0.4788 b |
Diabetes | 13 (17.11) | 10 (19.61) | 3 (12.00) | 0.5265 b |
Cardiovascular pathology | 30 (40.54) | 14 (28.57) | 16 (64.00) | 0.0055 b |
Oncologic pathology | 8 (10.81) | 2 (4.08) | 6 (24.00) | 0.0155 b |
Chronic renal failure | 6 (8.22) | 2 (4.44) | 4 (14.29) | 0.1951 b |
Paraclinical Characteristics (Median, IQR) | ||||
Leukocytes (×103/µL) | 6.23 (4.72–8.59) | 6.04 (4.81–8.54) | 6.96 (4.28–8.6) | 0.8780 a |
Neutrophils (×103/µL) | 4.78 (2.65–7.05) | 4.82 (2.66–6.44) | 4.11 (2.76–7.45) | 0.7400 a |
Lymphocytes (×103/µL) | 1.11 (0.69–1.57) | 1.16 (0.84–1.53) | 0.79 (0.52–1.69) | 0.4356 a |
Platelets (×103/µL) | 230 (185.5–294) | 226 (182.2–291.5) | 235 (204–303) | 0.6531 a |
Total Bilirubin (mg/dL) | 0.42 (0.34–0.55) | 0.44 (0.35–0.72) | 0.42 (0.31–0.47) | 0.2911 a |
Ferritin (µg/L) | 527.4 (213.6–1210.5) | 503 (161.1–1066.1) | 581.5 (290.7–1473.2) | 0.1805 a |
CRP (mg/L) | 31.78 (6.37–75.88) | 25.33 (5.07–72.27) | 55.85 (15.42–109.06) | 0.0827 a |
Fibrinogen (g/L) | 5.16 (3.59–5.89) | 4.71 (3.39–5.73) | 5.47 (5.16–6.54) | 0.0094 a |
PT (s) | 11.6 (10.92–11.97) | 11.4 (10.8–11.8) | 11.8 (11.3–12.3) | 0.0088 a |
Creatinine (mg/dL) | 0.79 (0.64–0.92) | 0.75 (0.63–0.91) | 0.85 (0.79–1.03) | 0.0269 a |
LDH (U/L) | 249 (197–324.5) | 249 (195.5–329.7) | 246 (201–321) | 0.9133 a |
D-Dimers (µg/mL) | 0.45 (0.38–0.71) | 0.45 (0.37–0.57) | 0.50 (0.39–1.03) | 0.0242 a |
Delta miR-195 (FC vs. control) | 6.39 (5.34–7.69) | 5.65 (4.95–6.47) | 8.36 (7.73–9.24) | <0.0001 a |
HB-EGF (pg/mL) | 358.3 (129.3–958.5) | 185.6 (94.2–741.5) | 483.5 (212.4–1220.5) | 0.0371 a |
Therapy n (%) | ||||
O2 supplementation | 23 (30.67) | 0 (0.00) | 23 (92.00) | <0.0001 b |
Mechanical ventilation | 10 (13.33) | 0 (0.00) | 10 (40.00) | <0.0001 b |
Variables n, (%) | COVID-19 Total (n= 73) | COVID-19 Moderate (n = 45) | COVID-19 Severe (n = 28) | p-Value b |
---|---|---|---|---|
Chills | 47, (66.67) | 30, (60.00) | 17, (68.00) | 0.6150 |
Running nose | 11, (17.33) | 7, (14.00) | 6, (24.00) | 0.3377 |
Sore throat | 46, (61.33) | 30, (60.00) | 16, (64.00) | 0.8051 |
Cough | 42, (56.00) | 28, (56.00) | 14, (56.00) | >0.9999 |
Expectoration | 20, (26.67) | 12, (24.00) | 8, (32.00) | 0.5805 |
Dyspnea | 49, (65.34) | 26, (52.00) | 23, (92.00) | 0.0006 |
Thoracic pain | 11, (14.67) | 2, (4.00) | 9, (36.00) | 0.0005 |
Headache | 30, (40.00) | 22, (44.00) | 8, (32.00) | 0.4537 |
Myalgia | 51, (68.00) | 34, (68.00) | 17, (68.00) | >0.9999 |
Vomiting | 7, (9.33) | 3, (6.00) | 4, (16.00) | 0.2127 |
Diarrhea | 7, (9.33) | 3, (6.00) | 4, (16.00) | 0.2127 |
Abdominal Pain | 21, (28.00) | 10, (20.00) | 11, (44.00) | 0.0542 |
Anosmia | 9, (12.00) | 9, (18.00) | 0, (0.00) | 0.025 |
Loss of taste | 20, (26.66) | 16, (32.00) | 4, (16.00) | 0.1734 |
Asthenia | 36, (55.38) | 26, (65.00) | 10, (40.00) | 0.0725 b |
Small patchy opacities | 31, (41.33) | 22, (44.00) | 9, (36.00) | 0.6210 b |
Large glass opacity | 18, (23.00) | 8, (16.00) | 10, (40.00) | 0.0422 |
Large consolidate opacity | 16, (21.33) | 6, (12.00) | 10, (40.00) | 0.0079 |
Diffuse infiltrate | 6, (8.00) | 1, (2.00) | 5, (20.00) | 0.0141 |
Predictors | OR | OR 95% CI | |Z| Coefficient | p-Value |
---|---|---|---|---|
Delta miR-195 | 0.2164 | 0.07160–0.4352 | 3.482 | 0.0005 |
HB-EGF (pg/mL) | 0.9994 | 0.9988–0.9999 | 2.082 | 0.0374 |
Age | 1.032 | 0.9501–1.132 | 0.7311 | 0.4647 |
Fibrinogen (g/L) | 0.5327 | 0.2151–1.082 | 1.593 | 0.1112 |
Prothrombin time PT (s) | 0.3587 | 0.05469–1.242 | 1.313 | 0.1891 |
Creatinine (mg/dL) | 0.4658 | 0.07241–5.133 | 0.8257 | 0.4090 |
D-Dimers (µg/mL) | 0.7810 | 0.2619–1.084 | 0.7790 | 0.4360 |
Area Under Curve | 0.9556 | NPP (%) | 89.47 | |
95% CI | 0.9063–1.000 | PPP (%) | 91.30 | |
p-value | <0.0001 | Tjur’s R squared | 0.6756 | |
Hosmer–Lemeshow test | statistic = 2.318 | 0.9697 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moatar, A.I.; Chis, A.R.; Nitusca, D.; Oancea, C.; Marian, C.; Sirbu, I.-O. HB-EGF Plasmatic Level Contributes to the Development of Early Risk Prediction Nomogram for Severe COVID-19 Cases. Biomedicines 2024, 12, 373. https://doi.org/10.3390/biomedicines12020373
Moatar AI, Chis AR, Nitusca D, Oancea C, Marian C, Sirbu I-O. HB-EGF Plasmatic Level Contributes to the Development of Early Risk Prediction Nomogram for Severe COVID-19 Cases. Biomedicines. 2024; 12(2):373. https://doi.org/10.3390/biomedicines12020373
Chicago/Turabian StyleMoatar, Alexandra Ioana, Aimee Rodica Chis, Diana Nitusca, Cristian Oancea, Catalin Marian, and Ioan-Ovidiu Sirbu. 2024. "HB-EGF Plasmatic Level Contributes to the Development of Early Risk Prediction Nomogram for Severe COVID-19 Cases" Biomedicines 12, no. 2: 373. https://doi.org/10.3390/biomedicines12020373
APA StyleMoatar, A. I., Chis, A. R., Nitusca, D., Oancea, C., Marian, C., & Sirbu, I. -O. (2024). HB-EGF Plasmatic Level Contributes to the Development of Early Risk Prediction Nomogram for Severe COVID-19 Cases. Biomedicines, 12(2), 373. https://doi.org/10.3390/biomedicines12020373