Associations between ZNF676, CTC1 Gene Polymorphisms and Relative Leukocyte Telomere Length with Myopia and Its Degree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Populations
2.3. DNA Extraction and Genotyping
2.4. Relative Leukocyte Telomere Length Measurement
2.5. Statistical Analysis
2.6. Limitations
3. Results
3.1. ZNF676 rs412658 and CTC1 rs3027234 Determination of Single Nucleotide Polymorphisms and Leukocyte Telomere Length in Healthy Subjects and Myopia Group
3.2. ZNF676 rs412658 and CTC1 rs3027234 Gene Single Nucleotide Polymorphisms and Leukocyte Telomere Length Correlations with Myopia Degrees
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and classifying myopia: A proposed set of standards for clinical and epidemiologic studies. Investig. Opthalmology Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; Matsui, K.O.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Tkatchenko, A.V. A review of current concepts of the etiology and treatment of myopia. Eye Contact Lens 2018, 44, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.; Sankaridurg, P.; Smith, E.; Aller, T.; Jong, M.; He, M. Myopia, an underrated global challenge to vision: Where the current data takes us on myopia control. Eye 2014, 28, 142–146. [Google Scholar] [CrossRef]
- Baird, P.N.; Saw, S.M.; Lanca, C.; Guggenheim, J.A.; Smith, E.L., III; Zhou, X.; Matsui, K.-O.; Wu, P.-C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Primers 2020, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Pan, C.; Yang, W.; Xiang, Y.; Yang, J.; Zhang, F. Effect of Genetic-Environmental Interaction on Chinese Childhood Myopia. J. Ophthalmol. 2020, 2020, 6308289. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.W.; Ramamurthy, D.; Saw, S.M. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol. Opt. 2012, 32, 3–16. [Google Scholar] [CrossRef]
- Németh, J.; Tapasztó, B.; Aclimandos, W.A.; Kestelyn, P.; Jonas, J.B.; De Faber, J.T.H.N.; Januleviciene, I.; Grzybowski, A.; Nagy, Z.Z.; Pärssinen, O.; et al. Update and guidance on management of myopia. European society of Ophthalmology in cooperation with International Myopia Institute. Eur. J. Ophthalmol. 2021, 31, 853–883. [Google Scholar] [CrossRef]
- Dorajoo, R.; Chang, X.; Gurung, L.R.; Li, Z.; Wang, L.; Wang, R.; Beckman, K.B.; Adams-Haduch, J.; M, Y.; Liu, S.; et al. Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat. Commun. 2019, 10, 2491. [Google Scholar] [CrossRef]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere biology and human phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.E.; Armando, R.G.; Farina, H.G.; Menna, P.L.; Cerrudo, C.S.; Ghiringhelli, P.D.; Alonso, D.F. Telomere structure and telomerase in health and disease. Int. J. Oncol. 2012, 41, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Wright, W.E.; Tesmer, V.M.; Huffman, K.E.; Levene, S.D.; Shay, J.W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 1997, 11, 2801–2809. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.P.; Wright, W.E.; Shay, J.W. Comparison of telomere length measurement methods. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160451. [Google Scholar] [CrossRef] [PubMed]
- Saretzki, G. Telomeres, telomerase and aging. Biochem. Cell Biol. Ageing Part I Biomed. Sci. 2018, 90, 221–308. [Google Scholar] [CrossRef]
- Salmón, P.; Millet, C.; Selman, C.; Monaghan, P. Growth acceleration results in faster telomere shortening later in life. Proc. R. Soc. B Biol. Sci. 2021, 288, 20211118. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Hjelmborg, J.V.B.; Gardner, J.P.; Bathum, L.; Brimacombe, M.; Lu, X.; Christiansen, L.; Vaupel, J.W.; Aviv, A.; Christensen, K. Telomere length and mortality: A study of leukocytes in elderly Danish twins. Am. J. Epidemiol. 2008, 167, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Armanios, M. The Role of Telomeres in Human Disease. Annu. Rev. Genom. Hum. Genet. 2022, 23, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.-J.; Semeraro, M.D.; Renner, W.; Herrmann, M. Telomeres and Age-Related Diseases. Biomedicines 2021, 9, 1335. [Google Scholar] [CrossRef]
- Nogueira, B.M.D.; Machado, C.B.; Montenegro, R.C.; DE Moraes, M.E.A.; Moreira-Nunes, C.A. Telomere Length and Hematological Disorders: A Review. In Vivo 2020, 34, 3093–3101. [Google Scholar] [CrossRef]
- Ropio, J.; Merlio, J.P.; Soares, P.; Chevret, E. Telomerase activation in hematological malignancies. Genes 2016, 7, 61. [Google Scholar] [CrossRef]
- Beck, R.C.; Kim, A.S.; Goswami, R.S.; Weinberg, O.K.; Yeung, C.C.S.; Ewalt, M.D. Molecular/cytogenetic education for hematopathology fellows. Am. J. Clin. Pathol. 2020, 154, 149–177. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.P.; Codd, V. Genetic determinants of telomere length and cancer risk. Curr. Opin. Genet. Dev. 2020, 60, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Do, S.K.; Yoo, S.S.; Choi, Y.Y.; Choi, J.E.; Jeon, H.-S.; Lee, W.K.; Lee, S.Y.; Lee, J.; Cha, S.I.; Kim, C.H.; et al. Replication of the results of genome-wide and candidate gene associations studies on telomere length in a Korean population. Korean J. Intern. Med. 2015, 30, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.M.; Sunde, M. Zinc fingers folds for many occasions. IUBMB Life 2002, 54, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Prenzler, F.; Fragasso, A.; Schmitt, A.; Munz, B. Functional analysis of ZFP36 proteins in keratinocytes. Eur. J. Cell Biol. 2016, 95, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Mangino, M.; Hwang, S.J.; Spector, T.D.; Hunt, S.C.; Kimura, M.; Fitzpatrick, A.L.; Christiansen, L.; Petersen, I.; Elbers, C.C.; Harris, T.; et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum. Mol. Genet. 2012, 21, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and Telomere Length: A General Overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef]
- Gu, P.; Min, J.N.; Wang, Y.; Huang, C.; Peng, T.; Chai, W.; Chang, S. CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J. 2012, 31, 2309–2321. [Google Scholar] [CrossRef]
- Lim, C.J.; Cech, T.R. Shaping human telomeres: From shelterin and CST complexes to telomeric chromatin organization. Nat. Rev. Mol. Cell Biol. 2021, 22, 283–298. [Google Scholar] [CrossRef]
- Feng, X.; Hsu, S.J.; Kasbek Chaiken, M.; Price, C.M. CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance. Nucleic Acids Res. 2017, 45, 4281–4293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chai, W. Pathogenic CTC1 mutations cause global genome instabilities under replication stress. Nucleic Acids Res. 2018, 46, 3981–3992. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.H.; Kasher, P.E.R.; Mayer, J.; Szynkiewicz, M.; Jenkinson, E.M.; Bhaskar, S.S.; E Urquhart, J.; Daly, S.B.; E Dickerson, J.; O’Sullivan, J.; et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat. Genet. 2012, 44, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Chastain, M.; Zhou, Q.; Shiva, O.; Whitmore, L.; Jia, P.; Dai, X.; Huang, C.; Ye, P.; Chai, W. Human CST facilitates genome-wide RAD51 recruitment to GC-rich repetitive sequences in response to replication stress. Cell Rep. 2016, 16, 1300–1314. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Gedvilaite, G.; Vilkeviciute, A.; Kriauciuniene, L.; Banevičius, M.; Liutkeviciene, R. The relationship between leukocyte telomere length and TERT, TRF1 single nucleotide polymorphisms in healthy people of different age groups. Biogerontology 2020, 21, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- A Mather, K.; Jorm, A.F.; Anstey, K.J.; Milburn, P.J.; Easteal, S.; Christensen, H. Cognitive performance and leukocyte telomere length in two narrow age-range cohorts: A population study. BMC Geriatr. 2010, 10, 62. [Google Scholar] [CrossRef]
- Hardy-Weinberg Equilibrium. Available online: https://wpcalc.com/en/equilibrium-hardy-weinberg/ (accessed on 4 September 2023).
- Jung, S.K.; Lee, J.H.; Kakizaki, H.; Jee, D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Investig. Opthalmol. Vis. Sci. 2012, 53, 5579–5583. [Google Scholar] [CrossRef]
- Koh, V.; Yang, A.; Saw, S.M.; Chan, Y.H.; Lin, S.T.; Tan, M.M.; Tey, F.; Nah, G.; Ikram, M.K. Differences in prevalence of refractive errors in young asian males in Singapore between 1996–1997 and 2009–2010. Ophthalmic Epidemiol. 2014, 21, 247–255. [Google Scholar] [CrossRef]
- Wu, J.F.; Bi, H.S.; Wang, S.M.; Hu, Y.Y.; Wu, H.; Sun, W.; Lu, T.L.; Wang, X.R.; Jonas, J.B. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study. PLoS ONE 2013, 8, e82763. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, R. Nature and nurture: The complex genetics of myopia and refractive error. Clin. Genet. 2011, 79, 301–320. [Google Scholar] [CrossRef] [PubMed]
- Hysi, P.G.; Choquet, H.; Khawaja, A.P.; Wojciechowski, R.; Tedja, M.S.; Yin, J.; Simcoe, M.J.; Patasova, K.; Mahroo, O.; Thai, K.K.; et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat. Genet. 2020, 52, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Guggenheim, J.A.; St Pourcain, B.; McMahon, G.; Timpson, N.J.; Evans, D.M.; Williams, C. Assumption-free estimation of the genetic contribution to refractive error across childhood. Mol. Vis. 2015, 21, 621–632. [Google Scholar] [PubMed]
- Tedja, M.S.; Haarman, A.E.G.; Meester-Smoor, M.A.; Kaprio, J.; Mackey, D.A.; Guggenheim, J.A.; Hammond, C.J.; Verhoeven, V.J.M.; Klaver, C.C.W. IMI—Myopia Genetics Report. Investig. Opthalmol. Vis. Sci. 2019, 60, M89–M105. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; Wu, P.-C.; Ostrin, L.A.; Tideman, J.W.L.; Yam, J.C.; Lan, W.; Baraas, R.C.; He, X.; Sankaridurg, P.; Saw, S.-M.; et al. IMI Risk Factors for Myopia. Investig. Opthalmol. Vis. Sci. 2021, 62, 3. [Google Scholar] [CrossRef] [PubMed]
- Drigeard Desgarnier, M.C.; Zinflou, C.; Mallet, J.D.; Gendron, S.P.; Méthot, S.J.; Rochette, P.J. Telomere Length Measurement in Different Ocular Structures: A Potential Implication in Corneal Endothelium Pathogenesis. Investig. Opthalmol. Vis. Sci. 2016, 57, 5547–5555. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Matarazzi, M.; Greenhalf, W.; Bijlsma, M.; Saum, K.; Pasquali, C.; van Laarhoven, H.; Szentesi, A.; Federici, F.; Vodicka, P.; et al. Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. Int. J. Cancer 2019, 144, 1275–1283. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, J.; Chancoco, H.; Huang, M.; Torres, K.E.; Gu, J. Long leukocyte telomere length is associated with increased risks of soft tissue sarcoma: A mendelian randomization study. Cancers 2020, 12, 594. [Google Scholar] [CrossRef]
- Walsh, K.M.; Codd, V.; Rice, T.; Nelson, C.P.; Smirnov, I.V.; McCoy, L.S.; Hansen, H.M.; Elhauge, E.; Ojha, J.; Francis, S.S.; et al. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget 2015, 6, 42468–42477. [Google Scholar] [CrossRef]
- Nawrot, T.S.; A Staessen, J.; Gardner, J.P.; Aviv, A. Telomere length and possible link to X chromosome. Lancet 2004, 363, 507–510. [Google Scholar] [CrossRef]
- Keller, R.B.; Gagne, K.E.; Usmani, G.N.; Asdourian, G.K.; Williams, D.A.; Hofmann, I.; Agarwal, S. CTC1 Mutations in a patient with dyskeratosis congenita. Pediatr. Blood Cancer 2012, 59, 311–314. [Google Scholar] [CrossRef]
SNP | Allele Frequencies | Genotype Distribution | HWE p-Value | |
---|---|---|---|---|
ZNF676 rs412658 | 0.62 (C) | 0.37 (T) | 77/97/26 | 0.596 |
CTC1 rs3027234 | 0.78 (C) | 0.22 (T) | 128/59/13 | 0.093 |
Genotypes | ||||||
---|---|---|---|---|---|---|
ZNF676 rs412658 | CC (%) | CT (%) | TT (%) | p-value (CC vs. CT + TT) | OR (95% CI) | |
Myopia | Mild (n = 66) | 27 (22) | 33 (22.9) | 6 (18.2) | 0.728 | 0.904 (0.513–1.595) |
Moderate (n = 20) | 9 (7.3) | 10 (6.9) | 1 (3) | 0.571 | 0.765 (0.303–1.931) | |
High (n = 14) | 10 (8.1) | 4 (2.8) | - | 0.023 | 0.250 (0.076–0.826) | |
Control | Emmetropia (n = 200) | 77 (62.6) | 97 (67.4) | 26 (78.8) | - | - |
CTC1 rs3027234 | CC (%) | CT (%) | TT (%) | p-value (CC vs. CT + TT) | OR (95% CI) | |
Myopia | Mild (n = 66) | 34 (18.2) | 28 (30.1) | 4 (20) | 0.073 | 1.673 (0.953–2.937) |
Moderate (n = 20) | 14 (7.5) | 3 (3.2) | 3 (15) | 0.594 | 0.762 (0.281–2.069) | |
High (n = 14) | 11 (5.9) | 3 (3.2) | - | 0.278 | 0.485 (0.131–1.795) | |
Control | Emmetropia (n = 200) | 128 (68.4) | 59 (63.4) | 13 (65) | - | - |
Alleles | |||||
---|---|---|---|---|---|
ZNF676 rs412658 | RA | RA Frequency (%) | p-value | OR (95% CI) | |
Myopia | Mild (n = 66) | T | 45 (34.1) | 0.502 | 0.864 (0.565–1.322) |
Moderate (n = 20) | 12 (30) | 0.354 | 0.710 (0.344–1.465) | ||
High (n = 14) | 4 (14.3) | 0.019 | 0.269 (0.090–0.807) | ||
Control | Emmetropia (n = 200) | 149 (37.3) | - | - | |
CTC1 rs3027234 | |||||
Myopia | Mild (n = 66) | T | 36 (27.3) | 0.168 | 1.361 (0.878–2.110) |
Moderate (n = 20) | 9 (22.5) | 0.865 | 1.065 (0.517–2.193) | ||
High (n = 14) | 3 (10.7) | 0.218 | 0.475 (0.146–1.552) | ||
Control | Emmetropia (n = 200) | 85 (21.3) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duseikaite, M.; Vilkeviciute, A.; Kunceviciene, E.; Gedvilaite, G.; Kriauciuniene, L.; Liutkeviciene, R. Associations between ZNF676, CTC1 Gene Polymorphisms and Relative Leukocyte Telomere Length with Myopia and Its Degree. Biomedicines 2024, 12, 538. https://doi.org/10.3390/biomedicines12030538
Duseikaite M, Vilkeviciute A, Kunceviciene E, Gedvilaite G, Kriauciuniene L, Liutkeviciene R. Associations between ZNF676, CTC1 Gene Polymorphisms and Relative Leukocyte Telomere Length with Myopia and Its Degree. Biomedicines. 2024; 12(3):538. https://doi.org/10.3390/biomedicines12030538
Chicago/Turabian StyleDuseikaite, Monika, Alvita Vilkeviciute, Edita Kunceviciene, Greta Gedvilaite, Loresa Kriauciuniene, and Rasa Liutkeviciene. 2024. "Associations between ZNF676, CTC1 Gene Polymorphisms and Relative Leukocyte Telomere Length with Myopia and Its Degree" Biomedicines 12, no. 3: 538. https://doi.org/10.3390/biomedicines12030538
APA StyleDuseikaite, M., Vilkeviciute, A., Kunceviciene, E., Gedvilaite, G., Kriauciuniene, L., & Liutkeviciene, R. (2024). Associations between ZNF676, CTC1 Gene Polymorphisms and Relative Leukocyte Telomere Length with Myopia and Its Degree. Biomedicines, 12(3), 538. https://doi.org/10.3390/biomedicines12030538