Two Waves of Specific B Cell Memory Immunoreconstruction Observed in Anti-HHV1–3 IgG Kinetics after Hematopoietic Stem Cell Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Time-Lapse Data Collection
2.3. Methods
3. Results
4. Discussion
4.1. Technical Aspect and Clinical Model
4.2. Immunomodulation and Host–Virus Interaction in Patients Who Have Undergone Transplants
4.3. Host–Virus Dynamics
- Lag phase—very low/no antibody is detectable
- Log phase—the antibody titer increases logarithmically.
- Plateau phase—the antibody titer stabilizes.
- Decline phase—the antibody is catabolized.
4.4. Humoral Compartment in Secondary Immunodeficiency after HSCT; Immunomodulation by Conditioning
4.4.1. Memory B Cells
4.4.2. Two Signal and IgG Increase
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SID | acquired/secondary immunodeficiency |
ATG | antithymocyte globulin |
CMV | cytomegalovirus |
EBV | Epstein–Barr virus |
GC | glycoprotein C1 |
Conditioning | myeloablative (MAC) or reduced intensity (RIC) |
GvHd | graft-versus-host disease |
HBV | Hepatitis B virus |
HBs | surface Hepatitis B antigen |
HCV | Hepatitis C virus |
HHV | Human Herpesvirus |
HSCT | hematopoietic stem cell transplantation |
HSV | Herpes Simplex Virus |
IgGSD | IgG subclass deficiency |
PC | long-lived plasma cells |
MBC | the memory B lymphocytes |
PAMPs | pathogen-associated molecular patterns |
PAD | primary antibody deficiency |
RAI | relative avidity index |
SIgAD | selective immunoglobulin A deficiency |
SOT | solid organ transplant |
TLR | Toll-Like receptor |
THI | transient hypogammaglobulinemia of infancy |
VZV | Varicella Zoster Virus; |
WMDA | WORLD MARROW DONOR ASSOCIATION |
B2M | β2-microglubulin |
Drug | i.e., MEL, indicates melphalan, BU, busulfan; Flu, fludarabine CY cyclophosphamide |
References
- Pinquier, D.; Gagneur, A.; Balu, L.; Brissaud, O.; Le Guen, C.G.; Hau-Rainsard, I.; Mory, O.; Picherot, G.; De Pontual, L.; Stephan, J.-L.; et al. Prevalence of Anti-Varicella-Zoster Virus Antibodies in French Infants under 15 Months of Age. Clin. Vaccine Immunol. 2009, 16, 484–487. [Google Scholar] [CrossRef]
- Pinquier, D.; Lécuyer, A.; Levy, C.; Gagnuer, A.; Pradat, P.; Souberyand, B.; Grimprel, E.; Pediatricians Working Group. Inverse correlation between varicella severity and level of anti-Varicella Zoster Virus maternal antibodies in infants below one year of age. Hum. Vaccin. 2011, 7, 534–538. [Google Scholar] [CrossRef]
- Kohl, S.; West, M.S.; Prober, C.G.; Sullender, W.M.; Loo, L.S.; Arvin, A.M. Neonatal antibody-dependent cellular cytotoxic antibody levels are associated with the clinical presentation of neonatal herpes simplex virus infection. J. Infect. Dis. 1989, 160, 770–776. [Google Scholar] [CrossRef]
- Corey, L.; Wald, A. Maternal and neonatal herpes simplex virus infections. N. Engl. J. Med. 2009, 361, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Drylewicz, J.; Schellens, I.M.M.; Gaiser, R.; Nanlohy, N.M.; Quakkelaar, E.D.; Otten, H.; van Dorp, S.; Jacobi, R.; Ran, L.; Spijkers, S.; et al. Rapid reconstitution of CD4 T cells and NK cells protects against CMV-reactivation after allogeneic stem cell transplantation. J. Transl. Med. 2016, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- Prelog, M.; Schönlaub, J.; Jeller, V.; Almanzar, G.; Höfner, K.; Gruber, S.; Eiwegger, T.; Würzner, R. Reduced varicella-zoster-virus (VZV)-specific lymphocytes and IgG antibody avidity in solid organ transplant recipients. Vaccine 2013, 31, 2420–2426. [Google Scholar] [CrossRef]
- Mascarenhas, K.; Teh, J.B.; Peng, K.; Kim, H.; Sy, A.; Forman, S.J.; Wong, F.L.; Nakamura, R.; Dadwal, S.S.; Armenian, S.H. Efficacy of low-dose zoster prophylaxis in patients undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2020, 55, 1662–1664. [Google Scholar] [CrossRef]
- Onozawa, M.; Hashino, S.; Takahata, M.; Fujisawa, F.; Kawamura, T.; Nakagawa, M.; Kahata, K.; Kondo, T.; Ota, S.; Tanaka, J.; et al. Relationship between preexisting anti-varicella-zoster virus (VZV) antibody and clinical VZV reactivation in hematopoietic stem cell transplantation recipients. J. Clin. Microbiol. 2006, 44, 4441–4443. [Google Scholar] [CrossRef]
- Wehr, C.; Gennery, A.R.; Lindemans, C.; Schulz, A.; Hoenig, M.; Marks, R.; Recher, M.; Gruhn, B.; Holbro, A.; Heijnen, I.; et al. Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. J. Allergy Clin. Immunol. 2015, 135, 988–997.e6. [Google Scholar] [CrossRef] [PubMed]
- Zdziarski, P.; Gamian, A. High Monocyte Count Associated with Human Cytomegalovirus Replication In Vivo and Glucocorticoid Therapy May Be a Hallmark of Disease. Int. J. Mol. Sci. 2022, 23, 9595. [Google Scholar] [CrossRef]
- Tenny, S.; Kerndt, C.C.; Hoffman, M.R. Case Control Studies. In StatPearls (Internet); StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448143/ (accessed on 28 March 2022).
- Sedgwick, P. Bias in observational study designs: Case-control studies. BMJ 2015, 350, h560. [Google Scholar] [CrossRef]
- Solomon, A.R.; Rasmussen, J.E.; Varani, J.; Pierson, C.L. The Tzanck smear in the diagnosis of cutaneous herpes simplex. JAMA 1984, 251, 633–635. [Google Scholar] [CrossRef] [PubMed]
- Zdziarski, P. CMV-specific immune response—New patients, new insight: Central role of specific IgG during infancy and long-lasting immune deficiency after allogenic stem cell transplantation. Int. J. Mol. Sci. 2019, 20, 271. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J. Classification systems for chronic graft-versus-host disease. Blood 2017, 129, 30–37. [Google Scholar] [CrossRef]
- Noyan, M.A.; Durdu, M.; Eskiocak, A.H. TzanckNet: A convolutional neural network to identify cells in the cytology of erosive-vesiculobullous diseases. Sci. Rep. 2020, 10, 18314. [Google Scholar] [CrossRef]
- Turgeon, M.L. Immunology & Serology in Laboratory Medicine, 5th ed.; Mosby, an Imprint of Elsevier Inc.: St. Louis, MI, USA, 2014; pp. 202–203. [Google Scholar]
- Wu, M.; Huang, F.; Jiang, X.; Fan, Z.; Zhou, H.; Liu, C.; Jiang, Q.; Zhang, Y.; Zhao, K.; Xuan, L.; et al. Herpesvirus-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation. PLoS ONE 2013, 8, e77805. [Google Scholar] [CrossRef]
- Andreu-Ballester, J.C.; García-Ballesteros, C.; Benet-Campos, C.; Amigó, V.; Almela-Quilis, A.; Mayans, J.; Ballester, F. Values for αβ and γδ T-lymphocytes and CD4+, CD8+, and CD56+ subsets in healthy adult subjects: Assessment by age and gender. Cytom. Part B 2012, 82, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Ardeniz, Ö.; Unger, S.; Onay, H.; Ammann, S.; Keck, C.; Cianga, C.; Gerçeker, B.; Martin, B.; Fuchs, I.; Salzer, U.; et al. β2-Microglobulin deficiency causes a complex immunodeficiency of the innate and adaptive immune system. J. Allergy Clin. Immunol. 2015, 136, 392–401. [Google Scholar] [CrossRef]
- Klaffke, K.; Munk, K.; Braun, R.W.; Kühn, J.E. HSV-1 gB and VZV gp-II crossreactive antibodies in human sera. Arch. Virol. 1990, 112, 203–213. [Google Scholar] [CrossRef]
- Szomolanyi-Tsuda, E.; Brehm, M.A.; Welsh, R.M. Acquired immunity against virus infections. In The Immune Response to Infection; Kaufmann, S.H.E., Rouse, B.T., Sacks, D.L., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 239–267. [Google Scholar]
- Giannelos, N.; Ng, C.; Curran, D. Cost-effectiveness of the recombinant zoster vaccine (RZV) against herpes zoster: An updated critical review. Hum. Vaccin. Immunother. 2023, 19, 2168952. [Google Scholar] [CrossRef]
- Whery, E.J.; Klenerman, P. Immune response to persistent viruses. In The Immune Response to Infection; Kaufmann, S.H.E., Rouse, B.T., Sacks, D.L., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 255–265. [Google Scholar]
- Herold, B.C.; WuDunn, D.; Soltys, N.; Spear, P.G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J. Virol. 1991, 65, 1090–1098. [Google Scholar] [CrossRef]
- Friedman, H.M.; Wang, L.; Pangburn, M.K.; Lambris, J.D.; Lubinski, J. Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J. Immunol. 2000, 165, 4528–4536. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Lubinski, J.M.; Friedman, H.M. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine. Vaccine 2009, 27, 6845–6853. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, M.; Neumann, C.; Fielding, A.K.; Marks, R.; Goldacker, S.; Thaventhiran, J.; Tarzi, M.D.; Schlesier, M.; Salzer, U.; Eibel, H.; et al. Outcome of allogeneic stem cell transplantation in adults with common variable immunodeficiency. J. Allergy Clin. Immunol. 2011, 128, 1371–1374.e2. [Google Scholar] [CrossRef] [PubMed]
- Norlin, A.-C.; Sairafi, D.; Mattsson, J.; Ljungman, P.; Ringdén, O.; Remberger, M. Allogeneic stem cell transplantation: Low immunoglobulin levels associated with decreased survival. Bone Marrow Transplant. 2008, 41, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, M.; Kwak, K.; Pierce, S.K. B cell memory: Building two walls of protection against pathogens. Nat. Rev. Immunol. 2020, 20, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Hong, J.; Shin, D.-Y.; Koh, Y.; Yoon, S.-S.; Kim, P.-J.; Kim, H.-G.; Kim, I.; Park, H.-K.; Choi, Y. Association of HSV-1 and Reduced Oral Bacteriota Diversity with Chemotherapy-Induced Oral Mucositis in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. J. Clin. Med. 2020, 9, 1090. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Park, H.-K.; Park, S.; Lee, A.; Lee, Y.-H.; Shin, D.-Y.; Koh, Y.; Choi, J.-Y.; Yoon, S.-S.; Choi, Y.; et al. Strong association between herpes simplex virus-1 and chemotherapy-induced oral mucositis in patients with hematologic malignancies. Korean J. Intern. Med. 2020, 35, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- van der Beek, M.T.; A Laheij, A.M.G.; E Raber-Durlacher, J.; Borne, P.A.v.D.; Wolterbeek, R.; Brouwer, C.S.v.d.B.-D.; van Loveren, C.; Claas, E.C.J.; Kroes, A.C.M.; de Soet, J.J.; et al. Viral loads and antiviral resistance of herpesviruses and oral ulcerations in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2012, 47, 1222–1228. [Google Scholar] [CrossRef]
- Costa, A.L.F.; Santos, B.A.; Torregrossa, V.R.; Miranda, E.C.M.; Vigorito, A.C.; Palmieri, M.; Ricardo, A.L.F.; Sarmento, D.J.S.; Mamana, A.C.; Tozetto-Mendoza, T.R.; et al. Oral shedding of CMV and HSV-1 in hematopoietic stem cell transplantation patients. Oral Dis. 2020, 27, 1572–1579. [Google Scholar] [CrossRef]
- Ochiai, K.; Maienschein-Cline, M.; Simonetti, G.; Chen, J.; Rosenthal, R.; Brink, R.; Chong, A.S.; Klein, U.; Dinner, A.R.; Singh, H.; et al. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 2013, 38, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, M.; Akkaya, B.; Kim, A.S.; Miozzo, P.; Sohn, H.; Pena, M.; Roesler, A.S.; Theall, B.P.; Henke, T.; Kabat, J.; et al. Toll-like receptor 9 antagonizes antibody affinity maturation. Nat. Immunol. 2018, 19, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Zyzak, J.; Mitkiewicz, M.; Leszczyńska, E.; Reniewicz, P.; Moynagh, P.N.; Siednienko, J. HSV-1/TLR9-Mediated IFNβ and TNFα Induction Is Mal-Dependent in Macrophages. J. Innate Immun. 2020, 12, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-R.; Huang, H.-C.; Kuo, H.-C.; Sheen, J.-M.; Ou, C.-Y.; Hsu, T.-Y.; Yang, K.D. IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol. Immunol. 2011, 8, 181–188. [Google Scholar] [CrossRef]
- Black, A.P.; Jones, L.; Malavige, G.N.; Ogg, G.S. Immune evasion during varicella zoster virus infection of keratinocytes. Clin. Exp. Dermatol. 2009, 34, e941–e944. [Google Scholar] [CrossRef]
- Liang, F.; Glans, H.; Enoksson, S.L.; A Kolios, A.G.; Loré, K.; Nilsson, J. Recurrent Herpes Zoster Ophthalmicus in a Patient With a Novel Toll-Like Receptor 3 Variant Linked to Compromised Activation Capacity in Fibroblasts. J. Infect. Dis. 2020, 221, 1295–1303. [Google Scholar] [CrossRef]
- Kawamura, K.; Wada, H.; Yamasaki, R.; Ishihara, Y.; Sakamoto, K.; Ashizawa, M.; Sato, M.; Machishima, T.; Terasako, K.; Kimura, S.-I.; et al. Prophylactic role of long-term ultra-low-dose acyclovir for varicella zoster virus disease after allogeneic hematopoietic stem cell transplantation. Int. J. Infect. Dis. 2014, 19, 26–32. [Google Scholar] [CrossRef]
P1 | P2 | ||||
---|---|---|---|---|---|
Gender | F | M | |||
Underlying disease | AML | SAA | |||
Conditioning | Bu-Cy | Flu-Cy-ATG | |||
Graft-versus-Host Acute Stage (chronic) | 0 (1) | 0 (0) | |||
Age | 38 | 27 | |||
initial | reactivation | initial | reactivation | NORM | |
Complement C4 (mg/dL) | 15.20 | 25.2 | 10.2 | 15.0 | 80–60 |
β2microglobulin (mg/L) | 1.3 | 3.23 | 1.8 | 4.0 | 1–3 |
CsA (ng/mL) | 0 | 137 | 0 | 155 | 150–250 |
WBC (/uL) | 3500 | 2530 | 7200 | 6500 | 5000–10,000 |
%lymphocytes (cells/μL) | |||||
CD3 | 75.3 (642) | 78.1 (↓444) | ND | 60.0 (752) | 69–72% |
CD4 | ↓25.6 (218) | ↓↓15.1 (86) | ND | ↓25.3 (317) | 43–46% |
CD8 | 46.1 (393) | 64.3 (366) | ND | 28.6 (359) | 28–30% |
CD20 | 12.3 (↓104) | ↓↓2.5 (14) | ND | ↓5.2 (65) | 5–20% (120–600) |
CD20+27+ | ↓1.2 (10) | ↓↓<0.5% * | ND | ↓↓0.7 (9) | 1–2% (5–60) |
CD20+23+ | 11.2 (96) | 1.6 (9) | ND | 3.5 (44) | 2–4% (10–120) |
CD16+ | 8.1 (69) | 8(45) | ND | 7.7 (97) | NA |
CD16+56+ | 7.5 (64) | 3.8 (21) | ND | 6.7(84) | 5–27% (90–590) |
Total and Specific IgG | P1 | P2 |
---|---|---|
IgG total (Norm 750–1500 mg/dL) | 804–1190 | 332–980 |
IgG anti-EBV (Ru/mL) | >200 | >200 |
IgG anti-CMV (RU/mL) | >200 | >200 |
IgG anti-HSV * (RU/mL) (avidity) | 178 → 0 (Figure 2) (40 → NA) | 7.73 → 124 (Figure 3) (ND) |
IgG anti-VZV (IU/L) (avidity ) | 234 → 4515 (Figure 2) (78) | 32 → 1295 (Figure 3) (72) |
IgG anti-HbsAg ** (IU/L) | 660 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdziarski, P.; Gamian, A. Two Waves of Specific B Cell Memory Immunoreconstruction Observed in Anti-HHV1–3 IgG Kinetics after Hematopoietic Stem Cell Transplantation. Biomedicines 2024, 12, 566. https://doi.org/10.3390/biomedicines12030566
Zdziarski P, Gamian A. Two Waves of Specific B Cell Memory Immunoreconstruction Observed in Anti-HHV1–3 IgG Kinetics after Hematopoietic Stem Cell Transplantation. Biomedicines. 2024; 12(3):566. https://doi.org/10.3390/biomedicines12030566
Chicago/Turabian StyleZdziarski, Przemyslaw, and Andrzej Gamian. 2024. "Two Waves of Specific B Cell Memory Immunoreconstruction Observed in Anti-HHV1–3 IgG Kinetics after Hematopoietic Stem Cell Transplantation" Biomedicines 12, no. 3: 566. https://doi.org/10.3390/biomedicines12030566
APA StyleZdziarski, P., & Gamian, A. (2024). Two Waves of Specific B Cell Memory Immunoreconstruction Observed in Anti-HHV1–3 IgG Kinetics after Hematopoietic Stem Cell Transplantation. Biomedicines, 12(3), 566. https://doi.org/10.3390/biomedicines12030566