Cardiotoxic Effects Produced by Omeprazole and Methylene Blue in an Animal Model of Cardiac Ischemia and Reperfusion and Potential Implications for the Pharmacological Strategy for Vasoplegic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Induction of Cardiac Ischemia and Reperfusion (CIR)
2.3. Evaluation of Cardiac Activity during CIR
2.4. Biochemical Determination of Serum Levels of Cardiac Lesions Biomarkers
2.5. Drugs Used in the Study
- (1)
- SS + CIR group (n = 20): Rats treated with a saline solution (SS) and submitted to CIR;
- (2)
- MB + CIR group (n = 12): Rats treated with MB (2 mg/kg, IV) and submitted to CIR;
- (3)
- OME + CIR group (n = 12): Rats treated with OME (10 mg/kg, IV) and submitted to CIR;
- (4)
- MB + OME + CIR group (n = 12): Rats treated with MB (2 mg/kg, IV) plus OME (10 mg/kg, IV) and submitted to CIR.
2.6. Analysis of Statistics
3. Results
3.1. Effects of MB and OME on the Incidence Rates of VA, AVB, and LET Induced by CIR
3.2. Effects of the Treatments with MB and OME on the Serum Levels of CK-MB and TnI in Animals Submitted to CIR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omar, S.; Zedan, A.; Nugent, K. Cardiac vasoplegia syndrome: Pathophysiology, risk factors and treatment. Am. J. Med. Sci. 2015, 349, 80–88. [Google Scholar] [CrossRef]
- Brennan, K.A.; Bhutiani, M.; Kingeter, M.A.; McEvoy, M.D. Updates in the Management of Perioperative Vasoplegic Syndrome. Adv. Anesth. 2022, 40, 71–92. [Google Scholar] [CrossRef]
- Suero, O.R.; Park, Y.; Wieruszewski, P.M.; Subhasis Chatterjee, S. Management of Vasoplegic Shock in the Cardiovascular Intensive Care Unit after Cardiac Surgery. Crit Care Clin. 2024, 40, 73–88. [Google Scholar] [CrossRef]
- Backer, D.D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.-L.; et al. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef]
- Gordon, A.C.; Mason, A.J.; Thirunavukkarasu, N.; Perkins, G.D.; Cecconi, M.; Cepkova, M.; Pogson, D.G.; Aya, H.D.; Anjum, A.; Frazier, G.J.; et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: The VANISH randomized clinical trial. JAMA 2016, 316, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Dayan, V.; Cal, R.; Giangrossi, F. Risk factors for vasoplegia after cardiac surgery: A meta-analysis. Interact Cardiovasc Thorac. Surg. 2019, 28, 838–844. [Google Scholar] [CrossRef]
- Junior, N.A.H.; Miranda, M.; Monteiro, M.R.; Branco, J.N.R.; Vargas, G.F.; José Pestana, J.O.M.A.; Gomes, W.J. Cardiopulmonary bypass increases the risk of vasoplegic syndrome after coronary artery bypass grafting in patients with dialysis-dependent chronic renal failure. Rev. Bras. Cir. Cardiovasc. 2015, 30, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.W.; Levin, M.A. Vasoplegia during cardiac surgery: Current concepts and management. Semin. Thorac. Cardiovasc. Surg. 2010, 22, 140–144. [Google Scholar] [CrossRef]
- Evora, P.R.B.; Ribeiro, P.J.F.; Vicente, W.V.A.; Reis, C.L.; Rodrigues, A.J.; Menardi, A.C.; Junior, L.A.; Evora, P.M.; Bassetto, S. Methylene blue for vasoplegic syndrome treatment in heart surgery: Fifteen years of questions, answers, doubts and certainties. Rev. Bras. Cir. Cardiovasc. 2009, 24, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Leyh, R.G.; Kofidis, T.; Strüber, M.; Fischer, S.; Knobloch, K.; Wachsmann, B.; Hagl, C.; Simon, A.R.; Haverich, A. Methylene blue: The drug of choice for catecholamine-refractory vasoplegia after cardiopulmonary bypass? J. Thorac. Cardiovasc. Surg. 2003, 125, 1426–1431. [Google Scholar] [CrossRef]
- Ghebremariam, Y.T.; LePendu, P.; Lee, J.C.; Erlanson, D.A.; Slaviero, A.; Shah, N.H.; Leiper, J.; Cooke, J.P. Unexpected efect of proton pump inhibitors: Elevation of the cardiovascular risk factor asymmetric dimethylarginine. Circulation 2013, 128, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Yepuri, G.; Sukhovershin, R.; Nazari-Shafti, T.Z.; Petrascheck, M.; Ghebre, Y.T.; Cooke, J.P. Proton pump inhibitors accelerate endothelial senescence. Circ. Res. 2016, 118, e36–e42. [Google Scholar] [CrossRef] [PubMed]
- Tallo, F.S.; de Santana, P.O.; Pinto, S.A.G.; Lima, R.Y.; de Araújo, E.A.; Tavares, J.G.P.; Pires-Oliveira, M.; Nicolau, L.A.D.; Medeiros, J.V.R.; Taha, M.O.; et al. Pharmacological Modulation of the Ca2+/cAMP/Adenosine Signaling in Cardiac Cells as a New Cardioprotective Strategy to Reduce Severe Arrhythmias in Myocardial Infarction. Pharmaceuticals 2023, 16, 1473. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Rodrigues, F.S.; de Oliveira, M.P.; Araújo, E.A.; Ferraz, H.B.; Finsterer, J.; Olszewer, E.; Taha, M.O.; Scorza, C.A.; Caricati-Neto, A.; Scorza, F.A. Role of cardiac β1-adrenergic and A1-adenosine receptors in severe arrhythmias related to Parkinson’s disease. Clinics 2023, 78, 100243. [Google Scholar] [CrossRef] [PubMed]
- Filho, C.E.B.; Barbosa, A.H.P.; Nicolau, L.A.D.; Medeiros, J.V.R.; Pires-Oliveira, M.; Dos Santos Póvoa, R.M.; Govato, T.C.P.; Júnior, H.J.F.; de Carvalho, R.G.; Luna-Filho, B.; et al. Pharmacological Modulation by Low Molecular Weight Heparin of Purinergic Signaling in Cardiac Cells Prevents Arrhythmia and Lethality Induced by Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2023, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Rodrigues, F.S.; Errante, P.R.; Araújo, E.A.; Fernandes, M.P.P.; Silva, M.M.D.; Pires-Oliveira, M.; Scorza, C.A.; Scorza, F.A.; Taha, M.O.; Caricati-Neto, A. Cardioprotection stimulated by resveratrol and grape products prevents lethal cardiac arrhythmias in an animal model of ischemia and reperfusion. Acta Cir. Bras. 2021, 36, e360306. [Google Scholar] [CrossRef]
- Menezes-Rodrigues, F.S.; Tavares, J.G.P.; Vasques, E.R.; Errante, P.R.; Araújo, E.A.; Pires-Oliveira, M.; Scorza, C.A.; Scorza, F.A.; Taha, M.O.; Caricati-Neto, A. Cardioprotective effects of pharmacological blockade of the mitochondrial calcium uniporter on myocardial ischemia-reperfusion injury. Acta Cir. Bras. 2020, 35, e202000306. [Google Scholar] [CrossRef]
- Menezes-Rodrigues, F.S.; Errante, P.R.; Tavares, J.G.P.; Ferraz, R.R.N.; Gomes, W.J.; Taha, M.O.; Scorza, C.A.; Scorza, F.A.; Caricati-Neto, A. Pharmacological modulation of b-adrenoceptors as a new cardioprotective strategy for therapy of myocardial dysfunction induced by ischemia and reperfusion. Acta Cir. Bras. 2019, 34, e201900505. [Google Scholar] [CrossRef]
- Menezes-Rodrigues, F.S.; Errante, P.R.; Ferreira, R.M.; Tavares, J.G.P.; Paula, L.; Araújo, E.A.; Govato, T.C.P.; Tikazawa, E.H.; Reis, M.D.C.M.; Luna-Filho, B.; et al. Cardioprotective effect of lipstatin derivative orlistat on normotensive rats submitted to cardiac ischemia and reperfusion. Acta Cir. Bras. 2018, 33, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Shie, C.B.; Yang, C.C.; Lee, T.M. Blockade of Cardiac Proton Pump Impairs Ventricular Remodeling Through a Superoxide-DDAH-Dependent Pathway in Infarcted Rats. Acta Cardiol. Sin. 2019, 35, 165–178. [Google Scholar] [PubMed]
- Jentzer, J.C.; Vallabhajosyula, S.; Khanna, A.K.; Chawla, L.S.; Busse, L.W.; Kashani, K.B. Management of refractory vasodilator shock. Chest 2018, 154, 416–426. [Google Scholar] [CrossRef]
- Busse, L.W.; Barker, N.; Petersen, C. Vasoplegic syndrome following cardiothoracic surgery-review of pathophysiology and update of treatment options. Crit. Care 2020, 24, 36. [Google Scholar] [CrossRef] [PubMed]
- Bruce, M.D.; Sancho, C.G.; Holguera, J.C.; Español, E.M. Factors involved in the development of vasoplegia after cardiac surgery with extracorporeal circulation. A prospective observational study. Rev. Esp. Anestesiol. Reanim. 2014, 61, 246–253. [Google Scholar]
- Tsiouris, A.; Wilson, L.; Haddadin, A.S.; Yun, J.J.; Mangi, A.A. Risk assessment and outcomes of vasoplegia after cardiac surgery. Gen. Thorac. Cardiovasc. Surg. 2017, 65, 557–565. [Google Scholar] [CrossRef]
- Lambden, S.; Creagh-Brown, B.C.; Hunt, J.; Summers, C.; Forni, L.G. Definitions and pathophysiology of vasoplegic shock. Crit. Care 2018, 22, 174. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Mack, A.; Ladlie, B.L.; Martin, A.K. The use of intravenous hydroxocobalamin as a rescue in methylene blue-resistant vasoplegic syndrome in cardiac surgery. Ann. Card. Anaesth. 2017, 20, 462–464. [Google Scholar] [PubMed]
- Papazisi, O.; Palmen, M.; Danser, A.H.J. The use of angiotensin II for the treatment of post-cardiopulmonary bypass vasoplegia. Cardiovasc. Drugs Ther. 2022, 36, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, L.A.; Vincent, J.L.; Barbosa Gomes Galas, F.R.; Rhodes, A.; Landoni, G.; Osawa, E.A.; Melo, R.R.; Sundin, M.R.; Grande, S.M.; Gaiotto, F.A.; et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: The VANCS randomized controlled trial. Anesthesiology 2017, 126, 85–93. [Google Scholar] [CrossRef]
- Shaefi, S.; Mittel, A.; Klick, J.; Evans, A.; Ivascu, N.S.; Gutsche, J.; Augoustides, J.G.T. Vasoplegia after cardiovascular procedures-pathophysiology and targeted therapy. J. Cardiothorac. Vasc. Anesth. 2018, 32, 1013–1022. [Google Scholar] [CrossRef]
- Jochberger, S.; Velik-Salchner, C.; Mayr, V.D.; Luckner, G.; Wenzel, V.; Falkensammer, G.; Ulmer, H.; Morgenthaler, N.; Hasibeder, W.; Dünser, M.W. The vasopressin and copeptin response in patients with vasodilatory shock after cardiac surgery: A prospective, controlled study. Intensive Care Med. 2009, 35, 489–497. [Google Scholar] [CrossRef]
- Barnes, T.J.; Hockstein, M.A.; Jabaley, C.S. Vasoplegia after cardiopulmonary bypass: A narrative review of pathophysiology and emerging targeted therapies. SAGE Open Med. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Koenitzer, J.R.; Isbell, T.S.; Patel, H.D.; Benavides, G.A.; Dickinson, D.A.; Patel, R.P.; Darley-Usmar, V.M.; Lancaster, J.R., Jr.; Doeller, J.E.; Kraus, D.W. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1953–H1960. [Google Scholar] [CrossRef]
- Datt, V.; Wadhhwa, R.; Sharma, V.; Virmani, S.; Minhas, H.S.; Malik, S. Vasoplegic syndrome after cardiovascular surgery: A review of pathophysiology and outcome-oriented therapeutic management. J. Card Surg. 2021, 36, 3749–3760. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, B.; Chen, Y.; Wilson, F.P.; Sang, Y.; Chang, A.R.; Coresh, J.; Grams, M.E. Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern. Med. 2016, 176, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.C.; Lin, C.L.; Yeh, H.Z.; Chang, C.S.; Wu, Y.L.; Kao, C.H. Association between the use of proton pump inhibitors and the risk of ESRD in renal diseases: A population-based, case-control study. Medicine 2016, 95, e3363. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Yoshikawa, T.; Tanaka, Y.; Fujita, N.; Kassai, K.; Naito, Y.; Kondo, M. A new mechanism for anti-infammatory actions of proton pump inhibitors–inhibitory efects on neutrophilendothelial cell interactions. Aliment. Pharmacol. Ther. 2000, 14, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Goh, W.; Sleptsova-Freidrich, I.; Petrovic, N. Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study. J. Pharm. Pharm. Sci. 2014, 17, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Jin, U.H.; Lee, S.O.; Pfent, C.; Safe, S. The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis. BMC Cancer 2014, 14, 498. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Jimenez, J.; Nagatomo, T.; Toelen, J.; Brady, P.; Salaets, T.; Lesage, F.; Vanoirbeek, J.; Deprest, J. Proton-pump inhibitor omeprazole attenuates hyperoxia induced lung injury. J. Transl. Med. 2016, 14, 247. [Google Scholar] [CrossRef]
- Han, Y.M.; Park, J.M.; Kangwan, N.; Jeong, M.; Lee, S.; Cho, J.Y.; Ko, W.J.; Hahm, K.B. Role of proton pump inhibitors in preventing hypergastrinemia-associated carcinogenesis and in antagonizing the trophic efect of gastrin. J. Physiol. Pharmacol. 2015, 66, 159–167. [Google Scholar]
- Wang, B.Y.; Zhang, J.; Wang, J.L.; Sun, S.; Wang, Z.H.; Wang, L.P.; Zhang, Q.L.; Lv, F.F.; Cao, E.Y.; Shao, Z.M.; et al. Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J. Exp. Clin. Cancer 2015, 34, 85. [Google Scholar] [CrossRef]
- Paskeviciute, M.; Petrikaite, V. Proton pump inhibitors modulate transport of doxorubicin and its liposomal form into 2D And 3D breast cancer cell cultures. Cancer Manag. Res. 2019, 11, 9761–9769. [Google Scholar] [CrossRef]
- Pinheiro, L.C.; Oliveira-Paula, G.H.; Portella, R.L.; Guimaraes, D.A.; de Angelis, C.D.; Tanus-Santos, J.E. Omeprazole impairs vascular redox biology and causes xanthine oxidoreductase-mediated endothelial dysfunction. Redox Biol. 2016, 9, 134–143. [Google Scholar] [CrossRef]
- Fako, V.E.; Wu, X.; Pfug, B.; Liu, J.Y.; Zhang, J.T. Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J. Med. Chem. 2015, 58, 778–784. [Google Scholar] [CrossRef]
- Tran, Q.K.; Ohashi, K.; Watanabe, H. Calcium signalling in endothelial cells. Cardiovasc. Res. 2000, 48, 13–22. [Google Scholar] [CrossRef]
- Freay, A.; Johns, A.; Adams, D.J.; Ryan, U.S.; Van Breemen, C. Bradykinin and inositol 1,4,5-trisphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pfugers Arch. 1989, 414, 377–384. [Google Scholar]
- Mendelowitz, D.; Bacal, K.; Kunze, D.L. Bradykinin-activated calcium infux pathway in bovine aortic endothelial cells. Am. J. Physiol. 1992, 262, H942–H948. [Google Scholar] [PubMed]
- Petersen, C.C.; Berridge, M.J. The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J. Biol. Chem. 1994, 269, 32246–32253. [Google Scholar] [CrossRef] [PubMed]
- Parekh, A.B.; Putney, J.W., Jr. Store-operated calcium channels. Physiol. Ver. 2005, 85, 757–810. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Rahman, T. Unveiling some FDA-approved drugs as inhibitors of the store-operated Ca(2+) entry pathway. Sci. Rep. 2017, 7, 12881. [Google Scholar] [CrossRef]
- Derler, I.; Schindl, R.; Fritsch, R.; Heftberger, P.; Riedl, M.C.; Begg, M.; House, D.; Romanin, C. The action of selective CRAC channel blockers is afected by the Orai pore geometry. Cell Calcium. 2013, 53, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Jairaman, A.; Prakriya, M. Molecular pharmacology of storeoperated CRAC channels. Channels 2013, 7, 402–414. [Google Scholar] [CrossRef]
- Cooke, J.P. Asymmetrical dimethylarginine: The Uber marker? Circulation 2004, 109, 1813–1818. [Google Scholar] [CrossRef]
- Onda, K.; Tong, S.; Beard, S.; Binder, N.; Muto, M.; Senadheera, S.N.; Parry, L.; Dilworth, M.; Renshall, L.; Brownfoot, F.; et al. Proton pump inhibitors decrease soluble fms-like tyrosine kinase-1 and soluble endoglin secretion, decrease hypertension, and rescue endothelial dysfunction. Hypertension 2017, 69, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, C.; Odagiri, K.; Hakamata, A.; Sakurada, R.; Inui, N.; Watanabe, H. Omeprazole suppresses endothelial calcium response and eNOS Ser1177 phosphorylation in porcine aortic endothelial cells. Mol. Biol. Rep. 2021, 48, 5503–5511. [Google Scholar] [CrossRef] [PubMed]
Groups | CK-MB (U/L) | TnI I (ng/mL) |
---|---|---|
SS + CIR | 2037 ± 117 | 0.200 ± 0.01 |
MB + CIR | 2760 ± 292 * | 0.200 ± 0.01 |
OME + CIR | 2610 ± 245 * | 0.200 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo, E.A.; Tallo, F.S.; Oliveira, A.S.F.; Toghlobi, G.S.S.E.; Arantes, R.A.; Balsimelli, R.; Kehrwald-Balsimelli, B.; de Almeida Viana, B.L.; Matuda, F.S.; Nicolau, L.A.D.; et al. Cardiotoxic Effects Produced by Omeprazole and Methylene Blue in an Animal Model of Cardiac Ischemia and Reperfusion and Potential Implications for the Pharmacological Strategy for Vasoplegic Syndrome. Biomedicines 2024, 12, 582. https://doi.org/10.3390/biomedicines12030582
de Araújo EA, Tallo FS, Oliveira ASF, Toghlobi GSSE, Arantes RA, Balsimelli R, Kehrwald-Balsimelli B, de Almeida Viana BL, Matuda FS, Nicolau LAD, et al. Cardiotoxic Effects Produced by Omeprazole and Methylene Blue in an Animal Model of Cardiac Ischemia and Reperfusion and Potential Implications for the Pharmacological Strategy for Vasoplegic Syndrome. Biomedicines. 2024; 12(3):582. https://doi.org/10.3390/biomedicines12030582
Chicago/Turabian Stylede Araújo, Erisvaldo Amarante, Fernando Sabia Tallo, Alex Sandro Felisberto Oliveira, Gustavo Saad Silva El Toghlobi, Rafael Augusto Arantes, Rafael Balsimelli, Bruno Kehrwald-Balsimelli, Bianca Lorayne de Almeida Viana, Fernanda Sakata Matuda, Lucas Antonio Duarte Nicolau, and et al. 2024. "Cardiotoxic Effects Produced by Omeprazole and Methylene Blue in an Animal Model of Cardiac Ischemia and Reperfusion and Potential Implications for the Pharmacological Strategy for Vasoplegic Syndrome" Biomedicines 12, no. 3: 582. https://doi.org/10.3390/biomedicines12030582
APA Stylede Araújo, E. A., Tallo, F. S., Oliveira, A. S. F., Toghlobi, G. S. S. E., Arantes, R. A., Balsimelli, R., Kehrwald-Balsimelli, B., de Almeida Viana, B. L., Matuda, F. S., Nicolau, L. A. D., Medeiros, J. V. R., Caixeta, A., Taha, M. O., Gomes, W. J., Caricati-Neto, A., & Menezes-Rodrigues, F. S. (2024). Cardiotoxic Effects Produced by Omeprazole and Methylene Blue in an Animal Model of Cardiac Ischemia and Reperfusion and Potential Implications for the Pharmacological Strategy for Vasoplegic Syndrome. Biomedicines, 12(3), 582. https://doi.org/10.3390/biomedicines12030582