Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Diabetes Mellitus Type 2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Assessment
2.2.1. Parameters to Assess Subclinical Atherosclerosis
- (a)
- IMT: A General Electric Vivid E9 ultrasound system was used to calculate the IMT value of all patients in the study. IMT was measured bilateral, at the level of the distal wall of the common carotid artery (CCA), 1 cm from the carotid bulb, with a 9 L MHz transducer. For each patient, 10 measurements were taken and average values were recorded.
- (b)
- The ABI measurement is a non-invasive and quick test to verify the presence of peripheral artery disease (PAD). A score between 1.0 and 1.4 represents a normal ABI score, thus indicating no signs of PAD, while a score between 0.91 and 0.99 indicates borderline PAD, and a score lower than 0.9 designated the presence of PAD [23].
2.2.2. Triglyceride-Glucose index (TyG)
2.2.3. Neuropsychological Tests
- (a)
- The Montreal Cognitive Assessment (MoCA) is a scale used to detect cognitive disorders. Its administration takes approximately 10 min, scores range between 0 and 30, and it analyzes several cognitive functions, such as orientation, language, visuospatial ability, working memory, short-term memory recall task, attention, concentration, executive functions, a two-item verbal abstraction task, a phonemic fluency task, and a three-dimensional cube copy. The MoCA is effective for the early identification of CD and signs of dementia. Values over 26 can be considered normal, while one under 26 indicates CD [25].
- (b)
- The Mini-Mental State Examination (MMSE) is a scale with a duration of 10 min that is employed for the evaluation, detection, and quantification of CD, as well as for follow-ups. Its scores range between 0 and 30 points, and it analyzes several parameters of cognitive function (orientation, attention, recall, calculation, construction practices, and language manipulation). A score between 24 and 27 may represent an initial decrease in cognitive function compared to normal, while scores under 24 indicate the onset of dementia. MMSE examination is utilized for the screening of CD in regard to assessing its severity and progression, as well as to analyze a patient’s evolution. This score should be analyzed according to the level of education and age of the subject [26,27]; thirty is the maximum value, while scores equal to or lower than 24 are representative of dementia [26,28]. Additionally, a score between 24 and 27 means mild CD.
- (c)
- Activities of daily living (ADL) is employed to evaluate the patient’s daily activities. Its application lasts approximately 10 min, and it analyzes 5 domains of the patient’s daily functional state (eating, personal hygiene, dressing, maintaining continence, and transferring/mobility). The score is between 0 (reduced functionality) and 10 (increased functionality or normal) [29,30].
- (d)
- Instrumental Activities of Daily Living (IADL) is used to analyze the patient’s daily practical activities, an evaluation taking approximately 10 min. The IADL test involves an interview with the patient or a written questionnaire. It includes 8 more areas for evaluating the ability to function and daily care, such as shopping, cooking, or financial management, with a cumulative score ranging from 0, which represents low functionality, to 8, which represents high functionality [29,30].
- (e)
- Geriatric Depression Scale (GDS-15) is a scale with 30 questions used to highlight the presence of depression among patients. It is a shorter version of the GDS, with 15 questions. Its administration takes about 10–15 min and is easier to apply in older patients or in those with CD, where a smaller number of questions is necessary [31,32]. Scores below 4 are considered normal, those between 5 and 8 indicate mild depression, scores between 9 and 11 indicate moderate depression, and scores between 12 and 15 indicate elements of severe depression. The obtained scores may provide information related to the presence or not of elements of depression and/or CD [32,33].
2.2.4. Transthoracic Echocardiography (TTE)
2.2.5. CHA2DS2-VASc Score
2.2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brito, D.V.C.; Esteves, F.; Rajado, A.T.; Silva, N.; Araújo, I.; Bragança, J.; Castelo-Branco, P.; Nóbrega, C. Assessing Cognitive Decline in the Aging Brain: Lessons from Rodent and Human Studies. NPJ Aging 2023, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Stieger, M.; Lachman, M.E. Increases in Cognitive Activity Reduce Aging-Related Declines in Executive Functioning. Front. Psychiatry 2021, 12, 708974. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.H.; Lew, L.Z.W.; Franke, K.B.; Elliott, A.D.; Lau, D.H.; Thiyagarajah, A.; Linz, D.; Arstall, M.; Tully, P.J.; Baune, B.T.; et al. Predictive Role of Atrial Fibrillation in Cognitive Decline: A Systematic Review and Meta-Analysis of 2.8 Million Individuals. EP Eur. 2022, 24, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.M.; Joy, N.; John, A.M.; George, G.; Chandy, G.M.; Benjamin, A.I. Sweet Memories or Not? A Comparative Study on Cognitive Impairment in Diabetes Mellitus. Front. Public Health 2022, 10, 822062. [Google Scholar] [CrossRef] [PubMed]
- Dove, A.; Shang, Y.; Xu, W.; Grande, G.; Laukka, E.J.; Fratiglioni, L.; Marseglia, A. The Impact of Diabetes on Cognitive Impairment and Its Progression to Dementia. Alzheimer’s Dement. 2021, 17, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Standl, E.; Khunti, K.; Hansen, T.B.; Schnell, O. The Global Epidemics of Diabetes in the 21st Century: Current Situation and Perspectives. Eur. J. Prev. Cardiol. 2019, 26, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jaramillo, P.; Gomez-Arbelaez, D.; Martinez-Bello, D.; Abat, M.E.M.; Alhabib, K.F.; Avezum, Á.; Barbarash, O.; Chifamba, J.; Diaz, M.L.; Gulec, S.; et al. Association of the Triglyceride Glucose Index as a Measure of Insulin Resistance with Mortality and Cardiovascular Disease in Populations from Five Continents (PURE Study): A Prospective Cohort Study. Lancet Healthy Longev. 2023, 4, e23–e33. [Google Scholar] [CrossRef]
- Tong, X.-W.; Zhang, Y.-T.; Yu, Z.-W.; Pu, S.-D.; Li, X.; Xu, Y.-X.; Shan, Y.-Y.; Gao, X.-Y. Triglyceride Glucose Index Is Related with the Risk of Mild Cognitive Impairment in Type 2 Diabetes. DMSO 2022, 15, 3577–3587. [Google Scholar] [CrossRef]
- Weyman-Vela, Y.; Simental-Mendía, L.E.; Camacho-Luis, A.; Gamboa-Gómez, C.I.; Guerrero-Romero, F. The Triglycerides and Glucose Index Is Associated with Mild Cognitive Impairment in Older Adults. Endocr. Res. 2022, 47, 89–93. [Google Scholar] [CrossRef]
- Wang, H.; Ling, Q.; Wu, Y.; Zhang, M. Association between the Triglyceride Glucose Index and Cognitive Impairment and Dementia: A Meta-Analysis. Front. Aging Neurosci. 2023, 15, 1278730. [Google Scholar] [CrossRef]
- Liu, X.; He, G.; Lo, K.; Huang, Y.; Feng, Y. The Triglyceride-Glucose Index, an Insulin Resistance Marker, was Non-Linear Associated with All-Cause and Cardiovascular Mortality in the General Population. Front. Cardiovasc. Med. 2021, 7, 628109. [Google Scholar] [CrossRef] [PubMed]
- Manolis, T.A.; Manolis, A.A.; Apostolopoulos, E.J.; Melita, H.; Manolis, A.S. Atrial Fibrillation and Cognitive Impairment: An Associated Burden or Burden by Association? Angiology 2020, 71, 498–519. [Google Scholar] [CrossRef] [PubMed]
- Sepehri Shamloo, A.; Dagres, N.; Müssigbrodt, A.; Stauber, A.; Kircher, S.; Richter, S.; Dinov, B.; Bertagnolli, L.; Husser-Bollmann, D.; Bollmann, A.; et al. Atrial Fibrillation and Cognitive Impairment: New Insights and Future Directions. Heart Lung Circ. 2020, 29, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, M.; Graff-Radford, J.; Piccini, J.P.; Gersh, B.J. Cognitive Dysfunction in Atrial Fibrillation. Nat. Rev. Cardiol. 2018, 15, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Blum, S.; Conen, D. Mechanisms and Clinical Manifestations of Cognitive Decline in Atrial Fibrillation Patients: Potential Implications for Preventing Dementia. Can. J. Cardiol. 2023, 39, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Knopman, D.S.; Gottesman, R.F.; Soliman, E.Z.; Shah, A.J.; O’Neal, W.T.; Norby, F.L.; Mosley, T.H.; Chen, L.Y. Correlates of Dementia and Mild Cognitive Impairment in Patients with Atrial Fibrillation: The Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). J. Am. Heart Assoc. 2017, 6, e006014. [Google Scholar] [CrossRef] [PubMed]
- Rivard, L.; Friberg, L.; Conen, D.; Healey, J.S.; Berge, T.; Boriani, G.; Brandes, A.; Calkins, H.; Camm, A.J.; Yee Chen, L.; et al. Atrial Fibrillation and Dementia: A Report from the AF-SCREEN International Collaboration. Circulation 2022, 145, 392–409. [Google Scholar] [CrossRef]
- Atrial Fibrillation Diagnosis Associated with 45% Increased Risk of Mild Cognitive Impairment. Available online: https://www.news-medical.net/news/20231025/Atrial-fibrillation-diagnosis-associated-with-4525-increased-risk-of-mild-cognitive-impairment.aspx (accessed on 7 February 2024).
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global Epidemiology of Atrial Fibrillation: An Increasing Epidemic and Public Health Challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Le Bivic, L.; Magne, J.; Guy-Moyat, B.; Wojtyna, H.; Lacroix, P.; Blossier, J.-D.; Le Guyader, A.; Desormais, I.; Aboyans, V. The Intrinsic Prognostic Value of the Ankle-Brachial Index Is Independent from Its Mode of Calculation. Vasc. Med. 2019, 24, 23–31. [Google Scholar] [CrossRef]
- Li, S.; Deng, X.; Zhang, Y. The Triglyceride-Glucose Index Is Associated with Longitudinal Cognitive Decline in a Middle-Aged to Elderly Population: A Cohort Study. J. Clin. Med. 2022, 11, 7153. [Google Scholar] [CrossRef] [PubMed]
- Dautzenberg, G.; Lijmer, J.; Beekman, A. Diagnostic Accuracy of the Montreal Cognitive Assessment (MoCA) for Cognitive Screening in Old Age Psychiatry: Determining Cutoff Scores in Clinical Practice. Avoiding Spectrum Bias Caused by Healthy Controls. Int. J. Geriatr. Psychiatry 2020, 35, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Dong, J.; Sun, J.; Zhang, Y.; Ma, S.; Li, M.; Zhang, A.; Cheng, B.; Cai, S.; Bao, Q.; et al. Cognitive Function Assessed by Mini-Mental State Examination and Risk of All-Cause Mortality: A Community-Based Prospective Cohort Study. BMC Geriatr. 2021, 21, 524. [Google Scholar] [CrossRef] [PubMed]
- Patnode, C.D.; Perdue, L.A.; Rossom, R.C.; Rushkin, M.C.; Redmond, N.; Thomas, R.G.; Lin, J.S. Screening for Cognitive Impairment in Older Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2020, 323, 764–785. [Google Scholar] [CrossRef] [PubMed]
- Dhikav, V.; Jadeja, B.; Gupta, P. Community Screening of Probable Dementia at Primary Care Center in Western India: A Pilot Project. J. Neurosci. Rural. Pract. 2022, 13, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Pashmdarfard, M.; Azad, A. Assessment Tools to Evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in Older Adults: A Systematic Review. Med. J. Islam. Repub. Iran. 2020, 34, 33. [Google Scholar] [CrossRef] [PubMed]
- Fish, J. Lawton-Brody Instrumental Activities of Daily Living Scale. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011; pp. 1438–1439. ISBN 978-0-387-79948-3. [Google Scholar]
- Dias, F.L.D.C.; Teixeira, A.L.; Guimarães, H.C.; Barbosa, M.T.; Resende, E.D.P.F.; Beato, R.G.; Carmona, K.C.; Caramelli, P. Accuracy of the 15-Item Geriatric Depression Scale (GDS-15) in a Community-Dwelling Oldest-Old Sample: The Pietà Study. Trends Psychiatry Psychother. 2017, 39, 276–279. [Google Scholar] [CrossRef]
- Krishnamoorthy, Y.; Rajaa, S.; Rehman, T. Diagnostic Accuracy of Various Forms of Geriatric Depression Scale for Screening of Depression among Older Adults: Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2020, 87, 104002. [Google Scholar] [CrossRef]
- Stone, L.E.; Granier, K.L.; Segal, D.L. Geriatric Depression Scale. In Encyclopedia of Gerontology and Population Aging; Gu, D., Dupre, M.E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 2112–2119. ISBN 978-3-030-22009-9. [Google Scholar]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Esteve-Pastor, M.A.; Roldán, V.; Rivera-Caravaca, J.M.; Ramírez-Macías, I.; Lip, G.Y.H.; Marín, F. The Use of Biomarkers in Clinical Management Guidelines: A Critical Appraisal. Thromb. Haemost. 2019, 119, 1901–1919. [Google Scholar] [CrossRef]
- Shin, S.Y.; Han, S.-J.; Kim, J.-S.; Im, S.I.; Shim, J.; Ahn, J.; Lee, E.M.; Park, Y.M.; Kim, J.H.; Lip, G.Y.H.; et al. Identification of Markers Associated With Development of Stroke in “Clinically Low-Risk” Atrial Fibrillation Patients. J. Am. Heart Assoc. 2019, 8, e012697. [Google Scholar] [CrossRef]
- Sebastian, M.J.; Khan, S.K.; Pappachan, J.M.; Jeeyavudeen, M.S. Diabetes and Cognitive Function: An Evidence-Based Current Perspective. World J. Diabetes 2023, 14, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Ab-Hamid, N.; Omar, N.; Ismail, C.A.N.; Long, I. Diabetes and Cognitive Decline: Challenges and Future Direction. World J. Diabetes 2023, 14, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, A.; Fratiglioni, L.; Kalpouzos, G.; Wang, R.; Bäckman, L.; Xu, W. Prediabetes and Diabetes Accelerate Cognitive Decline and Predict Microvascular Lesions: A Population-Based Cohort Study. Alzheimers Dement. 2019, 15, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S. Cognitive Impairment in Diabetes Mellitus: An Exploratory Study. Int. J. Adv. Med. 2023, 10, 55–58. [Google Scholar] [CrossRef]
- Hong, X.; Chen, X.; Chu, J.; Shen, S.; Chai, Q.; Lou, G.; Chen, L. Multiple Diabetic Complications, as Well as Impaired Physical and Mental Function, Are Associated with Declining Balance Function in Older Persons with Diabetes Mellitus. Clin. Interv. Aging 2017, 12, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Kinattingal, N.; Mehdi, S.; Undela, K.; Wani, S.U.D.; Almuqbil, M.; Alshehri, S.; Shakeel, F.; Imam, M.T.; Manjula, S.N. Prevalence of Cognitive Decline in Type 2 Diabetes Mellitus Patients: A Real-World Cross-Sectional Study in Mysuru, India. J. Pers. Med. 2023, 13, 524. [Google Scholar] [CrossRef]
- Pott-Junior, H.; Cominetti, C.; Gutierrez Zuniga, R.; Romero-Ortuno, R. Type 2 Diabetes Mellitus Predicts Cognitive Decline: Evidence from The Irish Longitudinal Study on Ageing (TILDA). Diabetes Epidemiol. Manag. 2022, 7, 100087. [Google Scholar] [CrossRef]
- Abdellatif, G.A.; Hassan, A.M.; Gabal, M.S.; Hemeda, S.A.; El-Chami, N.H.; Salama, I.I. Mild Cognitive Impairment among Type II Diabetes Mellitus Patients Attending University Teaching Hospital. Open Access Maced. J. Med. Sci. 2020, 8, 105–111. [Google Scholar] [CrossRef]
- Chow, Y.Y.; Verdonschot, M.; McEvoy, C.T.; Peeters, G. Associations between Depression and Cognition, Mild Cognitive Impairment and Dementia in Persons with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2022, 185, 109227. [Google Scholar] [CrossRef]
- Fung, A.C.H.; Tse, G.; Cheng, H.L.; Lau, E.S.H.; Luk, A.; Ozaki, R.; So, T.T.Y.; Wong, R.Y.M.; Tsoh, J.; Chow, E.; et al. Depressive Symptoms, Co-Morbidities, and Glycemic Control in Hong Kong Chinese Elderly Patients with Type 2 Diabetes Mellitus. Front. Endocrinol. 2018, 9, 261. [Google Scholar] [CrossRef]
- Tudoran, M.; Tudoran, C.; Ciocarlie, T.; Giurgi-Oncu, C. Aspects of Diastolic Dysfunction in Patients with New and Recurrent Depression. PLoS ONE 2020, 15, e0228449. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Norby, F.L.; Gottesman, R.F.; Mosley, T.H.; Soliman, E.Z.; Agarwal, S.K.; Loehr, L.R.; Folsom, A.R.; Coresh, J.; Alonso, A. Association of Atrial Fibrillation With Cognitive Decline and Dementia Over 20 Years: The ARIC-NCS (Atherosclerosis Risk in Communities Neurocognitive Study). J. Am. Heart Assoc. 2018, 7, e007301. [Google Scholar] [CrossRef] [PubMed]
- Shanmugavaradharajan, V.; Balaji, D.; Vasu, D. Cognitive Changes Associated with Hypercholesterolemia in Type 2 Diabetes Mellitus. Int. J. Med. Rev. Case Rep. 2022, 6, 24. [Google Scholar] [CrossRef]
- Xia, S.-S.; Xia, W.-L.; Huang, J.-J.; Zou, H.-J.; Tao, J.; Yang, Y. The Factors Contributing to Cognitive Dysfunction in Type 2 Diabetic Patients. Ann. Transl. Med. 2020, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yuan, Y.-X.; Cheng, F.-J.; Liu, Y.; Wei, Q.; Peng, Y.-F.; Wang, Y. The Association between Blood Lipids and Cognitive Impairment in Type 2 Diabetes Mellitus. Eur. J. Med. Res. 2024, 29, 1. [Google Scholar] [CrossRef] [PubMed]
- Bulut, A.; Avci, B. Carotid Intima-Media Thickness Values Are Significantly Higher in Patients with Prediabetes Compared to Normal Glucose Metabolism. Medicine 2019, 98, e17805. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, A.; Roumeliotis, S.; Panagoutsos, S.; Theodoridis, M.; Argyriou, C.; Tavridou, A.; Georgiadis, G.S. Carotid Intima-Media Thickness Is an Independent Predictor of All-Cause Mortality and Cardiovascular Morbidity in Patients with Diabetes Mellitus Type 2 and Chronic Kidney Disease. Ren. Fail. 2019, 41, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Casey, S.L.; Lanting, S.M.; Chuter, V.H. The Ankle Brachial Index in People with and without Diabetes: Intra-Tester Reliability. J. Foot Ankle Res. 2020, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N. Use of ABI to Detect Peripheral Arterial Disease in Diabetes—A Recommendation for Primary Care Physicians. J. Fam. Med. Prim. Care 2021, 10, 154–157. [Google Scholar] [CrossRef]
- Militaru, A.; Zus, S.; Cimpean, A.M.; Iurciuc, S.; Matusz, P.; Iurciuc, M.; Lighezan, D.; Militaru, M. Early Diagnosis of Cardiotoxicity in Patients Undergoing Chemotherapy for Acute Lymphoblastic Leukemia. Anticancer. Res. 2019, 39, 3255–3264. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hayden, K.M.; May, N.S.; Haring, B.; Liu, Z.; Henderson, V.W.; Chen, J.-C.; Gracely, E.J.; Wassertheil-Smoller, S.; Rapp, S.R. Association between Blood Pressure Levels and Cognitive Impairment in Older Women: A Prospective Analysis of the Women’s Health Initiative Memory Study. Lancet Healthy Longev. 2022, 3, e42–e53. [Google Scholar] [CrossRef]
- Wood, K.A.; Han, F.; Ko, Y.-A.; Wharton, W. Do Sex Differences Exist in Cognitive Function in Patients with Atrial Fibrillation? Alzheimer’s Dement. 2022, 18, e063443. [Google Scholar] [CrossRef]
- Militaru, M.; Rachieru, C.; Lighezan, D.F.; Militaru, A.G. The Impact of Hypertension and Atrial Fibrillation on Cognitive Decline and Subclinical Atherosclerosis. Brain Sci. 2021, 11, 752. [Google Scholar] [CrossRef]
- Proietti, M.; Farcomeni, A. Association Between Peripheral Artery Disease and Incident Risk of Atrial Fibrillation: Strong Evidence Coming from Population-Based Cohort Studies. J. Am. Heart Assoc. 2018, 7, e009126. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Wang, C.-P.; Hung, W.-C.; Wu, C.-C.; Yu, T.-H.; Hsu, C.-C.; Wei, C.-T.; Chung, F.-M.; Lee, Y.-J.; Tang, W.-H. Interactive Effect of Obesity and Cognitive Function Decline on the Risk of Chronic Kidney Disease Progression in Patients with Type 2 Diabetes Mellitus: A 9.1-Year Cohort Study. Int. J. Med. Sci. 2022, 19, 1660–1671. [Google Scholar] [CrossRef]
- Ghoshal, S.; Allred, N.D.; Freedman, B.I. The Contribution of Kidney Disease to Cognitive Impairment in Patients with Type 2 Diabetes. Curr. Diab Rep. 2020, 20, 49. [Google Scholar] [CrossRef]
Patients Demographic Data | Group A—50 P with DM-2 | Group B—54 P with DM-2 and AF | Group C—56 Controls | p between A–B | p between A–C | p between B–C |
---|---|---|---|---|---|---|
Mean age | 69.42 ± 10.39 | 73.44 ± 9.39 | 70.13 ± 9.91 | 0.041 | 0.722 | 0.074 |
Sex: male | 28 (56.0%) | 24 (44.4%) | 22(39.3%) | 0.239 | 0.085 | 0.583 |
female | 22 (44.0%) | 30 (55.6%) | 34(60.7%) | |||
BMI (kg/m2) | 32.40 ± 7.47 | 32.11 ± 7.29 | 28.56 ± 7.47 | 0.840 | 0.008 | 0.013 |
WC (cm) | 95.60 ± 10.73 | 96.85 ± 9.83 | 91.20 ± 11.63 | 0.536 | 0.046 | 0.07 |
SBP (mmHg) | 132.80 ± 20.75 | 134.63 ± 23.00 | 127.50 ± 15.10 | 0.672 | 0.133 | 0.059 |
DBP (mmHg) | 78.50 ± 13.25 | 80.93 ± 14.73 | 73.93 ± 14.60 | 0.381 | 0.096 | 0.014 |
HR (b/min) | 75.62 ± 13.88 | 78.13 ± 18.60 | 70.54 ± 11.89 | 0.440 | 0.045 | 0.013 |
Laboratory data | ||||||
Total chol. (mg/dL) | 187.54 ± 55.04 | 175.96 ± 60.74 | 189.89 ± 64.70 | 0.312 | 0.842 | 0.247 |
LDL chol (mg/dL) | 128.62 ± 49.35 | 129.33 ± 54.66 | 137.19 ± 53.76 | 0.945 | 0.396 | 0.449 |
HDL chol. (mg/dL) | 50.86 ± 24.89 | 44.31 ± 11.37 | 49.67 ± 15.80 | 0.084 | 0.769 | 0.044 |
Triglycerides (mg/dL) | 131.08 ± 58.05 | 128.66 ± 50.70 | 135.51 ± 62.39 | 0.821 | 0.706 | 0.530 |
Uric acid (mg/dL) | 6.07 ± 1.61 | 6.37 ± 1.34 | 6.29 ± 1.72 | 0.311 | 0.512 | 0.783 |
Basal glycemia (mg/dL) | 111.58 ± 24.07 | 115.70 ± 42.52 | 107.03 ± 17.52 | 0.549 | 0.266 | 0.162 |
eGRF (ml/min) | 55.22 ± 14.53 | 52.88 ± 14.16 | 64.83 ± 19.24 | 0.408 | 0.004 | 0.000 |
TyG index | 4.03 ± 1.65 | 4.67 ± 0.63 | 4.43 ± 1.16 | 0.012 | 0.159 | 0.174 |
Cardiovascular Pathology and Risk Factors | Group A—50 P with DM-2 | Group B—54 P with DM-2 and AF | Group C—56 Controls | p between A–B | p between A–C | p between B–C |
---|---|---|---|---|---|---|
SH | 45–90% | 49–90.7% | 17–30.4% | 0.898 | 0.000 | 0.000 |
CCS | 18–36% | 28–51.9% | 24–42.9% | 0.104 | 0.471 | 0.345 |
CHF | 17–34% | 32–59.3% | 22–39.3% | 0.010 | 0.573 | 0.036 |
NYHA I | 2–4% | 2–3.7% | 7–12.5% | 0.937 | 0.117 | 0.092 |
NYHA II | 11–22% | 25–46.3% | 10–17.9% | 0.009 | 0.593 | 0.001 |
NYHA III | 2–4% | 4–7.4% | 5–8.9% | 0.457 | 0.308 | 0.771 |
NYHA IV | 2–4% | 1–1.9% | 1–1.8% | 0.513 | 0.493 | 0.979 |
PAD | 5–10% | 2–3.7% | 3–5.4% | 0.200 | 0.366 | 0.677 |
Lacunar stroke | 7–14% | 8–14.8% | 11–19.6% | 0.906 | 0.440 | 0.503 |
Minor stroke | 4–8% | 7–13% | 6–10.7% | 0.411 | 0.633 | 0.715 |
CKD | 32–64% | 39–72.2% | 26–46.4% | 0.368 | 0.070 | 0.006 |
CKD stage I | 8–16% | 8–14.8% | 8–14.3% | 0.867 | 0.806 | 0.937 |
CKD stage II | 9–18% | 12–22.2% | 9–16.1% | 0.592 | 0.792 | 0.412 |
CKD stage III | 12–24% | 14–25.9% | 8–14.3% | 0.821 | 0.202 | 0.127 |
CKD stage IV | 3–6% | 5–9.3% | 1–1.8% | 0.533 | 0.256 | 0.084 |
Obesity | 23–46% | 24–44.4% | 12–21.4% | 0.802 | 0.022 | 0.010 |
Obesity gr I | 9–18% | 9–16.7% | 2–3.6% | 0.857 | 0.015 | 0.022 |
Obesity gr II | 6–12% | 5–9.3% | 4–7.1% | 0.650 | 0.393 | 0.686 |
Obesity gr III | 8–16% | 10–18.5% | 6–10.7% | 0.564 | 0.422 | 0.161 |
Hyperlipemia | 23–46% | 33–61.1% | 29–51.8% | 0.122 | 0.552 | 0.324 |
Smoking | 17–34% | 13–24.1% | 22–39.3% | 0.264 | 0.573 | 0.087 |
Parameters | Group A—50 P with DM-2 | Group B—54 P with DM-2 and AF | Group C—56 P without DM-2 and AF | p between A–B | p between A–C | p between B–C |
---|---|---|---|---|---|---|
TTE parameters | ||||||
LA (mm) | 40.58 ± 6.00 | 43.40 ± 6.93 | 39.73 ± 5.15 | 0.029 | 0.436 | 0.002 |
IVS (mm) | 11.99 ± 1.97 | 12.08 ± 1.89 | 11.82 ± 2.48 | 0.807 | 0.696 | 0.531 |
LVPW (mm) | 12.16 ± 2.62 | 11.72 ± 2.07 | 12.39 ± 2.83 | 0.345 | 0.668 | 0.161 |
LVESD (mm) | 23.40 ± 6.28 | 24.81 ± 7.29 | 24.39 ± 6.39 | 0.294 | 0.423 | 0.747 |
LVEDD (mm) | 45.12 ± 4.84 | 46.88 ± 6.65 | 44.80 ± 3.67 | 0.127 | 0.668 | 0.046 |
LVESV (mL) | 34.68 ± 15.06 | 38.90 ± 13.96 | 33.87 ± 12.10 | 0.141 | 0.761 | 0.046 |
LVEDV (mL) | 74.14 ± 15.75 | 77.42 ± 16.54 | 71.37 ± 15.96 | 0.303 | 0.373 | 0.054 |
LVEF (%) | 57.06 ± 7.14 | 56.20 ± 7.72 | 58.32 ± 5.55 | 0.560 | 0.310 | 0.101 |
E (m/s) | 0.72 ± 0.15 | 0.74 ± 0.21 | 0.68 ± 0.19 | 0.650 | 0.328 | 0.191 |
TRVmax (m/s) | 2.31 ± 0.41 | 2.50 ± 0.59 | 2.26 ± 0.0.40 | 0.050 | 0.595 | 0.015 |
sPAP (mmHg) | 36.50 ± 10.81 | 41.68 ± 12.89 | 36.00 ± 11.11 | 0.029 | 0.815 | 0.015 |
Ultrasonographic parameters | ||||||
IMT (mm) left | 0.63 ± 0.31 | 0.76 ± 0.26 | 0.68 ± 0.23 | 0.026 | 0.349 | 0.103 |
IMT (mm) right | 0.62 ± 0.33 | 0.72 ± 0.29 | 0.66 ± 0.27 | 0.117 | 0.485 | 0.311 |
ABI left | 1.12 ± 0.20 | 1.06 ± 0.10 | 1.10 ± 0.10 | 0.085 | 0.508 | 0.101 |
ABI right | 1.07 ± 0.08 | 1.12 ± 0.19 | 1.10 ± 0.10 | 0.084 | 0.056 | 0.619 |
Neuropsychological Tests | Group A—50 P with DM-2 | Group B—54 P with DM-2 and AF | Group C—56 Controls | p between A–B | p between A–C | p between B–C |
---|---|---|---|---|---|---|
MMSE | 26.34 ± 4.48 | 25.09 ± 4.79 | 27.63 ± 3.68 | 0.175 | 0.109 | 0.003 |
MoCA | 23.32 ± 5.16 | 22.89 ± 5.25 | 25.07 ± 4.67 | 0.674 | 0.069 | 0.023 |
ADL | 9.40 ± 1.01 | 9.24 ± 1.14 | 9.66 ± 0.88 | 0.456 | 0.158 | 0.034 |
IADL | 6.60 ± 1.86 | 6.56 ± 1.77 | 7.21 ± 1.38 | 0.901 | 0.060 | 0.033 |
GDS-15 | 6.88 ± 2.28 | 7.12 ± 2.38 | 6.23 ± 2.15 | 0.588 | 0.136 | 0.041 |
Patients with MMSE < 27 n (%) * | OR (95%CI) | p-Value | |
---|---|---|---|
Group A—Patients with DM-2 | |||
Age (years) | 16 (32.00%) | 1.154 (1.057; 1.259) | 0.001 |
Group B—Patients with DM-2 and AF | |||
Age (years) | 28 (51.85%) | 1.073 (1.004; 1.146) | 0.037 |
Group A and B Patients with DM-2 and patients with DM-2 and AF | |||
Age (years) | 44 (42.31%) | 1.123 (1.061; 1.189) | <0.001 |
Hyperlipemia: No | 15 (14.42%) | 1 | |
Yes | 29 (27.88%) | 3.946 (1.161; 7.475) | 0.030 |
Patients with MMSE < 24 n (%) * | OR (95%CI) | p-Value | |
---|---|---|---|
Patients with DM-2 | |||
Age (years) | 8 (16.00%) | 1.235 (1.069; 1.428) | 0.004 |
Patients with DM-2 and AF | |||
Age (years) | 18 (33.33%) | 1.076 (0.999; 1.158) | 0.052 |
Patients with DM-2 and Patients with DM-2 and AF | |||
Age (years) | 26 (25.00%) | 1.128 (1.058; 1.202) | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Militaru, M.; Lighezan, D.F.; Tudoran, C.; Militaru, A.G. Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Diabetes Mellitus Type 2. Biomedicines 2024, 12, 672. https://doi.org/10.3390/biomedicines12030672
Militaru M, Lighezan DF, Tudoran C, Militaru AG. Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Diabetes Mellitus Type 2. Biomedicines. 2024; 12(3):672. https://doi.org/10.3390/biomedicines12030672
Chicago/Turabian StyleMilitaru, Marius, Daniel Florin Lighezan, Cristina Tudoran, and Anda Gabriela Militaru. 2024. "Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Diabetes Mellitus Type 2" Biomedicines 12, no. 3: 672. https://doi.org/10.3390/biomedicines12030672
APA StyleMilitaru, M., Lighezan, D. F., Tudoran, C., & Militaru, A. G. (2024). Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Diabetes Mellitus Type 2. Biomedicines, 12(3), 672. https://doi.org/10.3390/biomedicines12030672