Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes
Abstract
:1. Introduction
2. Triple-Negative Breast Cancer (TNBC)
3. Human Epidermal Growth Factor Receptor 2 Positive (HER2+) BC
4. Luminal BC
5. Ductal Carcinoma In Situ (DCIS)
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The Evaluation of Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Khoury, T.; Nagrale, V.; Opyrchal, M.; Peng, X.; Wang, D.; Yao, S. Prognostic Significance of Stromal Versus Intratumoral Infiltrating Lymphocytes in Different Subtypes of Breast Cancer Treated with Cytotoxic Neoadjuvant Chemotherapy. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 523. [Google Scholar] [CrossRef] [PubMed]
- Ladoire, S.; Arnould, L.; Apetoh, L.; Coudert, B.; Martin, F.; Chauffert, B.; Fumoleau, P.; Ghiringhelli, F. Pathologic Complete Response to Neoadjuvant Chemotherapy of Breast Carcinoma Is Associated with the Disappearance of Tumor-Infiltrating Foxp3+ Regulatory T Cells. Clin. Cancer Res. 2008, 14, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Shou, J.; Zhang, Z.; Lai, Y.; Chen, Z.; Huang, J. Worse Outcome in Breast Cancer with Higher Tumor-Infiltrating FOXP3+ Tregs: A Systematic Review and Meta-Analysis. BMC Cancer 2016, 16, 687. [Google Scholar] [CrossRef] [PubMed]
- Sobral-Leite, M.; Salomon, I.; Opdam, M.; Kruger, D.T.; Beelen, K.J.; Van Der Noort, V.; Van Vlierberghe, R.L.P.; Blok, E.J.; Giardiello, D.; Sanders, J.; et al. Cancer-Immune Interactions in ER-Positive Breast Cancers: PI3K Pathway Alterations and Tumor-Infiltrating Lymphocytes. Breast Cancer Res. 2019, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; et al. PD-L1 Expression in Triple-Negative Breast Cancer. Cancer Immunol. Res. 2014, 2, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.N.; Qu, F.J.; Liu, H.; Li, Z.J.; Zhang, Y.C.; Han, X.; Zhu, Z.Y.; Lv, Y. Prognostic Impact of Tertiary Lymphoid Structures in Breast Cancer Prognosis: A Systematic Review and Meta-Analysis. Cancer Cell Int. 2021, 21, 536. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Volm, M.D.; Shapiro, R.L.; Yee, H.T.; Oratz, R.; Formenti, S.C.; Muggia, F.; Symmans, W.F. Development of Tumor-Infiltrating Lymphocytes in Breast Cancer after Neoadjuvant Paclitaxel Chemotherapy. Clin. Cancer Res. 2001, 7, 3025–3030. [Google Scholar] [PubMed]
- Hamy, A.S.; Pierga, J.Y.; Sabaila, A.; Laas, E.; Bonsang-Kitzis, H.; Laurent, C.; Vincent-Salomon, A.; Cottu, P.; Lerebours, F.; Rouzier, R.; et al. Stromal Lymphocyte Infiltration after Neoadjuvant Chemotherapy Is Associated with Aggressive Residual Disease and Lower Disease-Free Survival in HER2-Positive Breast Cancer. Ann. Oncol. 2017, 28, 2233–2240. [Google Scholar] [CrossRef]
- Asano, Y.; Kashiwagi, S.; Goto, W.; Kurata, K.; Noda, S.; Takashima, T.; Onoda, N.; Tanaka, S.; Ohsawa, M.; Hirakawa, K. Tumour-Infiltrating CD8 to FOXP3 Lymphocyte Ratio in Predicting Treatment Responses to Neoadjuvant Chemotherapy of Aggressive Breast Cancer. Br. J. Surg. 2016, 103, 845–854. [Google Scholar] [CrossRef]
- Gu-Trantien, C.; Loi, S.; Garaud, S.; Equeter, C.; Libin, M.; De Wind, A.; Ravoet, M.; Le Buanec, H.; Sibille, C.; Manfouo-Foutsop, G.; et al. CD4+ Follicular Helper T Cell Infiltration Predicts Breast Cancer Survival. J. Clin. Investig. 2013, 123, 2873–2892. [Google Scholar] [CrossRef] [PubMed]
- Solinas, C.; Carbognin, L.; De Silva, P.; Criscitiello, C.; Lambertini, M. Tumor-Infiltrating Lymphocytes in Breast Cancer According to Tumor Subtype: Current State of the Art. Breast 2017, 35, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, H.; Mori-Shiraishi, K.; Nakajima, M.; Ueki, H. Defining Lymphocyte-Predominant Breast Cancer by the Proportion of Lymphocyte-Rich Stroma and Its Significance in Routine Histopathological Diagnosis. Pathol. Int. 2015, 65, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; Aleskandarany, M.; El-Sayed, M.E.; Blamey, R.W.; Elston, C.W.; Ellis, I.O.; Lee, A.H.S. The Prognostic Significance of Inflammation and Medullary Histological Type in Invasive Carcinoma of the Breast. Eur. J. Cancer 2009, 45, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Loi, S.; Drubay, D.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J. Clin. Oncol. 2019, 37, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-Infiltrating Lymphocytes and Prognosis in Different Subtypes of Breast Cancer: A Pooled Analysis of 3771 Patients Treated with Neoadjuvant Therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Dieci, M.V.; Vernieri, C.; Massa, D.; Nicole, L.; Griguolo, G.; Miglietta, F.; Vingiani, A.; Lobefaro, R.; Girargi, F.; Vernaci, G.; et al. TILs Are an Independent Prognostic Factor in Early-Stage TNBC Patients Achieving Pathologic Complete Response after Neoadjuvant Chemotherapy. Available online: https://sabcs2023.eventscribe.net/fsPopup.asp?Mode=posterinfo&PosterID=624527 (accessed on 20 December 2023).
- Sharma, P.; Stecklein, S.R.; Yoder, R.; Staley, J.M.; Schwensen, K.; O’Dea, A.; Nye, L.E.; Elia, M.; Satelli, D.; Crane, G.; et al. Clinical and Biomarker Results of Neoadjuvant Phase II Study of Pembrolizumab and Carboplatin plus Docetaxel in Triple-Negative Breast Cancer (TNBC) (NeoPACT). J. Clin. Oncol. 2022, 40, 513. [Google Scholar] [CrossRef]
- Nederlof, I.; Isaeva, O.I.; Bakker, N.; de Graaf, M.; Salgado, R.F.; Klioueva, N.; Van De Vijver, K.; van Duijnhoven, F.; Kalashnikova, E.; Willingham, S.; et al. LBA13 Nivolumab and Ipilimumab in Early-Stage Triple Negative Breast Cancer (TNBC) with Tumor-Infiltrating Lymphocytes (TILs): First Results from the BELLINI Trial. Ann. Oncol. 2022, 33, s1382. [Google Scholar] [CrossRef]
- Loibl, S.; Schneeweiss, A.; Huober, J.; Braun, M.; Rey, J.; Blohmer, J.U.; Furlanetto, J.; Zahm, D.M.; Hanusch, C.; Thomalla, J.; et al. Neoadjuvant Durvalumab Improves Survival in Early Triple-Negative Breast Cancer Independent of Pathological Complete Response. Ann. Oncol. 2022, 33, 1149–1158. [Google Scholar] [CrossRef]
- Park, J.H.; Jonas, S.F.; Bataillon, G.; Criscitiello, C.; Salgado, R.; Loi, S.; Viale, G.; Lee, H.J.; Dieci, M.V.; Kim, S.B.; et al. Prognostic Value of Tumor-Infiltrating Lymphocytes in Patients with Early-Stage Triple-Negative Breast Cancers (TNBC) Who Did Not Receive Adjuvant Chemotherapy. Ann. Oncol. 2019, 30, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- De Jong, V.M.T.; Wang, Y.; Ter Hoeve, N.D.; Opdam, M.; Stathonikos, N.; Jóźwiak, K.; Hauptmann, M.; Cornelissen, S.; Vreuls, W.; Rosenberg, E.H.; et al. Prognostic Value of Stromal Tumor-Infiltrating Lymphocytes in Young, Node-Negative, Triple-Negative Breast Cancer Patients Who Did Not Receive (Neo)Adjuvant Systemic Therapy. J. Clin. Oncol. 2022, 40, 2361–2375. [Google Scholar] [CrossRef] [PubMed]
- Geurts, V.; Balduzzi, S.; Horlings, H.; Steenbruggen, T.G.; Siesling, S.; Adams, S.; Sonke, G.; Salgado, R.; Kok, M. Tumor Infiltrating Lymphocytes Identify Patients with Stage I TNBC with Excellent Outcome without Chemotherapy. Available online: https://sabcs2023.eventscribe.net/fsPopup.asp?Mode=posterinfo&PosterID=626626 (accessed on 20 December 2023).
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, L.M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early Breast Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2023, 35, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L.; Burstein, H.J.; Dang, C.; Elias, A.D.; et al. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2021, 19, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Burstein, H.J.; Gnant, M.; Loibl, S.; Cameron, D.; Regan, M.M.; Denkert, C.; Poortmans, P.; Weber, W.P.; Thürlimann, B.; et al. Understanding Breast Cancer Complexity to Improve Patient Outcomes: The St Gallen International Consensus Conference for the Primary Therapy of Individuals with Early Breast Cancer 2023. Ann. Oncol. 2023, 34, 970–986. [Google Scholar] [CrossRef]
- Loi, S.; Salgado, R.; Schmid, P.; Cortes, J.; Cescon, D.W.; Winer, E.P.; Toppmeyer, D.L.; Rugo, H.S.; De Laurentiis, M.; Nanda, R.; et al. Association between Biomarkers and Clinical Outcomes of Pembrolizumab Monotherapy in Patients with Metastatic Triple-Negative Breast Cancer: KEYNOTE-086 Exploratory Analysis. JCO Precis. Oncol. 2023, 7, e2200317. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef]
- Luen, S.; Virassamy, B.; Savas, P.; Salgado, R.; Loi, S. The Genomic Landscape of Breast Cancer and Its Interaction with Host Immunity. Breast 2016, 29, 241–250. [Google Scholar] [CrossRef]
- Loi, S.; Sirtaine, N.; Piette, F.; Salgado, R.; Viale, G.; Van Eenoo, F.; Rouas, G.; Francis, P.; Crown, J.P.A.; Hitre, E.; et al. Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin with Doxorubicin-Based Chemotherapy: BIG 02-98. J. Clin. Oncol. 2013, 31, 860–867. [Google Scholar] [CrossRef]
- Dieci, M.V.; Conte, P.; Bisagni, G.; Brandes, A.A.; Frassoldati, A.; Cavanna, L.; Musolino, A.; Giotta, F.; Rimanti, A.; Garrone, O.; et al. Association of Tumor-Infiltrating Lymphocytes with Distant Disease-Free Survival in the ShortHER Randomized Adjuvant Trial for Patients with Early HER2+ Breast Cancer. Ann. Oncol. 2019, 30, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.K.; Bradley, R.; Braybrooke, J.; Gray, R.G.; Taylor, H.; Denkert, C.; Badve, S.S.; Kim, R.S.; Lacroix-Triki, M.; Regan, M.M.; et al. Do Tumor Infiltrating Lymphocytes (TILs) Predict Benefits from Trastuzumab Therapy for HER2 Positive Breast Cancer? Meta-Analysis of Individual Patient Data from 4097 Women in 5 Trials. J. Clin. Oncol. 2023, 41, 508. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Zhang, P.; Xue, S.; Chen, Y.; Sun, L.; Yang, R. Predictive and Prognostic Values of Tumor Infiltrating Lymphocytes in Breast Cancers Treated with Neoadjuvant Chemotherapy: A Meta-Analysis. Breast 2022, 66, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Solinas, C.; Ceppi, M.; Lambertini, M.; Scartozzi, M.; Buisseret, L.; Garaud, S.; Fumagalli, D.; de Azambuja, E.; Salgado, R.; Sotiriou, C.; et al. Tumor-Infiltrating Lymphocytes in Patients with HER2-Positive Breast Cancer Treated with Neoadjuvant Chemotherapy plus Trastuzumab, Lapatinib or Their Combination: A Meta-Analysis of Randomized Controlled Trials. Cancer Treat. Rev. 2017, 57, 8–15. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, Y.; Wu, Q.; Song, Y.; Ma, X.; Zhang, B.; Wang, H.; Huang, Y. Association between Levels of Tumor-Infiltrating Lymphocytes in Different Subtypes of Primary Breast Tumors and Prognostic Outcomes: A Meta-Analysis. BMC Women’s Health 2020, 20, 194. [Google Scholar] [CrossRef]
- Bianchini, G.; Pusztai, L.; Pienkowski, T.; Im, Y.H.; Bianchi, G.V.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Galeota, E.; Magazzù, D.; et al. Immune Modulation of Pathologic Complete Response after Neoadjuvant HER2-Directed Therapies in the NeoSphere Trial. Ann. Oncol. 2015, 26, 2429–2436. [Google Scholar] [CrossRef] [PubMed]
- Ignatiadis, M.; Van Den Eynden, G.; Roberto, S.; Fornili, M.; Bareche, Y.; Desmedt, C.; Rothé, F.; Maetens, M.; Venet, D.; Holgado, E.; et al. Tumor-Infiltrating Lymphocytes in Patients Receiving Trastuzumab/Pertuzumab-Based Chemotherapy: A TRYPHAENA Substudy. JNCI J. Natl. Cancer Inst. 2019, 111, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Y.; Lu, F.; Zhao, X.; Nie, Z.; He, B. The Prognostic Values of FOXP3+ Tumor-Infiltrating T Cells in Breast Cancer: A Systematic Review and Meta-Analysis. Clin. Transl. Oncol. 2023, 25, 1830–1843. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Yeong, J.; Thike, A.A.; Bay, B.H.; Tan, P.H. Prognostic Role of Immune Infiltrates in Breast Ductal Carcinoma In Situ. Breast Cancer Res. Treat. 2019, 177, 17–27. [Google Scholar] [CrossRef]
- Luen, S.J.; Salgado, R.; Fox, S.; Savas, P.; Eng-Wong, J.; Clark, E.; Kiermaier, A.; Swain, S.M.; Baselga, J.; Michiels, S.; et al. Tumour-Infiltrating Lymphocytes in Advanced HER2-Positive Breast Cancer Treated with Pertuzumab or Placebo in Addition to Trastuzumab and Docetaxel: A Retrospective Analysis of the CLEOPATRA Study. Lancet Oncol. 2017, 18, 52–62. [Google Scholar] [CrossRef]
- Liu, S.; Chen, B.; Burugu, S.; Leung, S.; Gao, D.; Virk, S.; Kos, Z.; Parulekar, W.R.; Shepherd, L.; Gelmon, K.A.; et al. Role of Cytotoxic Tumor-Infiltrating Lymphocytes in Predicting Outcomes in Metastatic HER2-Positive Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2017, 3, e172085. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2021, 3, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Viale, G.; Hanlon Newell, A.E.; Walker, E.; Harlow, G.; Bai, I.; Russo, L.; Dell’Orto, P.; Maisonneuve, P. Ki-67 (30-9) Scoring and Differentiation of Luminal A- and Luminal B-like Breast Cancer Subtypes. Breast Cancer Res. Treat. 2019, 178, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Mathieu, M.C.; Guarneri, V.; Conte, P.; Delaloge, S.; Andre, F.; Goubar, A. Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in Two Phase III Randomized Adjuvant Breast Cancer Trials. Ann. Oncol. 2015, 26, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.-H.; Li, C.-X.; Liu, M.; Jiang, J.-Y. Predictive and Prognostic Role of Tumour-Infiltrating Lymphocytes in Breast Cancer Patients with Different Molecular Subtypes: A Meta-Analysis. BMC Cancer 2020, 20, 1150. [Google Scholar] [CrossRef]
- Loi, S.; Curigliano, G.; Salgado, R.; Iván, R.; Díaz, R.; Delaloge, S.; Rojas García, C.I.; Kok, M.; Saura, C.; Harbeck, N.; et al. Biomarker Results in High-Risk Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Primary Breast Cancer Following Neoadjuvant Chemotherapy ± Nivolumab: An Exploratory Analysis of CheckMate 7FL. In Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 5–9 December 2023. [Google Scholar]
- Engels, C.C.; Charehbili, A.; van de Velde, C.J.H.; Bastiaannet, E.; Sajet, A.; Putter, H.; van Vliet, E.A.; van Vlierberghe, R.L.P.; Smit, V.T.H.B.M.; Bartlett, J.M.S.; et al. The Prognostic and Predictive Value of Tregs and Tumor Immune Subtypes in Postmenopausal, Hormone Receptor-Positive Breast Cancer Patients Treated with Adjuvant Endocrine Therapy: A Dutch TEAM Study Analysis. Breast Cancer Res. Treat. 2015, 149, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Griguolo, G.; Miglietta, F.; Guarneri, V. The Immune System and Hormone-Receptor Positive Breast Cancer: Is It Really a Dead End? Cancer Treat. Rev. 2016, 46, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; El-Sayed, M.E.; Green, A.R.; Paish, E.C.; Powe, D.G.; Gee, J.; Nicholson, R.I.; Lee, A.H.S.; Robertson, J.F.R.; Ellis, I.O. Biologic and Clinical Characteristics of Breast Cancer with Single Hormone Receptor Positive Phenotype. J. Clin. Oncol. 2007, 25, 4772–4778. [Google Scholar] [CrossRef] [PubMed]
- Kunc, M.; Popęda, M.; Pęksa, R.; Biernat, W.; Senkus-Konefka, E. The Abundance of Tumor-Infiltrating Lymphocytes Correlates with Favorable Overall Survival in Single-Hormone Receptor-Positive Breast Cancer and up-Regulation of Immune-Related Genes. In Proceedings of the 22nd Congress of Polish Society of Pathologists, Oral Session, Poznań, Poland, 14 October 2022. [Google Scholar]
- Wu, S.L.; Yu, X.; Mao, X.; Jin, F. Prognostic Value of Tumor-Infiltrating Lymphocytes in DCIS: A Meta-Analysis. BMC Cancer 2022, 22, 782. [Google Scholar] [CrossRef]
- Toss, M.S.; Miligy, I.; Al-Kawaz, A.; Alsleem, M.; Khout, H.; Rida, P.C.; Aneja, R.; Green, A.R.; Ellis, I.O.; Rakha, E.A. Prognostic Significance of Tumor-Infiltrating Lymphocytes in Ductal Carcinoma in Situ of the Breast. Mod. Pathol. 2018, 31, 1226–1236. [Google Scholar] [CrossRef]
- Pasetto, C.; Aguiar, F.; Peixoto, M.; Doria, M.; Mota, B.; Maesaka, J.; Filassi, J.R.; Baracat, E.; Goncalves, R. Evaluation of Tumor Infiltrating Lymphocytes as a Predictive Biomarker of Recurrence in Patients with Ductal Carcinoma In Situ of the Breast. Available online: https://sabcs2023.eventscribe.net/fsPopup.asp?Mode=posterinfo&PosterID=624877 (accessed on 20 December 2023).
- Pruneri, G.; Lazzeroni, M.; Bagnardi, V.; Tiburzio, G.B.; Rotmensz, N.; DeCensi, A.; Guerrieri-Gonzaga, A.; Vingiani, A.; Curigliano, G.; Zurrida, S.; et al. The Prevalence and Clinical Relevance of Tumor-Infiltrating Lymphocytes (TILs) in Ductal Carcinoma in Situ of the Breast. Ann. Oncol. 2017, 28, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Caparica, R.; Bruzzone, M.; Agostinetto, E.; Franzoi, M.A.; Ceppi, M.; Radosevic-Robin, N.; Penault-Llorca, F.; Willard-Gallo, K.; Loi, S.; Salgado, R.; et al. Tumour-Infiltrating Lymphocytes in Non-Invasive Breast Cancer: A Systematic Review and Meta-Analysis. Breast 2021, 59, 183–192. [Google Scholar] [CrossRef] [PubMed]
Subtype | Setting | Setting/Population Details | N | Subgroup | Outcome Measure | Outcomes | p Value | Study Ref. No. | |
---|---|---|---|---|---|---|---|---|---|
TNBC | early BC | cancer treated with AChT | 2148 | 10% sTILs increment | iDFS | HR 0.87 (95% CI: 0.83 to 0.91) | <0.000001 | [16] | |
dDFS | HR 0.83 (95% CI: 0.79 to 0.88) | <0.000001 | |||||||
OS | HR 0.84 (95% CI: 0.79 to 0.89) | <0.000001 | |||||||
node-negative cancer treated with AChT | 706 | sTILs ≥ 30% vs. <30% | 3-year iDFS | 92% (95% CI: 0.89–0.96) vs. 88% (95% CI: 0.85–0.90) | <0.0001 | ||||
3-year dDFS | 97% (95% CI: 0.95–0.99) vs. 91% (95% CI: 0.88–0.83) | <0.0001 | |||||||
3-year OS | 99% (95% CI: 0.97–1.00) vs. 95% (95% CI: 0.93–0.97) | <0.0001 | |||||||
cancer treated with NAChT | 906 | sTILs < 10% | pCR | 31% | <0.0001 | [17] | |||
sTILs 11–59% | 31% | ||||||||
sTILs ≥ 60% | 50% | ||||||||
10% sTILs increment | DFS | HR 0.93 (95% CI: 0.87–0.98) | 0.011 | ||||||
OS | HR 0.92 (95% CI: (0.86–0.99) | 0.032 | |||||||
stage I–III treated with NAChT | 134 | TILs > 20% vs. <20% | 5-year RFS | 100% vs. 82.6% | <0.001 | [18] | |||
5-year OS | 100% vs. 90.1% | <0.007 | |||||||
cancer treated with NAChIT | 117 | sTILs ≥ 30% vs. <30% | pCR | 78% vs. 45% (OR: 4.39; 95% CI: 1.63–11.82) | 0.003 | [19] | |||
174 | TILs ≥ 11% vs. <11% | iDFS | HR 0.55 (95% CI: 0.28–1.07) | 0.0079 | [21] | ||||
stage I without (N)AChT | 1041 | sTILs ≥ 30% vs. <30% | BCSS | 96% vs. 87% HR 0.45 (95% CI: 0.26–0.77) | ND | [24] | |||
stage I cancer in elderly patients treated without ChT | 74 | ≥30% sTILs | 5-year iDFS | 91% (95% CI: 84% to 96%) | ND | [22] | |||
5-year dDFS | 97% (95% CI: 93% to 100%) | ||||||||
5-year OS | 98% (95% CI: 95% to 100%) | ||||||||
cancer in elderly patients treated without ChT | 476 | 10% sTILs increment | iDFS | HR 0.93 (95% CI: 0.82–0.97) | 0.012 | ||||
dDFS | HR 0.86 (95% CI: 0.77–0.95) | <0.01 | |||||||
OS | HR 0.88 (95% CI: 0.79–0.98) | 0.015 | |||||||
cancer in young patients treated without ChT | 441 | 10% sTILs increment | OS | HR 0.82 (95%CI 95% CI: 0.77–0.88) | <0.001 | [23] | |||
sTILs < 30% | cumulative incidence of a distant metastases or death | 38.4% (95% CI: 32.1 to 44.6) | ND | ||||||
sTILs > 75% | 2.1% (95% CI: 0 to 5.0) | ||||||||
advanced/metastatic BC | Immunotherapy in metastatic BC | 228 | sTILs ≥ 10% vs. <10% | ORR | 18.6% vs. 6.1% | 0.012 | [29] | ||
HER2+ | early BC | cancer treated with AChT + T | 866 | sTILs < 20%; 9 weeks of T vs. sTILs < 20%; 1 year of T | 5-year dDFS | 88.8% vs. 93.3% (HR 1.75, 95% CI: 1.09–2.8) | 0.02 | [33] | |
sTILs ≥ 20%; 9 weeks of T vs. sTILs ≥ 20%; 1 year of T | 97.6% vs. 93.7% (HR 0.23, 95% CI: 0.05–1.09) | 0.064 | |||||||
cancer treated with AChT + T | 4097 | 10% TILs increment | recurrence risk | HR 0.87 (95%CI: 0.84–0.9) | <0.0001 | [34] | |||
node positive cancer treated with anthracycline ChT | 297 | 10% sTILs increment | DFS | ND | 0.042 | [32] | |||
OS | ND | 0.018 | |||||||
cancer treated with NAChT + anti-HER agent | 9145 | high TILs vs. low TILs | pCR | pooled OR 2.19 (95% CI: 1.06–4.52) | 0.035 | [35] | |||
DFS | pooled HR 0.95 (95% CI: 0.92–0.98) | 0.0003 | |||||||
OS | pooled HR 0.93 (95% CI: 0.87–0.99) | 0.01 | |||||||
cancer treated with NAChT + T, L or T + L | 1256 | high TILs vs. low TILs | pCR | OR 2.46 (95% CI: 1.36–4.43) | 0.035 | [36] | |||
cancer treated with NAChT/AChT | 1801 | 10% TILs increment | pCR | pooled OR 1.27 (95% CI: 1.19–1.35) | 0.01 | [37] | |||
1985 | OS | HR 0.92 (95% CI: 0.89–0.95) | 0.06 | ||||||
cancer treated with NAChT +/− T | 107 | TILs ≤ 25% vs. >25% | DFS | HR 3.23 (95% CI: 1.05–9.93) | 0.03 | [9] | |||
cancer treated with NAChT + T/P or both or T + P alone | 243 | TILs < 5% | pCR | TH | 0% | TH 0.157 THP 0.240 HP 0.413 TP 0.685 combined 0.062 | [38] | ||
THP | 28.6% | ||||||||
HP | 0% | ||||||||
TP | 12.5% | ||||||||
combined TH, HP, TP | 4.3% | ||||||||
TILs 5–49% | TH | 36.4% | |||||||
THP | 48.9% | ||||||||
HP | 19.9% | ||||||||
TP | 25% | ||||||||
combined TH, HP, TP | 26.9% | ||||||||
TILs ≥ 50% | TH | 33.3% | |||||||
THP | 22.2% | ||||||||
HP | 20% | ||||||||
TP | 28.6% | ||||||||
combined TH, HP, TP | 26.7% | ||||||||
cancer treated with ChT + T + P | 213 | 10% TILs increment | pCR | OR: 1.12 (95% CI: 0.95–1.31) | 0.17 | [39] | |||
EFS | adjusted OR: 0.75 (95% CI: 0.56 –1.00) | 0.05 | |||||||
advanced/metastatic BC | cancer treated with ChT + T +/− P | 678 | 10% sTILs increment | OS | adjusted HR 0.89 (95% CI: 0.83–0.96) | 0.0014 | [42] | ||
sTILs > 20% vs. ≤20% | HR 0.76, 95%CI: 0.6–0.96 | 0.021 | |||||||
cancer treated with ChT+ T or L | 614 | sTILs < 5% vs. ≥5% | PFS | HR 1.04 (95% CI: 0.84–1.28) | 0.74 | [43] | |||
Luminal BC | early BC | cancer treated with NAChT | 1366 | TILs < 11% | pCR | 6% | OR 1.31 (95% CI: 1.23–1.41) | <0.0001 | [17] |
TILs 11–59% | 11% | ||||||||
TILs ≥ 60% | 28% | ||||||||
832 | TILs < 11% vs. ≥11% | OS | HR 1.1 (95% CI: 1.02–1.19) | 0.011 | |||||
1597 | high TILs vs. low TILs | pCR | OR: 1.154 (95% CI: 0.789 –1.690) | 0.46 | [47] | ||||
1829 | OS | HR 1.077 (95% CI: 1.016 –1.141) | 0.012 | ||||||
cancer treated with NAChT and ET + nivolumab | 344 | sTILs ≥ 1% vs. <1% | pCR | ND | ND | [48] | |||
early and advanced BC | single hormone receptor-positive BC | 197 | TILs > 10% vs. <10% | risk of death | HR 3.14 (95% CI: 1.37–7.19) | 0.006 | [52] | ||
DCIS | carcinoma in situ treated with any treatment | 534 | dense touching TILs vs. sparse touching TILs | recurrence-free interval | HR 2.573 (95% CI: 1.412–4.69) | 0.002 | [54] | ||
carcinoma in situ treated with any treatment | 283 | TILs > 17% vs. <17% | recurrence risk | HR 2.97 (95% CI: 1.17–7.51) | 0.02 | [55] | |||
carcinoma in situ treated with surgery +/− RT; HT | 2941 | TILs ≥ 50% vs. <50% | ipsilateral in situ or invasive recurrence | OR: 2.05 (95% CI: 1.03–4.08) | 0.402 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciarka, A.; Piątek, M.; Pęksa, R.; Kunc, M.; Senkus, E. Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes. Biomedicines 2024, 12, 763. https://doi.org/10.3390/biomedicines12040763
Ciarka A, Piątek M, Pęksa R, Kunc M, Senkus E. Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes. Biomedicines. 2024; 12(4):763. https://doi.org/10.3390/biomedicines12040763
Chicago/Turabian StyleCiarka, Aleksandra, Michał Piątek, Rafał Pęksa, Michał Kunc, and Elżbieta Senkus. 2024. "Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes" Biomedicines 12, no. 4: 763. https://doi.org/10.3390/biomedicines12040763
APA StyleCiarka, A., Piątek, M., Pęksa, R., Kunc, M., & Senkus, E. (2024). Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes. Biomedicines, 12(4), 763. https://doi.org/10.3390/biomedicines12040763