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Abstract: Cancers are currently the major cause of mortality in the world. According to previous
studies, matrix metalloproteinases (MMPs) have an impact on tumor cell proliferation, which could
lead to the onset and progression of cancers. Therefore, regulating the expression and activity of
MMPs, especially MMP-2 and MMP-9, could be a promising strategy to reduce the risk of cancers.
Various studies have tried to investigate and understand the pathophysiology of cancers to suggest
potent treatments. In this review, we summarize how natural products from marine organisms and
plants, as regulators of MMP-2 and MMP-9 expression and enzymatic activity, can operate as potent
anticancer agents.
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1. Introduction

Cancers represent a danger to human health, and they are the second leading cause of
death worldwide [1]. Currently, people living in poor countries bear the brunt of sickness;
a recent survey revealed that about 10 million cancer-related deaths and 19.3 million new
cases were reported globally in 2020 [1,2]. The leading cause of cancer-related deaths
worldwide was lung cancer (1.79 million) followed by other cancers, including liver cancer
(0.83 million), stomach cancer (0.77 million), breast cancer (0.68 million), and other cancers
(Figure 1) [3].
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Figure 1. A schematic representation of the number of different cancer deaths globally.

According to research on 29 cancer diseases across 204 nations, the overall cost of
cancer to the world economy between 2020 and 2050 will be USD 25.2 trillion. About half
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of those will be attributed to five different forms of cancer: lung, liver, breast, colon, and
leukemia [4]. Some of the key participants in the growth and aggressiveness of cancer cells
of glycolytic enzymes could be lactate dehydrogenase (LDH), caspases, cyclin-dependent
kinases, redox–detox enzymes, matrix metalloproteinases-2/9 (MMP-2 and MMP-9), and
NAD+-dependent enzymes [5,6].

When a family member has a greater incidence of a certain type of cancer, it has
been feasible to determine whether the disease runs in the family. The most common
hereditary cancer type is colorectal cancer, by mutation of DNA MMR genes. In addition,
breast and ovarian cancer are due to mutations of the BRCA1 as well as BRCA2 genes,
respectively. However, 20–30% of instances of breast cancer, which affects 10 in 100 women,
are genetically predisposed to BRCA1 and BRCA2 gene mutations [7,8]. Moreover, rapid
industrialization and inappropriate pesticide usage are also responsible for lung, liver, and
prostate cancer [9].

Particularly, it is difficult to diagnose cancer until it reaches the metastasis stage,
consequently lowering longevity [10]. To cure cancer, different types of medical technology
have been used including radiation, surgery, and systemic hormonal therapy. Surgery has
been performed on about 56% and 18% of those in stages I and II. The majority of people
(62%) in stage III receive chemotherapy to treat cancer, though expensive. As an alternative
to surgery and chemotherapy, the administration of natural compounds will be used to
modify the genes of cancer cells to mitigate cancerous death [11].

Throughout malignancy, tumor cells interact with surrounding endothelial cells as
well as growth regulators, cytokines, and extracellular matrix (ECM) components [12], such
as gelatin, collagen, elastin, and fibronectin. The four features of cancer (angiogenesis,
invasion, migration, and metastasis) are dependent on the exterior microenvironment.
MMPs are crucial because they increase the interplay between cells and the extracellular
matrix by breaking down several types of cell adhesion molecules [13,14]. The ECM exists
in muscle niches and consists of proteins, polysaccharides, RNA, and other materials, and
it is essential for maintaining homeostasis and regulating the development of skeletal
muscle [15]. Recent research by Liu et al. has demonstrated that collagen I, an important
component of the extracellular matrix, stimulates focal adhesion kinase activation, which in
turn controls NF-κB nuclear translocation and improves myoblast migration [16]. Thus, it
could be concluded that ECM plays a critical role in maintaining the physiological function
of satellite cells as well as skeletal muscle development. ECM variations are primarily
caused by two mechanisms: (1) chemical modification, which alters the biochemical and
structural properties of the ECM, and (2) proteolytic degradation, which releases bioactive
ECM fragments and ECM-bound factors and may be essential for the release of cellular
restrictions such as migratory barriers [17]. The degradation of the ECM by MMPs is a
major factor of change in cell shape. For instance, when epithelial cells lose their polarity
and cell–cell adhesion is disrupted, it facilitates the movement and infiltration of these
cancer cells [18,19]. Hence, MMPs promote tumor growth and spread through the capillary
endothelium [20].

The history of the therapeutic use of natural resources dates back thousands of years
when medicinal plants rich in phytochemicals and microbes were an important constituent
of medicines. This knowledge is frequently passed down from one generation to the
next. Generally, natural bioactive materials derived from plants, minerals, animals, and
microorganisms have been utilized to treat a wide range of illnesses [21]. Natural products
could inhibit MMPs by interacting with or chelating out the catalytic Zn(II) of MMPs.
Preclinical studies have shown that the hydroxamate-based MMP inhibitors, including
Batimastat and Marimastat, have potential to cure cancer [22,23]. However, the anticipated
outcomes of studies on patients were insufficient. Later, structural investigations using
X-ray crystallography and computer simulations were used to create several hydroxamate
derivatives, especially helping to increase their sensitivity as MMP inhibitors to limit
cancer [22]. In this review, we first briefly address MMPs and their critical roles in human
health and cancer progression; then, we address natural products from marine organisms
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and plants that could regulate MMP-2 and MMP-9 expression levels and activities. We
tried to provide general knowledge for development of new drugs with the potential to
control MMPs, leading to the successful treatment of cancers.

1.1. Basic Information on MMPs

MMPs are Zn(II)-dependent endopeptidase [24]. MMPs have several domains includ-
ing (i) membrane anchor domain and (ii) Zn(II)-binding domain, together forming the
(iii) active site for substrate catalysis (Figure 2). MMPs are released by cells as (iv) proen-
zymes (propeptide), which are dormant and must undergo chemical adaptation by reactive
oxygen species (ROS) to catalytically activated proteases [25]; (v) fibronectin repeats, which
enable them to bind big substrates like collagen and effectively break gelatins [26]; and
(vi) a hemopexin domain, which plays a role in ties to both substrates and inhibitors [27–29].
Furthermore, MMP-9 possesses a distinct (64 amino acid) linker sequence that joins the
hemopexin domain, known as (vii) the O-glycosylated domain, to (viii) the active site. The
most recent atypical MMP is MMP-23; it contains an immunoglobulin-like domain and
cysteine-rich domain linked to the C-terminus and a transmembrane domain bound to
the N-terminus [30]. Therefore, by trapping cis Kv1.3, MMP-23 affects cellular functions
whereas in trans-Kv1.3, it blocks extracellular functions. Breaking the bonds in protein
affects cytokine and chemokine signaling. However, MMP-23 activity in melanoma cancers
can assist disease progression through these mechanisms [31]. The primary function of
MMPs is to disintegrate ECM components. MMP-mediated breakage of ECM components
plays a role in triggering the discharge of growth hormones from the ECM, propagation,
and tissue reconstruction of cancer cells [32].
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Among multiple MMPs, MMP-2 and MMP-9 have been reported to be involved
in pathology of cancers. MMP-2 (gelatinase A) could break down type I, type II, and
type III collagen and is produced by stroma cells in the majority of organs, including
hematopoietic, endothelial, dendritic, fibroblast, mast, and macrophage cells. MMP-9
(gelatinase B) is prevalent in healthy tissues and released by dendritic, hematopoietic,
macrophage, neutrophil, fibroblast, and lymphocyte cells [33,34].

The structures of MMP-2 and MMP-9 are similar, but slightly different at the catalytic
center. For MMP-2, the catalytic center is composed of Zn(II) coordinated by three histidines
(His201, His205, and His211) and glutamic acid (Glu202). The structure of the catalytic
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domain of human MMP-9 is composed of the Zn(II) coordinated by three histidine residues
(His401, His405, and His411) and glutamic acid residue (Glu402) (Figure 3) [35].
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1.2. Normal and Disease Conditions

The ECM aids in intercellular communication, signal transduction, and the regulation
of biological processes including cell division and death [36]. ECM remodeling is an
important and necessary process that takes place in both physiologically normal and
diseased conditions. During its remodeling, cells entirely or partially destroy certain
components of the ECM, such as laminin, collagen, and fibrin [37]. MMPs are among the
proteases that mediate the breakdown process by inducing remodeling in both temporal
and spatial dimensions [38]. Therefore, regulation of MMPs is strictly maintained to keep
homeostasis. Dysregulation in any regulatory system leads to an aberrant expression
of MMPs, which can exacerbate tissue degradation disorders such as fibrotic illnesses,
osteoarthritis/arthritis, neurological illnesses including glaucoma, Parkinson’s disease,
Alzheimer’s disease, and Japanese encephalitis, which have been linked to aberrant MMP
expression [39,40]. Under normal circumstances, MMP expression is typically relatively
low; nonetheless, higher MMP levels have been seen in several cancer types and are
associated with increased tumor development and proliferation [41].

1.3. Growth of Cancer Cells through Blood

Cancer cell invasion, proliferation, and metastasis are caused by the degradation of
ECM proteins [42]. Many ECM components, such as collagen, laminin, gelatin, fibronectin,
elastin, and fibrin, are disrupted by MMPs and are linked to the integrity of the basement
membrane. Because of this, MMPs play a critical role in the processes of cancer cell
metastasis, which includes the growth of metastatic tumors, basal membrane degradation
and subsequent invasion into blood or lymphatic vessels, activation of various growth
factors required for angiogenesis, and extravasation into new tissues (Figure 4) [43]. Cancer
cells rely on the overexpression of MMP-2 and MMP-9 to travel from the source cells to
nearby tissues [43]. Furthermore, the degradation of basement membrane components
such as collagen and laminin can cleave endothelial/epithelial cell barrier proteins [44].
When the tumor cells have propagated to a secondary organ, MMPs help to modify the
tissue microenvironment to ensure the survival of metastatic cells. By liberating vascular
endothelial growth factor (VEGF) from angiogenic islets, MMP-9 is known to initiate
the angiogenic migration in cancer, [45] whereas MMP-2 controls the bioavailability of
dissolved VEGF-A and tumor vascular patterning [46]. For instance, MMP-9 can cleave
the interleukin-2 receptor-α (IL-2R-α) in order to inhibit the growth of lymphocytes called
T cells [47]. Several previous studies claim that MMPs inhibit TGF-α activation, thereby
decreasing T cells’ capacity to combat tumors [48,49]. It has also been observed that MMPs
generate soluble TNF-α, which encourages cancer cells to undergo apoptosis [50]. Blocking
MMPs seemed to be a viable strategy against cancer and metastatic growths. MMPs are
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important regulators for the progression of cancer, particularly metastasis. A number of
MMP inhibitors have been practically investigated in the past decade for their potential
for curbing metastasis and treating tumors. Marimastat was among of the first MMP
inhibitors and underwent phase III clinical trials. The overall survival of patients with
pancreatic cancer was found to be improved by Marimastat; however, the side effects of the
treatments included musculoskeletal toxicity [51]. Particular MMP inhibitors are currently
being developed to combat various cancers; though, blocking MMPs alone may not be
enough to stop the progression of cancer.
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1.4. Related Diseases

Some metalloproteinase-related polymorphisms and genes have an impact on the
development of hypersensitivity pneumonia, an inflammatory illness brought by an over-
reaction of the immune system to particular organic particle inhalation [52]. Lung function
decline appears to be associated with remodeling of the ECM in the airways and respiratory
interstice. The variability of circulating active MMP-9 levels is examined during renal
replacement therapy (RRT) for a disease that is associated with a high mortality risk and
may be made worse by persistent inflammation [53].

Aggressive brain tumors have been revealed to have higher tissue levels of MMP-2
and MMP-9 [54–57]. Patients with malignant brain tumors also had a lower duration of
survival when their tissues had positive levels of MMP-2. Cerebrospinal fluids of patients
with brain malignancies have been found to contain both latent and active versions of
MMP-2 and MMP-9 [58]. The activity of plasma MMP-2 and MMP-9 is considerably
elevated in metastatic prostate cancer [59]. Moreover, upregulation of MMP-2 in tumor
cells was linked to reduced disease-free survival. Metalloproteinase (MMP-2 and MMP-9)
were found to be important signs of cancer return upon analysis of MMP-2 and MMP-9
levels in radical prostatectomy tissues [60,61]. MMP-9 plays an important role in the onset,
progression, and metastasis of gastric [62], lung [63], colon [64], and breast cancers [64]. A
high level of MMP-2 and MMP-9 has been found in several cancer types, such as those
of the bladder, breast, bronchopulmonary, cervical, colon, glioma, larynx, lung, ovary,
melanoma, myeloma, esophagus, pancreas, prostate, skin, and stomach [65].
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2. Regulators of MMP-2 and/or MMP-9
2.1. Advantages of Applying Natural Products

Various natural products that are extracted from plants and marine species have
potential of medicinal properties. They could be used to cure cancer and other illnesses
for a long time because of their effectiveness against various impairments [66]. These
compounds’ fabulous offshoots against cancer cells indicate that their oral administration
is a tremendous discovery of science. Moreover, it has been revealed that almost 60%
of natural products such as flavonoids, tannins, alkaloids, and terpenoids could act as
anticarcinogenic agents [67,68]. They can control the growth, migration, and apoptosis
of cancer cells by altering metabolic pathways as well as biological systems. Preparing
anticarcinogenic medicine in a laboratory is expensive, tedious, and time-consuming,
whereas the usage of natural products as drugs is relatively easy [69]. However, researchers
take into consideration that natural products may be detrimental to patients due to their
potent toxicity concerns [70,71].

2.2. Natural Products from Marine Organisms

Emerging research over the previous fifty years has demonstrated the positive effects
of several natural compounds originating from marine life (Table 1) in both the avoidance
and amelioration of cancer [72]. New bioactive agents have been abundantly produced by
marine natural products [73–75]. The sea’s distinct climatic circumstances and variety of
marine ecosystems are mostly unexplored sources of new compounds with noteworthy
chemical novelty [76–78].

Table 1. Marine-derived natural product downregulators for MMP-2 and MMP-9.

Product Name Sources MMP-2 MMP-9 Models Refs.
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Lemnalol (Table 1), a compound that comes from soft corals (Lemnalia cervicornis
and Lemnalia tenuis Verseveldt), exhibits anti-inflammatory properties on mast cells (MCs)
and osteoclast function. An immunohistochemical analysis revealed that it reduces MC
infiltration and degranulation, and this impact may be partially attributed to decreased
MMP-9 activity [79]. Ageladine A is one kind of natural product derived from Agelas
Nakamura (a marine organism). While the N-methylated derivatives failed to inhibit MMP-
9, they suppressed both MMP-2 and MMP-9 proteolytic activity, based on in vitro research
on isolated enzymes (Table 1) [80]. Many MMP inhibitors act by chelating out the Zn(II)
from the catalytic domain [80].

Additionally, 11-Epi-sinularoide acetate (11-epi-SA) was isolated from a soft coral
Sinularia flexibilis (Table 1). In different concentrations, it inhibited cell migration and
invasion in hepatocellular carcinoma cells (HA22T cells). MMP-2 and MMP-9 activity and
expression levels significantly diminished at non-toxic dosages (7.98 M), indicating that
the action was highly related to the regulation of MMPs or their inhibitors [81,82]. Dihy-
droaustrasulfone alcohol (DA) was extracted from marine coral and exhibits antioxidant
as well as anticancer properties (Table 1). Moreover, numerous dosage-dependent studies
reveal that it inhibits the invasion and activity of human non-small-cell lung cancer cells
(NSCLC A549 cells).

Gelatin zymography analysis also showed significantly decreased levels and actions
of MMP-2 and MMP-9. These results established a connection between DA’s antimetastatic
effect and the suppression of colonization-related enzymes [83,84].

Marimastat is a major MMP inhibitor, which hinders the activity of MMP-2 and
MMP-9. Regardless, the t-butyl and α-hydroxyl groups, respectively, increased solubility
in water, and it was demonstrated to be oral permeable [85]. The effectiveness of this
medication against models of breast and lung metastases has been shown in preclinical
studies [86]. Although it has several harmful side effects, such as cell death, fibrosis,
bleeding, and weight loss, it showed fabulous improvement in patients having advanced
gastric cancer [86,87]. In particular, Aplysina aerophoba sponges produce the brominated
antibiotic aeroplysinin-1, which sets off chemical defense feedback. It could exert antitumor
and antiangiogenic effects. MMP-2 levels were lower in a study [88] that used multiple
human endothelial cell lines (Table 1). Fluid isolates of Aplysina aerophoba were very
effective in reducing protein and mRNA expression rates linked to MMP-2 and MMP-9 in
rat astrocyte conditions [89].



Biomedicines 2024, 12, 794 8 of 20

2.3. Natural Products from Plants

Many plants contain phenolic substances. A few of these compounds have been
connected to invaluable well-being and illness impacts [90]. They showed some fabulous
beneficial properties including anticancer, antiviral, and cell reinforcement, as well as
energizing vital properties [90]. The sources and effects of natural products on the actions
and expression of MMP-2 and MMP-9 are summarized in Table 2.

Table 2. Flavonoids and other compounds from fruits and vegetables, which can modulate MMP-2
and MMP-9 activity and/or levels.

Product Name Sources MMP-2 MMP-9 Models Refs.
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Table 2. Cont.

Product Name Sources MMP-2 MMP-9 Models Refs.
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Recently, multiple studies accomplished research on the anti-inflammatory and an-
ticancer activities of quercetin (Que), which impedes human hepatocarcinoma cell line
(HCCLM3 cells) propagation and invasion. Moreover, Que reduces levels of MMP-2 and
MMP-9 indicating linking antimigratory and antiinvasive actions [91]. MMP-2 and MMP-9
levels were diminished upon treatment with Que for human oral cancer cells (HSC-6
and SCC-9) [92]. In the case of a cardiopulmonary resuscitation study, rats treated with
50 mg/kg Que for five consecutive days exhibited remarkably fewer ROS, less irritation,
and less MMP-2 expression [93]. Hypertension examined using the kidneys of animals
who were fed Que for 21 days (10 mg/kg/day) manifested a decrease in artery ROS levels
and MMP-2 actions, detected by immunofluorescence and situ zymography methods [94].
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Kaempferol (Kae), a bioactive molecule, has some unique features such as cardio-
protective, anticancer, antidiabetic, anti-inflammatory, antiaging, and antiallergic proper-
ties [95]. It inhibited nuclear translocation of the transcription factor AP-1 to the MMP-2
promoter, decreased MMP-2 production, and prevented migration and invasion in human
tongue squamous cell carcinoma cells (SCC4 cells) [96]. Kae is a phytoestrogen slowing the
development of cancer and carcinogenesis. It reduces the production of proteins linked to
metastasis, such as MMP-2 and MMP-9, in the MCF-7 breast cancer cell line [97].

Naringenin (Nar), extracted from multiple fruits, has anti-inflammatory and anti-
cancer actions. Earlier research looks at how fast Nar changed the proliferation of lung
cancer cells (A549 cells). After gelatin zymography, Nar lessens MMP-2 and MMP-9 levels
based on its concentration [98]. Furthermore, naringenin treatment significantly reduced
the nuclear translocation of NF-κB. Numerous genes, including MMP-2 and MMP-9, are
modulated by the transcription factor NF-κB to control a range of cellular functions, for
instance, adhesion, inflammation, and cancer metastasis [99]. Luteoin (Lut), mostly discov-
ered in fruits, vegetables, and herbs, has anti-inflammatory and antioxidant features. The
effect of Lut on MMP-2 and MMP-9 in the development of colon cancer was induced by
azoxymethane (AOM) in BALB/c mice to investigate impacts of Lut on MMP-2 and MMP-9.
Initially, MMP-2 and MMP-9 expression was increased, but intraperitoneal Lut administra-
tion (15 mg/kg) reduced the level of their expression after 21 days [100]. Recent studies
both in vitro and in vivo using subcutaneous injection in nude mice (A2780 cells) have
shown that the activity of MMP-2 and MMP-9 declines in ovarian cancer cells [101,102].

Myricetin (Myr) is abundant in vegetables, fruits, beverages, and certain therapeutic
plants. Several studies found that it has antioxidant, anti-inflammatory, anticancer, and
neurological functions [103]. It fights against cancer cells through several pathways, in-
cluding (a) control of MMP-2 and MMP-9 activities and (b) reduction of MMP-2 protein
production in colorectal cancer cells (COLO 205). Moreover, gelatin gel zymography analy-
sis of isolated MMP-2 [104] utilizing breast cancer cells (MDA-Mb-231) indicates a strong
and direct interaction between Myr and MMP-2 and blocks breast cancer metastasis by
lowering the action of MMP-2 and MMP-9 [105].

Another study looked at how Myr affected the growth and spread of radioresistant
lung cancer cells (A549-IR cells) via the suppression of MMP-2 and MMP-9 expression.
Experimental data have shown that Myr prevents the growth and migration of cancer in
A549 cells [106].

Scutellaria baicalensis Georgi (Lamiaceae) generates a bioactive baicalein (Bai) used
as traditional Chinese medicine. With its antioxidant, antiviral, anti-inflammatory, antian-
giogenic, and anticancer properties, Bai has a multitude of beneficial advantages [107].
Numerous investigations reveal that Bai functions as an antitumor agent via multiple mech-
anisms, including the regulation of MMP-2 and MMP-9 expression [108]. Further research
on the anti-proliferative properties of Bai in melanoma cell lines (A375 and SK-MEL-28)
revealed a significant reduction in MMP-2 expression in Bai-treated cells [109]. Moreover,
Bai research on pancreatic neuroendocrine tumor cell line BON1 revealed a correlation
between decreased MMP-2 and MMP-9 levels and a reduction in tumor invasion and migra-
tion [110]. The latest findings indicate that Bai contributes to the prevention of osteosarcoma
metastasis. Following treatment with Bai, the invasive capacity of human osteosarcoma
cells (CRL-1427 cells) was reduced as a consequence of low production of MMP-9 and
MMP-2 [111]. Genistein is a flavonoid isolated from the Leguminosae Genistin rhizome.
Its effects include antitumor, antibacterial, antioxidant, hypolipidemic, and estrogen-like
properties. It may show beneficial antitumor effect by inhibiting angiogenesis and inducing
tumor cell programmed death. Genistein had the potential to stop the human colon cancer
cell line HCT116 from propagating because it is a potent MMP-9 inhibitor that prevents the
growth and spread of tumors investigated in vivo tests in mice [112]. Another naturally
occurring MMP inhibitor is Silibinin isolate from milk thistle seeds, which has antioxidant
and anticarcinogenic properties. It behaves as a chemopreventive agent to stop skin cancer
and influences how breast cancer metastasizes. By inhibiting the MEK/ERK cascade in a
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dose-sensitive way, it suppresses the production of MMP-9 in mice. Silibinin also inhibits
cancer cell migration, and MMP-9 expression in thyroid and breast cancer cells is reduced
by protecting the ECM [113–115].

The compounds that appear to be active in Panax root are termed ginsenosides (GSs).
They are a class of glycosylated triterpenes, which could be referred to as saponins. Some
studies highlight the diverse medicinal benefits of GSs on heart disease and hormonal,
immunological, and neurological functions [116–118]. Additionally, it has been proved that
GSs suppress the proliferation of cancers via transforming MMP-2 and MMP-9 [119,120].
Blocking the expression of these enzymes could inhibit the formation of cancerous tumors.
Due to their ability to reduce MMP levels, GSs have the potential to be effective cancer
chemopreventive medications [119–122]. Given that MMPs have a widely recognized
influence on adipogenesis, GSs could modulate MMP activity and reduce adipogenesis in
3T3-L1 adipocytes [116].

Amenoflavone is a polyphenolic constituent that was found in Selaginella tamariscina
and has been demonstrated to possess a variety of therapeutic properties [123,124]. These
properties include neuroprotective, antiallergic, antioxidant, and antitumor properties.
Amentoflavone suppresses NF-κB activation and modifies the expression of antimetastatic
proteins, following in vivo experiments conducted on B16F-10 melanoma cells [125].
Amentoflavone-induced cell cycle depletion and apoptosis, which had an impact on the
respiratory system in vitro in breast cancer cells, may limit the proliferation of cells [124].
The antimetastatic actions of amentoflavone by inhibition of MMPs, especially MMP-2
and MMP-9, have been believed to be involved in tumor progression, partly because
of their ability to degrade collagen type IV, one of the major components of basement
membranes [126].

Sulforaphane is a naturally found in large amounts in cruciferous vegetables, such
as cabbage and broccoli, and has anticancer and anti-inflammatory properties [127]. It
has been reported that consuming cruciferous vegetables could prevent stomach can-
cer. Sulforaphane is currently observed to initiate apoptosis and block the cell cycle of
human colorectal cancer [128]. In addition, sulforaphane may make hepatoma cancer
cells more susceptible to TRAIL-induced apoptosis through DR5 overexpression driven
by ROS [129]. Recently, fundamental processes of the influence of sulforaphane on the
nicotine-mediated stimulation of MMP-9 has been reported. It suggests sulforaphane
impedes the nicotine-related MMP-9 activity by blocking the ROS-mediated NF-κB and
MAPK (p38 MAPK, Erk1/2)/AP-1 signaling pathways that serve to treat abdominal cancer
cells in humans [130].

Caffeic acid (CA), a strong and selective MMP-9 activity and transcription inhibitor,
was isolated from the plant Euonymus alatus [133]. It is a common phenolic acid found nat-
urally in fruits, vegetables, wine, olive oil, and coffee [131]. It has antioxidant, antiallergic,
and antiproliferative functions. Caffeine has been demonstrated to have antioxidant quali-
ties in normal cells and pro-oxidant characteristics in cancer cells [132]. Ceramide-induced
NF-κB-binding capability is effectively inhibited by CA [133]. According to recent studies,
CA inhibits MMP-9 enzymatic activity and gene expression, both of which are critical for
colon cancer invasion and metastasis [134].

Combitastatins are derived from the willow tree Combretum caffrum in South Africa.
Among combitastatins, Combretastatin A-4 (CA-4) is the most popular product that can
bind to tubulin MMP-2 and MMP-9 [135]. CA-4 has antimetastatic qualities and could
downregulate the production of MMPs, mostly MMP-2 and MMP-9, in A549 cells [136–140].
Naturally occurring plant-based compounds have recently drawn more interest due to their
potential role as cancer preventatives for those who have substantial cancer risk [141,142].
The main sources of pterostilbene are blueberries and several grape varieties [143]. Pteros-
tilbene includes similar features to resveratrol, such as antiproliferative, anti-inflammatory,
anticancer, and antioxidant properties [144–146]. A recent study showed that pterostil-
bene inhibited the generation of MMP-2 and decreased the capacity of the cells to migrate
via stimulating Erk1/2 in A7r5 cells [147]. Decursin, a coumarin derivative present in
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the roots of Angelica gigas, has long been utilized for remedying anemia [148]. Cell cycle
death appears when it comes into contact with breast, prostate, bladder, and colon cancer
cells [149–151]. According to recent studies, decursin inhibits the expression of NF-κB in
breast cells and macrophages hence limiting MMP-9 generation [151–153].

Researchers’ interest in natural products has grown significantly in recent years be-
cause of their possible chemopreventive roles in human health and illnesses. Marine- and
plant-based natural products are known to have significant antioxidant properties that
fight against cellular oxidative stress and ROS, lowering the risk of diseases. Additionally,
these natural products could contribute to the development of treatments for many chronic
ailments including infectious diseases, cancer, diabetes, cardiovascular diseases (CVDs),
neurodegenerative diseases, and inflammatory disorders [154]. In this regard, we empha-
sized and summarized some natural products and their mechanisms of action against a
range of serious human illnesses.

2.4. Mechanism of MMP Regulation by Natural Products

Over two decades, it has been demonstrated that cell inactivation could be a barrier to
curing cancer [155]. It is widely known that MMPs are responsible for cell death because
they induce metastasis and invasion of normal cells by degrading the ECM as well as the
basement membrane [156]. The Chinese started to use the natural product Bai, which was
extracted from the roots of Scutelaria baicalensis as an anticarcinogenic agent. Natural MMP
regulators could deteriorate the activity and expression of MMPs in order to cure cancers
after taking them in a daily diet. These active ingredients pass through the cell membrane
and interact directly or indirectly with MMPs [157–161]. After revealing positive aspects of
MMP regulation by Bai, other nations began to widely appreciate Bai as well as take it as a
drug [156]. Although the mechanism of action relies on the type of natural products, the
proposed suppression pathways of activity of natural products against MMPs are briefly
described. The natural products enlisted in this review could regulate the expression and
activity of MMP-2 and MMP-9 through (a) breaking hydrogen bonds of A-T or C-T of
DNA and distortion of MMPs geometry around the Zn(II) center [162–164], (b) damaging
the chromosomal sequence of DNA by generating ROS [165–168], (c) activating PKC-δ
with the help of NADPH and ROS generation to activate p38-MARK [169–171], (d) inac-
tivating the vascular endothelial growth factor (VEGF) [172], and (e) suppressing NF-κB
signaling [173–175].

2.5. Difficulties of Natural Products Using as Medications

Natural products have been used extensively to treat cancer. Nevertheless, their poor
pharmacokinetic traits, low water solubility, low biocompatibility, limited oral bioavailabil-
ity, and volatility make it difficult to employ them in clinical applications on their own [176].
Furthermore, there is little yield from spontaneous isolation of natural products [177]. Ad-
ditionally, using these natural products frequently results in serious adverse consequences,
such as myelosuppression, dizziness, vomiting, stomatitis, exhaustion, diarrhea, gastroin-
testinal pain, peripheral nerve damage, and baldness [176,177]. Despite these difficulties,
natural products still have potential as medications for various diseases, including cancers
as summarized above.

3. Conclusions and Future Prospects

This study summarized how natural products from natural fruits and vegetables
as well as marine organisms have been shown to have positive impacts on cancer by
downregulating the actions and/or levels of MMP-2 and MMP-9. The therapeutic ef-
fects of numerous natural products obtained from botanical and aqu atic sources in the
recovery from deadly human cancers have been studied. As MMPs are implicated in the
development of such disorders, a variety of natural products have been used to control
MMP generation and activity. Multiple natural products have been identified as powerful
inhibitors of MMP-2 and MMP-9 expression. Chemoresistance has been commonly en-
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dured by many traditional chemotherapeutics, which is the main concern and hurdle in
cancer therapy along with radiation resistance. Natural products are ideal candidates for
chemosensitizing cancer cells and increasing the efficacy of existing drugs. Furthermore,
additional research is required to pinpoint particular regulatory systems downregulating
the activity and/or upregulating the expression levels of MMP-2 and MMP-9, governed by
natural products.
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