The Role of Pretreatment Serum Interleukin 6 in Predicting Short-Term Mortality in Patients with Advanced Pancreatic Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Enzyme-Linked Immunosorbent Assay (ELISA)
2.3. Defining a Cohort with High Serum IL-6 Levels
2.4. Flow Cytometry for Detection of T Cells
2.5. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics of the Study Cohort
3.2. IL-6 Levels in Patients with Advanced Pancreatic Cancer
3.3. IL-6 Levels and Survival Outcomes
3.4. IL-6 Levels and Effectiveness of Systemic Treatment
3.5. Multivariate Analysis for OS
3.6. Relationship between IL-6 and Neutrophils, Lymphocytes in Patients with PDAC
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Melisi, D.; Macarulla, T.; Cid, R.P.; Chandana, S.R.; De La Fouchardière, C.; Dean, A.; Kiss, I.; Lee, W.J.; Goetze, T.O. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): A randomised, open-label, phase 3 trial. Lancet 2023, 402, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Kanai, M.; Mori, Y.; Nishimura, T.; Uza, N.; Kodama, Y.; Kawaguchi, Y.; Takaori, K.; Matsumoto, S.; Uemoto, S. Neutrophil-to-lymphocyte ratio for predicting palliative chemotherapy outcomes in advanced pancreatic cancer patients. Cancer Med. 2014, 3, 406–415. [Google Scholar] [CrossRef]
- Li, W.; Tao, L.; Lu, M.; Xiu, D. Prognostic role of platelet to lymphocyte ratio in pancreatic cancers: A meta-analysis including 3028 patients. Medicine 2018, 97, e9616. [Google Scholar] [CrossRef]
- Szkandera, J.; Stotz, M.; Absenger, G.; Stojakovic, T.; Samonigg, H.; Kornprat, P.; Schaberl-Moser, R.; Alzoughbi, W.; Lackner, C.; Ress, A. Validation of C-reactive protein levels as a prognostic indicator for survival in a large cohort of pancreatic cancer patients. Br. J. Cancer 2014, 110, 183–188. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Ouyang, R.; Yang, Y.; Peng, J. Prognostic significance of the systemic immune-inflammation index in pancreatic carcinoma patients: A meta-analysis. Biosci. Rep. 2021, 41, BSR20204401. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Holland, S.M.; Staudt, L.M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 2013, 368, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Pop, V.-V.; Seicean, A.; Lupan, I.; Samasca, G.; Burz, C.-C. IL-6 roles–Molecular pathway and clinical implication in pancreatic cancer–A systemic review. Immunol. Lett. 2017, 181, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Roshani, R.; McCarthy, F.; Hagemann, T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett. 2014, 345, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.; Basso, D.; Fogar, P.; Mazza, S.; Navaglia, F.; Zambon, C.-F.; Falda, A.; Pedrazzoli, S.; Ancona, E.; Plebani, M. Pancreatic cancer cells invasiveness is mainly affected by interleukin-1β not by transforming growth factor-β1. Int. J. Biol. Markers 2005, 20, 235–241. [Google Scholar] [CrossRef]
- Verma, G.; Bhatia, H.; Datta, M. Gene expression profiling and pathway analysis identify the integrin signaling pathway to be altered by IL-1β in human pancreatic cancer cells: Role of JNK. Cancer Lett. 2012, 320, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Cytokines, D.C.P. Cooperative Induction of a Tolerogenic. J. Immunol. 2006, 177, 3448–3460. [Google Scholar]
- van Duijneveldt, G.; Griffin, M.D.; Putoczki, T.L. Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin. Sci. 2020, 134, 2091–2115. [Google Scholar] [CrossRef]
- Miura, T.; Mitsunaga, S.; Ikeda, M.; Shimizu, S.; Ohno, I.; Takahashi, H.; Furuse, J.; Inagaki, M.; Higashi, S.; Kato, H. Characterization of patients with advanced pancreatic cancer and high serum interleukin-6 levels. Pancreas 2015, 44, 756–763. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, J.-C.; Paik, K.-H.; Kang, J.; Kim, J.; Hwang, J.-H. Serum interleukin-6 is associated with pancreatic ductal adenocarcinoma progression pattern. Medicine 2017, 96, e5926. [Google Scholar] [CrossRef]
- Ziegler, L.; Gajulapuri, A.; Frumento, P.; Bonomi, A.; Wallén, H.; de Faire, U.; Rose-John, S.; Gigante, B. Interleukin 6 trans-signalling and risk of future cardiovascular events. Cardiovasc. Res. 2019, 115, 213–221. [Google Scholar] [CrossRef]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 trans-signalling: Past, present and future prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, W.; Lytle, N.K.; Huang, P.; Yuan, X.; Dann, A.M.; Ridinger-Saison, M.; DelGiorno, K.E.; Antal, C.E.; Liang, G. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 2019, 569, 131–135. [Google Scholar] [CrossRef]
- Łukaszewicz, M.; Mroczko, B.; Szmitkowski, M. Clinical significance of interleukin-6 (IL-6) as a prognostic factor of cancer disease. Pol. Arch. Med. Wewn. 2007, 117, 247–251. [Google Scholar] [CrossRef]
- Chen, I.; Dehlendorff, C.; Jensen, B.; Pfeiffer, P.; Nielsen, S.; Holländer, N.; Yilmaz, M.; Johansen, J. Serum interleukin-6 as a prognostic biomarker for survival in patients with unresectable pancreatic cancer. Ann. Oncol. 2016, 27, vi26. [Google Scholar] [CrossRef]
- Ramsey, M.L.; Talbert, E.; Ahn, D.; Bekaii-Saab, T.; Badi, N.; Bloomston, P.M.; Conwell, D.L.; Cruz-Monserrate, Z.; Dillhoff, M.; Farren, M.R. Circulating interleukin-6 is associated with disease progression, but not cachexia in pancreatic cancer. Pancreatology 2019, 19, 80–87. [Google Scholar] [CrossRef]
- Farren, M.R.; Mace, T.A.; Geyer, S.; Mikhail, S.; Wu, C.; Ciombor, K.; Tahiri, S.; Ahn, D.; Noonan, A.M.; Villalona-Calero, M. Systemic immune activity predicts overall survival in treatment-naive patients with metastatic pancreatic cancer. Clin. Cancer Res. 2016, 22, 2565–2574. [Google Scholar] [CrossRef]
- Mitsunaga, S.; Ikeda, M.; Shimizu, S.; Ohno, I.; Furuse, J.; Inagaki, M.; Higashi, S.; Kato, H.; Terao, K.; Ochiai, A. Serum levels of IL-6 and IL-1β can predict the efficacy of gemcitabine in patients with advanced pancreatic cancer. Br. J. Cancer 2013, 108, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Liu, C.; Zhang, W.; He, S.; Wang, F.; Wang, J.; Li, Q.; Zhou, F. Serum levels of IL-6 and CRP can predict the efficacy of mFOLFIRINOX in patients with advanced pancreatic cancer. Front. Oncol. 2022, 12, 964115. [Google Scholar] [CrossRef] [PubMed]
- Long, K.B.; Tooker, G.; Tooker, E.; Luque, S.L.; Lee, J.W.; Pan, X.; Beatty, G.L. IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma. Mol. Cancer Ther. 2017, 16, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Wörmann, S.M.; Song, L.; Ai, J.; Diakopoulos, K.N.; Kurkowski, M.U.; Görgülü, K.; Ruess, D.; Campbell, A.; Doglioni, C.; Jodrell, D. Loss of P53 function activates JAK2–STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology 2016, 151, 180–193.e112. [Google Scholar] [CrossRef]
- Bent, E.H.; Millán-Barea, L.R.; Zhuang, I.; Goulet, D.R.; Fröse, J.; Hemann, M.T. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat. Commun. 2021, 12, 6218. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.-F.; Lu, Z.-Y.; Jourdan, M.; Klein, B. Interleukin-6 as a therapeutic target. Clin. Cancer Res. 2015, 21, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.M.; Johansen, J.S.; Theile, S.; Madsen, K.; Dajani, O.; Lorentzen, T.; Zimmers, T.; Nielsen, D. Randomized phase 2 study of nab-paclitaxel and gemcitabine with or without tocilizumab as first-line treatment in patients with advanced pancreatic cancer (PACTO). J. Clin. Oncol. 2023, 41, 4147. [Google Scholar] [CrossRef]
- Yang, J.-J.; Hu, Z.-G.; Shi, W.-X.; Deng, T.; He, S.-Q.; Yuan, S.-G. Prognostic significance of neutrophil to lymphocyte ratio in pancreatic cancer: A meta-analysis. World J. Gastroenterol. WJG 2015, 21, 2807. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 77) | IL-6 (pg/mL, Median, IQR) | p Value |
---|---|---|---|
Age, median (range) | 67 (39–86) | 0.738 | |
<65-year, n (%) | 28 (36.4) | 5.15 (1.41–16.1) | |
≥65-year, n (%) | 49 (63.6) | 4.71 (1.77–9.95) | |
Gender, n (%) | 0.636 | ||
Male | 44 (57.1) | 4.92 (1.41–7.89) | |
Female | 33 (42.9) | 5.20 (1.77–12.0) | |
ECOG performance status, n (%) | 0.409 | ||
0–1 | 62 (80.5) | 4.91 (1.69–10.9) | |
2 | 15 (19.5) | 6.13 (1.23–10.1) | |
Tumor location, n (%) | 0.229 | ||
Head | 31 (40.2) | 4.70 (1.36–6.35) | |
Body/tail | 46 (59.8) | 5.18 (1.73–11.2) | |
Disease status, n (%) | 0.998 | ||
Locally advanced | 8 (10.4) | 5.42 (0.58–14.0) | |
Metastatic | 69 (89.6) | 5.11 (1.65–10.5) | |
Previous tumor resection, n (%) | 0.688 | ||
No (initially advanced) | 62 (80.5) | 5.18 (1.69–10.9) | |
Yes (recurrent disease) | 15 (19.5) | 5.11 (0.09–6.35) | |
Histologic grading, n (%) | |||
Grade 1/2 | 42 (54.5) | 4.04 (0.77–6.47) | 0.004 |
Grade 3 | 17 (22.1) | 13.2 (5.52–17.6) | |
Not available | 18 (23.4) | ||
Number of metastatic organ sites * | 0.025 | ||
1–2 | 58 (84.1) | 4.21 (1.13–6.50) | |
≥3 | 11 (15.9) | 16.6 (8.0–29.5) | |
Baseline CA19-9 level, n (%) | |||
<59 × ULN (U/mL) | 54 (70.1) | 4.04 (0.63–6.03) | 0.394 |
≥59 × ULN (U/mL) | 22 (28.6) | 7.21 (5.05–16.9) | |
Unknown | 1 (1.3) | ||
Baseline albumin, n (%) | 0.006 | ||
≥3.5 g/dL | 53 (68.8) | 3.94 (0.73–5.88) | |
<3.5 g/dL | 24 (31.2) | 11.0 (4.83–26.4) | |
Site of metastatic disease *, n (%) | |||
Liver | 47 (68.1) | 5.55 (1.91–13.2) | 0.034 |
Lung | 14 (20.3) | 11.3 (3.26–30.4) | 0.055 |
Peritoneum | 21 (11.6) | 5.30 (1.02–12.2) | 0.269 |
Variables | Total (n = 65) | IL-6 High (n = 21) | IL-6 Low (n = 44) | p Value |
---|---|---|---|---|
First-line chemotherapy, n (%) | 0.013 | |||
Gemcitabine-based | 41 (63.1) | 18 (85.7) | 23 (52.3) | |
Gemcitabine single | 5 (7.7) | 4 (19.0) | 1 (2.3) | |
Gemcitabine/Nab-paclitaxel | 36 (55.4) | 14 (66.7) | 22 (50.0) | |
FOLFIRINOX | 24 (36.9) | 3 (14.3) | 21 (47.7) | |
Best response, n (%) | ||||
Partial response | 11 (16.9) | 2 (9.5) | 9 (20.5) | |
Stable disease | 32 (49.2) | 6 (28.6) | 26 (59.1) | |
Progressive disease | 22 (33.9) | 13 (61.9) | 9 (20.4) | |
Objective response rate, n (%) | 11 (16.9) | 2 (9.5) | 9 (20.5) | 0.480 |
Disease control rate, n (%) | 43 (66.2) | 8 (38.1) | 35 (79.5) | 0.001 |
Median PFS, months [95% CI] | 5.9 [4.8–7.0] | 2.1 [1.5–2.6] | 9.1 [6.7–11.5] | <0.001 |
6-months PFS, % [95% CI] | 10.7 [1.8–28.7] | 64.9 [48.6–77.2] |
Overall Survival | ||||
---|---|---|---|---|
Variables | Univariate Analysis | Multivariate Analysis | ||
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age ≥ 65 (vs. <65 year) | 1.87 (1.13–3.10) | 0.015 | 1.89 (1.02–3.47) | 0.042 |
ECOG PS 2 (vs. ECOG PS 0–1) | 2.78 (1.53–5.07) | 0.001 | 1.93 (0.99–3.76) | 0.053 |
Received chemotherapy (vs. none) | 0.22 (0.11–0.42) | <0.001 | 0.29 (0.14–0.61) | 0.001 |
Metastatic disease (vs. locally advanced) | 1.72 (0.79–3.78) | 0.175 | 1.80 (0.73–4.43) | 0.199 |
IL-6 high (vs. low) | 3.40 (2.04–5.65) | <0.001 | 2.31 (1.27–4.20) | 0.006 |
NLR ≥ 3.5 (vs. <3.5) | 2.94 (1.80–4.81) | <0.001 | 3.26 (1.77–6.00) | <0.001 |
CA 19-9 ≥ 59 × ULN (vs. <59 × ULN) | 1.86 (1.11–3.13) | 0.020 | 1.06 (0.58–1.94) | 0.848 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.J.; Park, J.Y.; Shin, K.; Hong, T.H.; Kim, Y.; Kim, I.-H.; Lee, M. The Role of Pretreatment Serum Interleukin 6 in Predicting Short-Term Mortality in Patients with Advanced Pancreatic Cancer. Biomedicines 2024, 12, 903. https://doi.org/10.3390/biomedicines12040903
Park SJ, Park JY, Shin K, Hong TH, Kim Y, Kim I-H, Lee M. The Role of Pretreatment Serum Interleukin 6 in Predicting Short-Term Mortality in Patients with Advanced Pancreatic Cancer. Biomedicines. 2024; 12(4):903. https://doi.org/10.3390/biomedicines12040903
Chicago/Turabian StylePark, Se Jun, Ju Yeon Park, Kabsoo Shin, Tae Ho Hong, Younghoon Kim, In-Ho Kim, and MyungAh Lee. 2024. "The Role of Pretreatment Serum Interleukin 6 in Predicting Short-Term Mortality in Patients with Advanced Pancreatic Cancer" Biomedicines 12, no. 4: 903. https://doi.org/10.3390/biomedicines12040903
APA StylePark, S. J., Park, J. Y., Shin, K., Hong, T. H., Kim, Y., Kim, I. -H., & Lee, M. (2024). The Role of Pretreatment Serum Interleukin 6 in Predicting Short-Term Mortality in Patients with Advanced Pancreatic Cancer. Biomedicines, 12(4), 903. https://doi.org/10.3390/biomedicines12040903