Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship
Abstract
:1. Introduction
2. DNA Methylation and Risk Factors for Cancerogenesis
3. DNA Methylation as a Biomarker
4. DNA Methylation and Therapy
5. DNA Methylation and Fertility Implications
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghazarian, A.A.; Trabert, B.; Devesa, S.S.; Mcglynn, K.A. Recent trends in the incidence of testicular germ cell tumors in the United States. Andrology 2015, 3, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.K.; Florio, A.A.; Znaor, A.; Ferlay, J.; Laversanne, M.; Sarfati, D.; Bray, F.; McGlynn, K.A. International Trends in the Incidence of Testicular Cancer: Lessons from 35 Years and 41 Countries. Eur. Urol. 2019, 76, 615–623. [Google Scholar] [CrossRef]
- WHO. Classification of Tumors Urinary and Male Genital Tumors, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2022.
- Looijenga, L.H.J.; Kao, C.-S.; Idrees, M.T. Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int. J. Mol. Sci. 2019, 20, 5017. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Edge, S.; Greene, F.; Byrd, D.; Brookland, R.; Washington, M.K.; Gershenwald, J.; Compton, C.; Hess, K.; Sullivan, D.; et al. AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Siddiqui, B.A.; Zhang, M.; Pisters, L.L.; Tu, S.-M. Systemic Therapy for Primary and Extragonadal Germ Cell Tumors: Prognosis and Nuances of Treatment. Transl. Androl. Urol. 2020, 9, S56–S65. [Google Scholar] [CrossRef] [PubMed]
- Aldossary, S.A. Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin. Biomed. Pharmacol. J. 2019, 12, 07–15. [Google Scholar] [CrossRef]
- Groot, H.J.; Leeuwen, F.E.; Lubberts, S.; Horenblas, S.; Wit, R.; Witjes, J.A.; Groenewegen, G.; Poortmans, P.M.; Hulshof, M.C.C.M.; Meijer, O.W.M.; et al. Platinum exposure and cause-specific mortality among patients with testicular cancer. Cancer 2020, 126, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Hellesnes, R.; Myklebust, T.Å.; Fosså, S.D.; Bremnes, R.M.; Karlsdottir, Á.; Kvammen, Ø.; Tandstad, T.; Wilsgaard, T.; Negaard, H.F.S.; Haugnes, H.S. Testicular Cancer in the Cisplatin Era: Causes of Death and Mortality Rates in a Population-Based Cohort. J. Clin. Oncol. 2021, 39, 3561–3573. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Fazal, Z.; Freemantle, S.J.; Spinella, M.J. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors. Cancer Drug Resist. 2019, 2, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Fazal, Z.; Freemantle, S.J.; Spinella, M.J. Between a Rock and a Hard Place: An Epigenetic-Centric View of Testicular Germ Cell Tumors. Cancers 2021, 13, 1506. [Google Scholar] [CrossRef]
- Baroni, T.; Arato, I.; Mancuso, F.; Calafiore, R.; Luca, G. On the origin of testicular germ cell tumors: From gonocytes to testicular cancer. Front. Endocrinol. 2019, 10, 343. [Google Scholar] [CrossRef]
- Nicu, A.T.; Medar, C.; Chifiriuc, M.C.; Gradisteanu-Pircalabioru, G.; Burlibasa, L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol. 2022, 10, 861995. [Google Scholar] [CrossRef] [PubMed]
- Oakes, C.C.; La Salle, S.; Smiraglia, D.J.; Robaire, B.; Trasler, J.M. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev. Biol. 2007, 307, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.Q.; Lin, S.L.; Zhao, Z.H.; Sun, Q.Y. Epigenetic dynamics and interplay during spermatogenesis and embryogenesis: Implications for male fertility and offspring health. Oncotarget 2017, 8, 53804–53818. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah; Hussain, A.; Ahmed, S.; Rasool, M.; Shah, A.J. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022, 13, 1666–1685. [Google Scholar] [CrossRef] [PubMed]
- Tomkuviene, M.; Kriukiene, E.; Klimasauskas, S. DNA Labeling Using DNA Methyltransferases. Adv. Exp. Med. Biol. 2016, 945, 511–535. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Cao, Y.; Qin, J.; Song, X.; Zhang, Q.; Shi, Y.; Cao, L. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci. 2015, 11, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Kong, X.; Zhang, H.; Liu, Y.; Shao, Z.; Jin, J.; Cai, Y.; Zhang, R.; Li, L.; Zhang, Y.; et al. Biochemical Studies and Molecular Dynamic Simulations Reveal the Molecular Basis of Conformational Changes in DNA Methyltransferase-1. ACS Chem. Bio. 2018, 13, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, S.; Reynoird, N.; Escoffier, E.; Thevenon, J.; Caron, C.; Khochbin, S. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod. Biomed. Online 2008, 16, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Endo, D.; Koji, T. Roles of Epigenome in Mammalian Spermatogenesis. Reprod. Med. Biol. 2014, 13, 59–69. [Google Scholar] [CrossRef]
- Medvedev, K.E.; Savelyeva, A.V.; Chen, K.S.; Bagrodia, A.; Jia, L.; Grishin, N.V. Integrated Molecular Analysis Reveals 2 Distinct Subtypes of Pure Seminoma of the Testis. Cancer Inform. 2022, 21, 11769351221132634. [Google Scholar] [CrossRef]
- Martinot, E.; Baptissart, M.; Sédes, L.; Volle, D.H. Role of Epigenetics in Testicular Cancer. Epigenetic Mech. Cancer 2018, 3, 31–57. [Google Scholar] [CrossRef]
- Buljubašić, R.; Buljubašić, M.; Bojanac, A.K.; Ulamec, M.; Vlahović, M.; Ježek, D.; Bulić-Jakuš, F.; Sinčić, N. Epigenetics and testicular germ cell tumors. Gene 2018, 661, 22–33. [Google Scholar] [CrossRef]
- Killian, J.K.; Dorssers, L.C.J.; Trabert, B.; Gillis, A.J.M.; Cook, M.B.; Wang, Y.; Waterfall, J.J.; Stevenson, H.; Smith, W.I.; Noyes, N.; et al. Imprints and DPPA3 are bypassed during pluripotency- and differentiation-coupled methylation reprogramming in testicular germ cell tumors. Genome Res. 2016, 26, 1490–1504. [Google Scholar] [CrossRef]
- Marques-Magalhães, Â.; Graça, I.; Henrique, R.; Jerónimo, C. Targeting DNA Methyltranferases in Urological Tumors. Front. Pharmacol. 2018, 9, 366. [Google Scholar] [CrossRef]
- Koul, S.; Houldsworth, J.; Mansukhani, M.M.; Donadio, A.; McKiernan, J.M.; Reuter, V.E.; Bosl, G.J.; Chaganti, R.S.; Murty, V.V. Characteristic Promoter Hypermethylation Signatures in Male Germ Cell Tumors. Mol.Cancer 2002, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Koul, S.; McKiernan, J.M.; Narayan, G.; Houldsworth, J.; Bacik, J.; Dobrzynski, D.L.; Assaad, A.M.; Mansukhani, M.; Reuter, V.E.; Bosl, G.J.; et al. Role of Promoter Hypermethylation in Cisplatin Treatment Response of Male Germ Cell Tumors. Mol. Cancer 2004, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Markulin, D.; Vojta, A.; Samaržija, I.; Gamulin, M.; Bečeheli, I.; Jukić, I.; Maglov, Č.; Zoldoš, V.; Fučić, A. Association Between RASSF1A Promoter Methylation and Testicular Germ Cell Tumor: A Meta-analysis and a Cohort Study. Cancer Genom. Proteom. 2017, 14, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Smith-Sørensen, B.; Lind, G.E.; Skotheim, R.I.; Fosså, S.D.; Fodstad, Ø.; Stenwig, A.E.; Jakobsen, K.S.; Lothe, R.A. Frequent promoter hypermethylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene in testicular cancer. Oncogene 2002, 21, 8878–8884. [Google Scholar] [CrossRef]
- Martinelli, C.M.D.S.; Lengert, A.V.H.; Cárcano, F.M.; Silva, E.C.A.; Brait, M.; Lopes, L.F.; Vidal, D.O. MGMT and CALCA promoter methylation are associated with poor prognosis in testicular germ cell tumor patients. Oncotarget 2017, 8, 50608–50617. [Google Scholar] [CrossRef]
- Ellinger, J.; Müller, S.C.; Dietrich, D. Epigenetic biomarkers in the blood of patients with urological malignancies. Expert Rev. Mol. Diagn. 2015, 15, 505–516. [Google Scholar] [CrossRef]
- Alunni-Fabbroni, M.; Rönsch, K.; Huber, T.; Cyran, C.C.; Seidensticker, M.; Mayerle, J.; Pech, M.; Basu, B.; Verslype, C.; Benckert, J.; et al. Circulating DNA as prognostic biomarker in patients with advanced hepatocellular carcinoma: A translational exploratory study from the SORAMIC trial. J. Transl. Med. 2019, 17, 328. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.; Nestler, T.; Kägler, S.; Richardsen, I.; Ruf, C.G.; Matthies, C.; Willms, A.; Schmelz, H.U.; Wagner, W.; Schwab, R.; et al. Liquid biopsy using whole blood from testis tumor and colon cancer patients—A new and simple way? Health Physic S 2018, 115, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.; van Grieken, N.C.T.; Palsgrove, D.N.; Phallen, J.; Medina, J.E.; Hruban, C.; Broeckaert, M.A.M.; Anagnostou, V.; Adleff, V.; Bruhm, D.C.; et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat. Commun. 2020, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Chovanec, M.; Albany, C.; Mego, M.; Montironi, R.; Cimadamore, A.; Cheng, L. Emerging Prognostic Biomarkers in Testicular Germ Cell Tumors: Looking Beyond Established Practice. Front. Oncol. 2018, 8, 571. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.; Leão, R.; Jerónimo, C.; Henrique, R. Liquid Biopsies in the Clinical Management of Germ Cell Tumor Patients: State-of-the-Art and Future Directions. Int. J. Mol. Sci. 2021, 22, 2654. [Google Scholar] [CrossRef] [PubMed]
- Douglas, M.L.; Boucaut, K.J.; Antalis, T.M.; Higgins, C.; Pera, M.F.; Stuttgen, M.A.; Nicol, D.L. An orthotopic xenograft model of human nonseminomatous germ cell tumour. Br. J. Cancer 2001, 85, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, C.; Zhang, H.; Shen, J.; Zhang, H.; Lin, X.; Oin, L.; Bao, X.; Lin, J.; Lu, W.; et al. Evaluation of cloned cells, animal model, and ATRA sensitivity of human testicular yolk sac tumor. J. Transl. Med. 2012, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Lyndaker, A.M.; Pierpont, T.M.; Loehr, A.R.; Weiss, R.S.A. Genetically Engineered Mouse Model of Malignant Testicular Germ Cell Tumors. Methods Mol. Biol. 2021, 2195, 147–165. [Google Scholar] [PubMed]
- Kaushik, A.; Bhartiya, D. Testicular cancer in mice: Interplay between stem cells and endocrine insults. Stem Cell Res. Ther. 2022, 13, 243. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas. Available online: https://www.cancer.gov/ccg/research/genome-sequencing/tcga (accessed on 15 March 2024).
- Berger, A.C.; Korkut, A.; Kanchi, R.S.; Hegde, A.M.; Lenoir, W.; Liu, W.; Liu, Y.; Fan, H.; Shen, H.; Ravikumar, V.; et al. A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 2018, 33, 690–705.e9. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, H.; Zhang, F.; Wang, Y.; Zhang, L.; Yang, N.; Wang, C.; Liang, Z.; Zeng, J.; Yang, J. Visualization and Analysis in the Field of Pan-Cancer Studies and Its Application in Breast Cancer Treatment. Front. Med. 2021, 8, 635035. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.W.; Mitra, M.; Coller, H.A. Pan-cancer landscape of epigenetic factor expression predicts tumor outcome. Commun. Biol. 2023, 6, 1138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.G.; Yang, J.; Jin, S.H.; Xiao, S.; Shi, L.; Zhang, T.-Y.; Ma, H.; Gaipl, U.S. Development and Validation of a Gene Signature for Prediction of Relapse in Stage I Testicular Germ Cell Tumors. Front. Oncol. 2020, 10, 1147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, R.; Wang, R.; Song, J.; Ma, F.; Pan, H.; Gao, C.; Wang, D.; Chen, X.; Fan, X. Pancancer analysis of the prognostic and immunological role of FANCD2: A potential target for carcinogenesis and survival. BMC Med. Genom. 2024, 17, 69. [Google Scholar] [CrossRef]
- Peng, Q.; Ren, B.; Xin, K.; Liu, W.; Alam, M.S.; Yang, Y.; Gu, X.; Zhu, Y.; Tian, Y. CYFIP2 serves as a prognostic biomarker and correlates with tumor immune microenvironment in human cancers. Eur. J. Med. Res. 2023, 28, 364. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wang, G.; Cheng, S.; Hu, Y.; Li, H.; Feng, W.; Liu, X.; Xu, C. Pan-Cancer Analysis of the Cuproptosis-Related Gene DLD. Mediat. Inflamm. 2023, 2023, 5533444. [Google Scholar] [CrossRef]
- Feng, M.; Cui, H.; Tu, W.; Li, L.; Gao, Y.; Chen, L.; Li, D.; Chen, X.; Xu, F.; Zhou, C.; et al. An integrated pan-cancer analysis of PSAT1: A potential biomarker for survival and immunotherapy. Front. Genet. 2022, 13, 975381. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Qian, L.; Ma, J. Comprehensive analysis of the expression and prognosis for APOE in malignancies: A pan-cancer analysis. Oncol. Res. 2020, 30, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Pu, Y.; Chao, F.; Bian, P.; Lv, L. ACAP1 Deficiency Predicts Inferior Immunotherapy Response in Solid Tumors. Cancers 2022, 14, 5951. [Google Scholar] [CrossRef]
- Cai, Y.; He, Q.; Liu, W.; Liang, Q.; Peng, B.; Li, J.; Zhang, W.; Kang, F.; Hong, Q.; Yan, Y.; et al. Comprehensive analysis of the potential cuproptosis-related biomarker LIAS that regulates prognosis and immunotherapy of pan-cancers. Front. Oncol. 2022, 12, 952129. [Google Scholar] [CrossRef]
- Cui, Z.; Zhai, Z.; Xie, D.; Wang, L.; Cheng, F.; Lou, S.; Zou, F.; Pan, R.; Chang, S.; Yao, H.; et al. From genomic spectrum of NTRK genes to adverse effects of its inhibitors, a comprehensive genome-based and real-world pharmacovigilance analysis. Front. Pharmacol. 2024, 15, 1329409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, W.; Wen, W.; Zhang, X. SERPINH1 is a potential prognostic biomarker and correlated with immune infiltration: A pan-cancer analysis. Front. Genet. 2022, 12, 756094. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Jiang, F.; Tian, Y.; Cao, X.; Zhu, M.; Zhang, J.; Wang, X.; Deng, L. Integrated transcriptome, proteome and single-cell sequencing uncover the prognostic and immunological features of colony-stimulating factor 3 receptor in pan-cancer. J. Gene Med. 2023, 25, e3508. [Google Scholar] [CrossRef] [PubMed]
- Bo, H.; Cao, K.; Tang, R.; Zhang, H.; Gong, Z.; Liu, Z.; Liu, J.; Li, J.; Fan, L. A network-based approach to identify DNA methylation and its involved molecular pathways in testicular germ cell tumors. J. Cancer 2019, 10, 893–902. [Google Scholar] [CrossRef]
- Yang, R.; Chen, Z.; Liang, L.; Ao, S.; Zhang, J.; Chang, Z.; Wang, Z.; Zhou, Y.; Deng, T. Fc Fragment of IgE Receptor Ig (FCER1G) acts as a key gene involved in cancer immune infiltration and tumour microenvironment. Immunology 2023, 168, 302–319. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Long, G.; Zheng, Y.; Yang, X.; Cai, W.; He, S.; Qin, X.; Liao, H. Glycolysis-Related SLC2A1 Is a Potential Pan-Cancer Biomarker for Prognosis and Immunotherapy. Cancers 2022, 14, 5344. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhou, Q.; Zhu, F.; Fan, L.; Bo, H.; Wang, X. Hypomethylation-driven AKT Serine/Threonine Kinase 3 promotes testicular germ cell tumors proliferation and negatively correlates to immune infiltration. Bioengineered 2021, 12, 11288–11302. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, S.; Sun, Q.; Dong, Y. An Analysis of BMP1 Associated with m6A Modification and Immune Infiltration in Pancancer. Dis. Markers 2022, 2022, 789961. [Google Scholar] [CrossRef]
- Sun, M.; Lv, S.; Zhong, J. In silico analysis of the association between long non-coding RNA family with sequence similarity 99 member A (FAM99A) and hepatic cancer. IET Syst. Biol. 2023, 17, 83–94. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, L.; Peng, H.; Wang, Z.; Xie, J. Methylation gene KCNC1 is associated with overall survival in patients with seminoma. Oncol. Rep. 2021, 45, 73. [Google Scholar] [CrossRef]
- Guo, J.; Wang, S.; Jiang, Z.; Tang, L.; Liu, Z.; Cao, J.; Hu, Z.; Chen, X.; Luo, Y.; Bo, H. Long Non-Coding RNA RFPL3S Functions as a Biomarker of Prognostic and Immunotherapeutic Prediction in Testicular Germ Cell Tumor. Front. Immunol. 2022, 13, 859730. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.; Constâncio, V.; Guimarães-Teixeira, C.; Leite-Silva, P.; Miranda-Gonçalves, V.; Sequeira, J.P.; Pistoni, L.; Guimarães, R.; Cantante, M.; Braga, I.; et al. Promoter methylation of DNA homologous recombination genes is predictive of the responsiveness to PARP inhibitor treatment in testicular germ cell tumors. Mol. Oncol. 2021, 15, 846–865. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xu, Q.; Jiang, Y.; Lu, B. A novel DNA methylation signature to improve survival prediction of progression-free survival for testicular germ cell tumors. Sci Rep. 2023, 13, 3759. [Google Scholar] [CrossRef] [PubMed]
- Young, I.C.; Brabletz, T.; Lindley, L.E.; Abreu, M.M.; Nagathihalli, N.S.; Zaika, A.I.; Briegel, K.J. Multi-cancer analysis reveals universal association of oncogenic LBH expression with DNA hypomethylation and WNT-Integrin signaling pathways. Cancer Gene Ther. 2023, 30, 1234–1248. [Google Scholar] [CrossRef]
- Xu, L.; Pierce, J.L.; Sanchez, A.; Chen, K.S.; Shukla, A.A.; Fustino, N.J.; Stuart, S.H.; Bagrodia, A.; Xiao, X.; Guo, L.; et al. Integrated genomic analysis reveals aberrations in WNT signaling in germ cell tumors of childhood and adolescence. Nat. Commun. 2023, 14, 2636. [Google Scholar] [CrossRef] [PubMed]
- Onorato, A.; Guida, E.; Colopi, A.; Dolci, S.; Grimaldi, P. RAS/Mitogen-Activated Protein Kinase Signaling Pathway in Testicular Germ Cell Tumors. Life 2024, 14, 327. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; He, X.; Hu, T. Pancancer analysis of the deoxyribonuclease gene family. Mol. Clin. Oncol. 2023, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, J.; Tong, S.; Wu, Y.; Yi, D.; Xiang, W. Phosducin-like 3 is a novel prognostic and onco-immunological biomarker in glioma: A multi-omics analysis with experimental verification. Front. Immunol. 2023, 14, 1128151. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, P.; Da, M.; Yang, R.; Ma, Y.; Zhao, J.; Ma, T.; Xia, J.; Shen, G.; Chen, Y.; et al. A pan-cancer analysis of the expression of STAT family genes in tumors and their relationship to the tumor microenvironment. Front. Oncol. 2022, 12, 925537. [Google Scholar] [CrossRef]
- Xu, Y.; Hirachan, S.; Shen, Y.; Huang, Q.; Bhandari, A.; Xia, E. The pan-cancer analysis of the oncogenic role of FAM72A as a BRCA prognostic biomarker and immunotherapeutic target. Environ. Toxicol. 2023, 38, 1100–1117. [Google Scholar] [CrossRef]
- Dai, L.; Mugaanyi, J.; Zhang, T.; Tong, J.; Cai, X.; Lu, C.; Lu, C. A pan-cancer bioinformatic analysis of the carcinogenic role of SMARCA1 in human carcinomas. PLoS ONE 2022, 17, e0274823. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Vosoughi, S.; Levy, J.J.; Christensen, B.C.; Salas, L.A. HiTAIC: Hierarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation. NAR Cancer 2023, 5, zcad017. [Google Scholar] [CrossRef]
- Xue, L.; Zhao, X.; Jia, H.; Xie, Y.; Wen, Y.; Liang, Y.; Liu, Z.; Cao, J.; Bo, H.; Liu, L.; et al. Upregulated HAVCR2: A Prognostic and Immune-Related Marker in Testicular Germ Cell Tumors. Andrologia 2023, 2023, 5524200. [Google Scholar] [CrossRef]
- Costa, A.L.; Moreira-Barbosa, C.; Lobo, J.; Vilela-Salgueiro, B.; Cantante, M.; Guimarães, R.; Lopes, P.; Braga, I.; Oliveira, J.; Antunes, L.; et al. DNA methylation profiling as a tool for testicular germ cell tumors subtyping. Epigenomics 2018, 10, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Surve, P.; Natarajan, S.; Patil, A.; Pol, S.; Patole, K.; Das, B.R. Aberrant epigenetic inactivation of RASSF1A and MGMT gene and genetic mutations of KRAS, cKIT and BRAF in Indian testicular germ cell tumours. Cancer Genet. 2019, 241, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Raos, D.; Krasic, J.; Masic, S.; Abramovic, I.; Coric, M.; Kruslin, B.; Katusic Bojanac, A.; Bulic-Jakus, F.; Jezek, D.; Ulamec, M.; et al. In Search of TGCT Biomarkers: A Comprehensive In Silico and Histopathological Analysis. Dis. Markers 2020, 2020, 8841880. [Google Scholar] [CrossRef] [PubMed]
- Mallik, S.; Qin, G.; Jia, P.; Zhao, Z. Molecular signatures identified by integrating gene expression and methylation in non-seminoma and seminoma of testicular germ cell tumours. Epigenetics 2021, 16, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Cheung, H.H.; Yang, Y.; Lee, T.L.; Rennert, O.; Chan, W.Y. Hypermethylation of genes in testicular embryonal carcinomas. Br. J. Cancer 2016, 114, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Aran, D.; Camarda, R.; Odegaard, J.; Paik, H.; Oskotsky, B.; Krings, G.; Goga, A.; Sirota, M.; Butte, A.J. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat. Commun. 2017, 8, 1077. [Google Scholar] [CrossRef]
- Albany, C.; Einhorn, L.; Garbo, L.; Boyd, T.; Josephson, N.; Feldman, D.R. Treatment of CD30- expressing germ cell tumors and sex cord stromal tumors with brentuximab vedotin: Identification and report of seven cases. Oncologist 2018, 23, 316–323. [Google Scholar] [CrossRef]
- Mayrhofer, K.; Strasser-Weippl, K.; Niedersüß-Beke, D. Pembrolizumab plus brentuximab-vedotin in a patient with pretreated metastatic germ cell tumor. Ann. Hematol. Oncol. 2018, 5, 1196. [Google Scholar]
- Mego, M.; Svetlovska, D.; Reckova, M.; Angelis, D.; Kalavska, K.; Obertova, J.; Palacka, P.; Rejlekova, K.; Sycova-Mila, Z.; Chovanec, M.; et al. Gemcitabine, carboplatin and veliparib in multiple relapsed/refractory germ cell tumours: The GCT-SK-004 phase II trial. Investig. New Drugs. 2021, 39, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Necchi, A.; Giannatempo, P.; Raggi, D.; Mariani, L.; Colecchia, M.; Farè, E.; Monopoli, F.; Calareso, G.; Ali, S.M.; Ross, J.S.; et al. An open-label randomized phase 2 study of durvalumab alone or in combination with tremelimumab in patients with advanced germ cell tumors (APACHE): Results from the first planned interim analysis. Eur. Urol. 2019, 75, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Schepisi, G.; Gianni, C.; Cursano, M.C.; Gallà, V.; Menna, C.; Casadei, C.; Bleve, S.; Lolli, C.; Martinelli, G.; Rosti, G.; et al. Immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR)-T cell therapy: Potential treatment options against Testicular Germ Cell Tumors. Front. Immunol. 2023, 14, 1118610. [Google Scholar] [CrossRef] [PubMed]
- Mackensen, A.; Haanen, J.B.A.G.; Koenecke, C.; Alsdorf, W.; Wagner-Drouet, E.; Heudobler, D.; Borchmann, P.; Bokemeyer, C.; Klobuch, C.; Smit, E.; et al. LBA38 BNT211-01: A phase I trial to evaluate safety and efficacy of CLDN6 CAR T cells and CLDN6-encoding MRNA vaccine-mediated in vivo expansion in patients with CLDN6 positive advanced solid tumours. Ann. Oncol. 2022, 33, S1404–S1405. [Google Scholar] [CrossRef]
- Singh, R.; Fazal, Z.; Corbet, A.K.; Bikorimana, E.; Rodriguez, J.C.; Khan, E.M.; Shahid, K.; Freemantle, S.J.; Spinella, M.J. Epigenetic Remodeling through Downregulation of Polycomb Repressive Complex 2 Mediates Chemotherapy Resistance in Testicular Germ Cell Tumors. Cancers 2019, 11, 796. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Fazal, Z.; Bikorimana, E.; Boyd, R.I.; Yerby, C.; Tomlin, M.; Baldwin, H.; Shokry, D.; Corbet, A.K.; Shahid, K.; et al. Reciprocal epigenetic remodeling controls testicular cancer hypersensitivity to hypomethylating agents and chemotherapy. Mol. Oncol. 2022, 16, 683–698. [Google Scholar] [CrossRef]
- Fazal, Z.; Singh, R.; Fang, F.; Bikorimana, E.; Baldwin, H.; Corbet, A.; Tomlin, M.; Yerby, C.; Adra, N.; Albany, C.; et al. Hypermethylation and global remodelling of DNA methylation is associated with acquired cisplatin resistance in testicular germ cell tumours. Epigenetics 2021, 16, 1071–1084. [Google Scholar] [CrossRef]
- Lobo, J.; Constâncio, V.; Leite-Silva, P.; Guimarães, R.; Cantante, M.; Braga, I.; Maurício, J.; Looijenga, L.H.J.; Henrique, R.; Jerónimo, C. Differential methylation EPIC analysis discloses cisplatin-resistance related hypermethylation and tumor-specific heterogeneity within matched primary and metastatic testicular germ cell tumor patient tissue samples. Clin. Epigenet 2021, 13, 70. [Google Scholar] [CrossRef]
- Biswal, B.K.; Beyrouthy, M.J.; Hever-Jardine, M.P.; Armstrong, D.; Tomlinson, C.R.; Christensen, B.C.; Marsit, C.J.; Spinella, M.J. Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS ONE 2012, 7, e53003. [Google Scholar] [CrossRef]
- Lobo, J.; Henrique, R.; Jerónimo, C. The Role of DNA/Histone Modifying Enzymes and Chromatin Remodeling Complexes in Testicular Germ Cell Tumors. Cancers 2019, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Omisanjo, O.A.; Biermann, K.; Hartmann, S.; Heukamp, L.C.; Sonnack, V.; Hild, A.; Brehm, R.; Bergmann, M.; Weidner, W.; Steger, K. DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem. Cell Biol. 2007, 127, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.F.; Gu, S.; Suen, Y.K.; Li, L.; Chan, W.Y. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics 2014, 9, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Kawai, K.; Ando, S.; Sugita, S.; Kandori, S.; Kojima, T.; Miyazaki, J.; Nishiyama, H. DNA methyltransferase-3 like protein expression in various histological types of testicular germ cell tumor. Jpn. J. Clin. Oncol. 2016, 46, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Benesova, M.; Trejbalova, K.; Kucerova, D.; Vernerova, Z.; Hron, T.; Szabo, A.; Amouroux, R.; Klezl, P.; Hajkova, P.; Hejnar, J. Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation. Mol. Carcinog. 2017, 56, 1837–1850. [Google Scholar] [CrossRef] [PubMed]
- Beyrouthy, M.J.; Garner, K.M.; Hever, M.P.; Freemantle, S.J.; Eastman, A.; Dmitrovsky, E.; Spinella, M.J. High DNA methyltransferase 3b expression mediates 5-aza-deoxycytidine hypersensitivity in testicular germ cell tumors. Cancer Res. 2009, 69, 9360–9366. [Google Scholar] [CrossRef] [PubMed]
- Wongtrakoongate, P.; Li, J.; Andrews, P.W. Aza-deoxycytidine induces apoptosis or differentiation via DNMT3B and targets embryonal carcinoma cells but not their differentiated derivatives. Br. J. Cancer 2014, 110, 2131–2138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oing, C.; Verem, I.; Mansour, W.Y.; Bokemeyer, C.; Dyshlovoy, S.; Honecker, F. 5-Azacitidine exerts prolonged pro-apoptotic effects and overcomes cisplatin-resistance in non-seminomatous germ cell tumor cells. Int. J. Mol. Sci. 2018, 20, 56. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, D.; Spinella, M.J.; Albany, C. Epigenetic Targeting of Platinum Resistant Testicular Cancer. Curr. Cancer Drug Targets. 2016, 16, 789–795. [Google Scholar] [CrossRef]
- Graca, I.; Sousa, E.J.; Costa-Pinheiro, P.; Vieira, F.Q.; Torres-Ferreira, J.; Martins, M.G.; Henrique, R.; Jeronimo, C. Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget 2014, 5, 5950–5964. [Google Scholar] [CrossRef]
- Albany, C.; Fazal, Z.; Singh, R.; Bikorimana, E.; Adra, N.; Hanna, N.H.; Einhorn, L.H.; Perkins, S.M.; Sandusky, G.E.; Christensen, B.C.; et al. A phase 1 study of combined guadecitabine and cisplatin in platinum refractory germ cell cancer. Cancer Med. 2021, 10, 156–163. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03366116 (accessed on 17 March 2024).
- Jones, P.A.; Taylor, S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980, 20, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Christman, J.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 2002, 21, 5483–5495. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.B.; Jeong, S.; Egger, G.; Liang, G.; Phiasivongsa, P.; Tang, C.; Redkar, S.; Jones, P.A. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 2007, 67, 6400–6408. [Google Scholar] [CrossRef] [PubMed]
- Brueckner, B.; Rius, M.; Markelova, M.R.; Fichtner, I.; Hals, P.A.; Sandvold, M.L.; Lyko, F. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol. Cancer Ther. 2010, 9, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, A.R. Mechanism of action of purine analogues in chronic lymphocytic leukaemia. Br. J. Haematol. 2003, 121, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Cornacchia, E.; Golbus, J.; Maybaum, J.; Strahler, J.; Hanash, S.; Richardson, B. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 1988, 140, 2197–2200. [Google Scholar] [CrossRef] [PubMed]
- Majid, S.; Dar, A.A.; Shahryari, V.; Hirata, H.; Ahmad, A.; Saini, S.; Tanaka, Y.; Dahiya, A.; Dahiya, R. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-cell translocation gene 3 in prostate cancer. Cancer 2010, 116, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Morris, I.D. Sperm DNA damage and cancer treatment. Int. J. Androl. 2002, 25, 255–261. [Google Scholar] [CrossRef]
- Beaud, H.; Tremblay, A.R.; Chan, P.T.K.; Delbes, G. Sperm DNA Damage in Cancer Patients. In Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology; Baldi, E., Muratori, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1166. [Google Scholar] [CrossRef]
- Sakai, K.; Ideta-Otsuka, M.; Saito, H.; Hiradate, Y.; Hara, K.; Igarashi, K.; Tanemura, K. Effects of doxorubicin on sperm DNA methylation in mouse models of testicular toxicity. Biochem. Biophys. Res. Commun. 2018, 498, 674–679. [Google Scholar] [CrossRef]
- Chan, D.; Delbes, G.; Landry, M.; Robaire, B.; Trasler, J.M. Epigenetic Alterations in Sperm DNA Associated with Testicular Cancer Treatment. Toxicol. Sci. 2012, 125, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Oros Klein, K.; Riera-Escamilla, A.; Krausz, C.; O’Flaherty, C.; Chan, P.; Robaire, B.; Trasler, J.M. Sperm DNA methylome abnormalities occur both pre- and post-treatment in men with Hodgkin disease and testicular cancer. Clin. Epigenet. 2023, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Neyroud, A.S.; Rolland, A.D.; Lecuyer, G.; Evrard, B.; Alary, N.; Dejucq-Rainsford, N.; Bujan, L.; Ravel, C.; Chalmel, F. Sperm DNA methylation dynamics after chemotherapy: A longitudinal study of a patient with testicular germ cell tumor treatment. Andrology 2024, 12, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.; Tholeti, P.; Adiga, S.K.; Anderson, R.A.; Mitchell, R.T.; Spears, N. Chemotherapy induced damage to spermatogonial stem cells in prepubertal mouse in vitro impairs long-term spermatogenesis. Toxicol. Rep. 2020, 8, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Mo, P.; Zhao, Z.; Ke, X.; Fan, Y.; Li, C. Effects of clinical medications on male fertility and prospects for stem cell therapy. Front. Cell Dev. Biol. 2023, 11, 1258574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guida, E.; Tassinari, V.; Colopi, A.; Todaro, F.; Cesarini, V.; Jannini, B.; Pellegrini, M.; Botti, F.; Rossi, G.; Rossi, P.; et al. MAPK activation drives male and female mouse teratocarcinomas from late primordial germ cells. J. Cell Sci. 2022, 135, jcs259375. [Google Scholar] [CrossRef]
- Serrano, J.B.; Tabeling, N.C.; de Winter-Korver, C.M.; van Daalen, S.K.M.; van Pelt, A.M.M.; Mulder, C.L. Sperm DNA methylation is predominantly stable in mice offspring born after transplantation of long-term cultured spermatogonial stem cells. Clin. Epigenet. 2023, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Fu, P.; Zhu, H.; Reed, E.; Remick, S.C.; Petros, W.; Mueller, M.D.; Yu, J.J. Correlations among ERCC1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of histological subtypes of patients with epithelial ovarian cancer. Oncol. Rep. 2012, 27, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Struijk, R.B.; Dorssers, L.C.J.; Henneman, P.; Rijlaarsdam, M.A.; Venema, A.; Jongejan, A.; Mannens, M.M.A.M.; Looijenga, L.H.J.; Repping, S.; van Pelt, A.M.M. Comparing genome-scale DNA methylation and CNV marks between adult human cultured ITGA6+ testicular cells and seminomas to assess in vitro genomic stability. PLoS ONE 2020, 15, e0230253. [Google Scholar] [CrossRef]
- Oblette, A.; Rives-Feraille, A.; Dumont, L.; Delessard, M.; Saulnier, J.; Rives, N.; Rondanino, C. Dynamics of epigenetic modifications in ICSI embryos from in vitro-produced spermatozoa. Andrology 2021, 9, 640–656. [Google Scholar] [CrossRef]
Category | Family | Type |
---|---|---|
GCNIS-derived (known as type II) | Non-invasive | GCNIS, gonadoblastoma, etc. |
Germinoma | Seminoma | |
Non-seminomatous | Embryonal carcinoma | |
Yolk sac tumor, postpubertal | ||
Choriocarcinoma | ||
Teratoma, postpubertal | ||
Mixed | Mixed germ cell tumors | |
Unrelated to GCNIS | Spermatocytic tumor (known as type III) | |
Teratoma, prepubertal (known as type I) | ||
Yolk sac tumor, prepubertal (known as type I) |
Target | Potential Role in Relation to Cancer | Expression Level | Methylation Status | References |
---|---|---|---|---|
AKT3 | Tumor progression Immune infiltration | Upregulated | Hypomethylated | [60] |
CSF3R | Tumor immune infiltration | [56] | ||
NTRK3 | Tumor initiation and progression | [54] | ||
SLC2A1 | Cancer growth Immune infiltration Overall high diagnostic and prognostic value | [59] | ||
SMARCA1 | Tumor progression Immune infiltration High diagnostic value | [62] | ||
KCNC1 | Diagnostic, subtyping and prognostic value, therapeutic target | Downregulated | Hypermethylated | [63] |
RFPL3 | Diagnostic, subtyping and prognostic value | [64] | ||
BRCA1 | DNA repair by homologous recombination Subtyping, staging, therapy response | [65] | ||
RAD51C | ||||
PALB2 | ||||
RAD58B | ||||
SYCP3 | ||||
PPMD1 | Tumor suppressor gene | - | [66] | |
PANX1 | Cancer growth | |||
ENDOD1 | Cell death | |||
MAF | Cell proliferation | |||
MYH2 | DNA repair |
Target | Drug | Combination | Tumor Type | Status | Trial Number | References |
---|---|---|---|---|---|---|
DNMT | 5-azacytidine | Single-agent activity | Refractory GCT patient | Completed | - | [102] |
5-azacytidine | - | Advanced GCT | Completed | - | [103] | |
SGI- 110 (Guadecitabine) | +Cisplatin | Refractory GCT Patients | Phase II | NCT02429466 | [104] | |
SGI-110 | +Carboplatin | Platinum refractory ovarian cancer Refractory GCT cell lines to platinum | Phase II | NCT01696032 | [102] | |
5-aza-4′-Thio-2′-Deoxycytidine (Aza-TdC) | - | Neoplasms, solid tumors | Recruiting | NCT03366116 | [105] | |
PARP +DNMT | Gemcitabine | Veliparib and carboplatin | Completed | - | [85] |
Modifier Type | Drug Example | Description | Current Research Phase | References |
---|---|---|---|---|
DNA methylation inhibitors (bind directly to enzymes) | Azacitidine analog | An agent that directly binds to DNA methyltransferases with recognized therapeutic efficacy but is limited by its considerable toxicity and reduced half-life. | Authorized for use | [106] |
DNA methylation inhibitors (integration into DNA) | Decitabine | A modified nucleoside that merges into DNA, enhancing selectivity due to its unique incorporation, extending the half-life over its counterparts. | Authorized for use | [107] |
DNA methylation inhibitors (stabilization enhancement) | SG110 | A compound that modulates the stability of the DNA methyltransferase inhibitor, leading to diminished drug resistance and prolonged action. | Clinical trials underway | [108] |
DNA methylation modulators (nucleoside transport alteration) | CP4200 | A derivative aimed at augmenting intracellular transport efficiency, albeit at the possible expense of binding precision. | Experimental stages | [109] |
Enzyme competitive inhibitors | Cladribine | This substance hinders a key enzyme, potentially heightening the concentration of a critical methyl group donor, which could impede DNA methyltransferases. | Authorized for use | [110] |
DNA methylation inhibitors (active site binding) | Procainamide | Binds with high specificity to DNA methyltransferase 1, thus potentially halting DNA methylation processes. | Authorized for use | [111] |
Natural epigenetic compounds | Genistein | A natural isoflavone that may reduce DNA methyltransferase activity, with uncertain impacts on DNA methylation patterns. | Advanced research stages | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicu, A.-T.; Ionel, I.P.; Stoica, I.; Burlibasa, L.; Jinga, V. Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship. Biomedicines 2024, 12, 1041. https://doi.org/10.3390/biomedicines12051041
Nicu A-T, Ionel IP, Stoica I, Burlibasa L, Jinga V. Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship. Biomedicines. 2024; 12(5):1041. https://doi.org/10.3390/biomedicines12051041
Chicago/Turabian StyleNicu, Alina-Teodora, Ileana Paula Ionel, Ileana Stoica, Liliana Burlibasa, and Viorel Jinga. 2024. "Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship" Biomedicines 12, no. 5: 1041. https://doi.org/10.3390/biomedicines12051041
APA StyleNicu, A. -T., Ionel, I. P., Stoica, I., Burlibasa, L., & Jinga, V. (2024). Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship. Biomedicines, 12(5), 1041. https://doi.org/10.3390/biomedicines12051041