Analysis of the Associations of Measurements of Body Composition and Inflammatory Factors with Cardiovascular Disease and Its Comorbidities in a Community-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population Design and Ethics
2.2. Definition of CVD and Comorbidities
2.3. Demographic, Anthropometric, and Body Composition Assessment
2.4. Measurement of Soluble Biomarkers
2.5. Inflammatory Biomarkers
2.6. Statistical Analysis
2.7. Additive Bayesian Network (ABN) Modeling
3. Results
3.1. Characteristics of the Study Population
3.2. Associations of Covariates with CVD and Comorbidities
3.3. Multivariable Analysis
3.4. Additive Bayesian Network (ABN) Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bays, H.E.; Kulkarni, A.; German, C.; Satish, P.; Iluyomade, A.; Dudum, R.; Thakkar, A.; Rifai, M.; Al Mehta, A.; Thobani, A.; et al. Ten Things to Know about Ten Cardiovascular Disease Risk Factors—2022. Am. J. Prev. Cardiol. 2022, 10, 100342. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, L.; Lanas, F.; Sun, M.C.; Chen, D.A.; Hynes, L.; Imran, T.F.; Kazi, D.S.; Kengne, A.P.; Komiyama, M.; Kuwabara, M.; et al. World Heart Federation Roadmap for Secondary Prevention of Cardiovascular Disease: 2023 Update. Glob. Heart 2024, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 17 March 2024).
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of Cardiovascular Disease in China: Current Features and Implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef]
- Vesa, C.M.; Popa, L.; Popa, A.R.; Rus, M.; Zaha, A.A.; Bungau, S.; Tit, D.M.; Aron, R.A.C.; Zaha, D.C. Current Data Regarding the Relationship between Type 2 Diabetes Mellitus and Cardiovascular Risk Factors. Diagnostics 2020, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.K.; Suarez-Ortegon, M.F.; Read, S.H.; Kontopantelis, E.; Buchan, I.; Emsley, R.; Sattar, N.; Ashcroft, D.M.; Wild, S.H.; Rutter, M.K. Risk Factor Control and Cardiovascular Event Risk in People With Type 2 Diabetes in Primary and Secondary Prevention Settings. Circulation 2020, 142, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Song, D.K.; Hong, Y.S.; Sung, Y.A.; Lee, H. Risk Factor Control and Cardiovascular Events in Patients with Type 2 Diabetes Mellitus. PLoS ONE 2024, 19, e0299035. [Google Scholar] [CrossRef] [PubMed]
- Alloubani, A.; Nimer, R.; Samara, R. Relationship between Hyperlipidemia, Cardiovascular Disease and Stroke: A Systematic Review. Curr. Cardiol. Rev. 2021, 17, e051121189015. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.S.; Li, T.; Zeng, Z.H. Mechanisms Underlying Direct Actions of Hyperlipidemia on Myocardium: An Updated Review. Lipids Health Dis. 2020, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Van Oort, S.; Beulens, J.W.J.; Van Ballegooijen, A.J.; Grobbee, D.E.; Larsson, S.C. Association of Cardiovascular Risk Factors and Lifestyle Behaviors With Hypertension: A Mendelian Randomization Study. Hypertension 2020, 76, 1971–1979. [Google Scholar] [CrossRef]
- Frostegård, J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef]
- Flora, G.D.; Nayak, M.K. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr. Pharm. Des. 2019, 25, 4063–4084. [Google Scholar] [CrossRef] [PubMed]
- Hurtubise, J.; McLellan, K.; Durr, K.; Onasanya, O.; Nwabuko, D.; Ndisang, J.F. The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis. Curr. Atheroscler. Rep. 2016, 18, 82. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G. Hypertension, Diabetes, Atherosclerosis and NASH: Cause or Consequence? J. Hepatol. 2018, 68, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Gradidge, P.J.L.; Norris, S.A.; Jaff, N.G.; Crowther, N.J. Metabolic and Body Composition Risk Factors Associated with Metabolic Syndrome in a Cohort of Women with a High Prevalence of Cardiometabolic Disease. PLoS ONE 2016, 11, e0162247. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Horwich, T.B.; Tseng, C.H. Relation of Muscle Mass and Fat Mass to Cardiovascular Disease Mortality. Am. J. Cardiol. 2016, 117, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J.; et al. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 2338. [Google Scholar] [CrossRef] [PubMed]
- Ghantous, C.M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A. Differential Role of Leptin and Adiponectin in Cardiovascular System. Int. J. Endocrinol. 2015, 2015, 534320. [Google Scholar] [CrossRef]
- Rahmani, A.; Toloueitabar, Y.; Mohsenzadeh, Y.; Hemmati, R.; Sayehmiri, K.; Asadollahi, K. Association between Plasma Leptin/Adiponectin Ratios with the Extent and Severity of Coronary Artery Disease. BMC Cardiovasc. Disord. 2020, 20, 474. [Google Scholar] [CrossRef]
- Lekva, T.; Michelsen, A.E.; Aukrust, P.; Henriksen, T.; Bollerslev, J.; Ueland, T. Leptin and Adiponectin as Predictors of Cardiovascular Risk after Gestational Diabetes Mellitus. Cardiovasc. Diabetol. 2017, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Macvanin, M.T.; Rizzo, M.; Radovanovic, J.; Sonmez, A.; Paneni, F.; Isenovic, E.R. Role of Chemerin in Cardiovascular Diseases. Biomedicines 2022, 10, 2970. [Google Scholar] [CrossRef] [PubMed]
- Breit, S.N.; Brown, D.A.; Tsai, V.W.W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu. Rev. Physiol. 2021, 83, 127–151. [Google Scholar] [CrossRef] [PubMed]
- Asrih, M.; Wei, S.; Nguyen, T.T.; Yi, H.S.; Ryu, D.; Gariani, K. Overview of Growth Differentiation Factor 15 in Metabolic Syndrome. J. Cell. Mol. Med. 2023, 27, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Day, E.A.; Townsend, L.K.; Djordjevic, D.; Jørgensen, S.B.; Steinberg, G.R. GDF15: Emerging Biology and Therapeutic Applications for Obesity and Cardiometabolic Disease. Nat. Rev. Endocrinol. 2021, 17, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Rochette, L.; Dogon, G.; Zeller, M.; Cottin, Y.; Vergely, C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int. J. Mol. Sci. 2021, 22, 8889. [Google Scholar] [CrossRef] [PubMed]
- Eddy, A.C.; Trask, A.J. Growth Differentiation Factor-15 and Its Role in Diabetes and Cardiovascular Disease. Cytokine Growth Factor Rev. 2021, 57, 11–18. [Google Scholar] [CrossRef] [PubMed]
- May, B.M.; Pimentel, M.; Zimerman, L.I.; Rohde, L.E. GDF-15 as a Biomarker in Cardiovascular Disease. Arq. Bras. Cardiol. 2021, 116, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, F.; Ma, M.; Bao, Q.; Shen, J.; Ye, F.; Xie, X. The Impact of Growth Differentiation Factor 15 on the Risk of Cardiovascular Diseases: Two-Sample Mendelian Randomization Study. BMC Cardiovasc Disord. 2020, 20, 462. [Google Scholar] [CrossRef]
- Tsai, V.W.W.; Lin, S.; Brown, D.A.; Salis, A.; Breit, S.N. Anorexia-Cachexia and Obesity Treatment May Be Two Sides of the Same Coin: Role of the TGF-b Superfamily Cytokine MIC-1/GDF15. Int. J. Obes. 2016, 40, 193–197. [Google Scholar] [CrossRef]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 542657. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Rinnov, A.; Krogh-Madsen, R.; Fischer, C.P.; Andreasen, A.S.; Berg, R.M.G.; Møller, K.; Pedersen, B.K.; Plomgaard, P. Plasma Follistatin Is Elevated in Patients with Type 2 Diabetes: Relationship to Hyperglycemia, Hyperinsulinemia, and Systemic Low-Grade Inflammation. Diabetes Metab. Res. Rev. 2013, 29, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Nilsson, J.; Engström, G.; De Marinis, Y. Elevated Circulating Follistatin Associates with Increased Risk of Mortality and Cardiometabolic Disorders. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Role of Inflammation in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 2906. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Zhuang, L.; Shen, Y.; Geng, Y.; Yu, S.; Chen, H.; Liu, L.; Meng, Z.; Wang, P.; Chen, Z. A Novel Systemic Inflammation Response Index (SIRI) for Predicting the Survival of Patients with Pancreatic Cancer after Chemotherapy. Cancer 2016, 122, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Mao, W.; Wang, S.; Sha, J.; Lu, M.; Cong, L.; Meng, X.; Li, H. Systemic Inflammation Response Index as a Prognostic Predictor in Patients with Acute Ischemic Stroke: A Propensity Score Matching Analysis. Front. Neurol. 2023, 13, 1049241. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Shi, D.; Yang, L.; Wang, Z.; Li, Y.; Gao, F.; Liu, Y.; Ma, X.; Zhou, Y. Prognostic Value of Systemic Inflammatory Response Index in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Ann. Med. 2022, 54, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wu, K.; Sun, T.; Huang, X.; Zhang, B.; Chen, Z.; Zhao, Z.; Zhao, J.; Zhou, Y. Impacts of Systemic Inflammation Response Index on the Prognosis of Patients with Ischemic Heart Failure after Percutaneous Coronary Intervention. Front. Immunol. 2024, 15, 1324890. [Google Scholar] [CrossRef] [PubMed]
- Tarabeih, N.; Kalinkovich, A.; Shalata, A.; Cherny, S.S.; Livshits, G. Deciphering the Causal Relationships Between Low Back Pain Complications, Metabolic Factors, and Comorbidities. J. Pain Res. 2022, 15, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Tarabeih, N.; Masharawi, Y.; Shalata, A.; Higla, O.; Kalinkovich, A.; Livshits, G. Scoliosis and Skeletal Muscle Mass Are Strongly Associated with Low Back Pain-Related Disability in Humans: An Evolutionary Anthropology Point of View. Am. J. Hum. Biol. 2022, 34, e23757. [Google Scholar] [CrossRef]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef] [PubMed]
- Achamrah, N.; Colange, G.; Delay, J.; Rimbert, A.; Folope, V.; Petit, A.; Grigioni, S.; Déchelotte, P.; Coëffier, M. Comparison of Body Composition Assessment by DXA and BIA According to the Body Mass Index: A Retrospective Study on 3655 Measures. PLoS ONE 2018, 13, e0200465. [Google Scholar] [CrossRef] [PubMed]
- McManus, M.L.; Churchwell, K.B.; Strange, K. Regulation of Cell Volume in Health and Disease. N. Engl. J. Med. 1995, 333, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, R. Relationship between Body Water Compartments and Indexes of Adiposity in Sedentary Young Adult Girls. Braz. J. Biomotricity 2012, 6, 84–92. [Google Scholar]
- Thomas, M.R.; Storey, R.F. The Role of Platelets in Inflammation. Thromb. Haemost. 2015, 114, 449–458. [Google Scholar] [CrossRef] [PubMed]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 3 December 2023).
- Ziyatdinov, A.; Vázquez-Santiago, M.; Brunel, H.; Martinez-Perez, A.; Aschard, H.; Soria, J.M. Lme4qtl: Linear Mixed Models with Flexible Covariance Structure for Genetic Studies of Related Individuals. BMC Bioinform. 2018, 19, 68. [Google Scholar] [CrossRef] [PubMed]
- Sinnwell, J.P.; Therneau, T.M.; Schaid, D.J. The Kinship2 R Package for Pedigree Data. Hum. Hered. 2014, 78, 91. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Kratzer, G.; Lewis, F.I.; Willi, B.; Meli, M.L.; Boretti, F.S.; Hofmann-Lehmann, R.; Torgerson, P.; Furrer, R.; Hartnack, S. Bayesian Network Modeling Applied to Feline Calicivirus Infection Among Cats in Switzerland. Front. Vet. Sci. 2020, 7, 513159. [Google Scholar]
- (20) (PDF) Abn: An R Package for Modelling Multivariate Data Using Additive Bayesian Networks. Available online: https://www.researchgate.net/publication/303371852_abn_an_R_package_for_modelling_multivariate_data_using_additive_Bayesian_networks (accessed on 3 December 2023).
- Kratzer, G.; Lewis, F.; Comin, A.; Pittavino, M.; Furrer, R. Additive Bayesian Network Modeling with the R Package Abn. J. Stat. Softw. 2023, 105, 1–41. [Google Scholar] [CrossRef]
- Hornik, K.; Leisch, F.; Zeileis, A.; Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. In Proceedings of the Third International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria, 20–22 March 2003. [Google Scholar]
- Cherny, S.S.; Nevo, D.; Baraz, A.; Baruch, S.; Lewin-Epstein, O.; Stein, G.Y.; Obolski, U. Revealing Antibiotic Cross-Resistance Patterns in Hospitalized Patients through Bayesian Network Modelling. J. Antimicrob. Chemother. 2021, 76, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Cherny, S.S.; Chowers, M.; Obolski, U. Bayesian Network Modeling of Patterns of Antibiotic Cross-Resistance by Bacterial Sample Source. Commun. Med. 2023, 3, 61. [Google Scholar] [CrossRef] [PubMed]
- Hidano, A.; Yamamoto, T.; Hayama, Y.; Muroga, N.; Kobayashi, S.; Nishida, T.; Tsutsui, T. Unraveling Antimicrobial Resistance Genes and Phenotype Patterns among Enterococcus Faecalis Isolated from Retail Chicken Products in Japan. PLoS ONE 2015, 10, e0121189. [Google Scholar] [CrossRef] [PubMed]
- Lewis, F.I.; McCormick, B.J.J. Revealing the Complexity of Health Determinants in Resource-Poor Settings. Am. J. Epidemiol. 2012, 176, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Jena, A.; Srivatsan, V.; Muthukumar, R.; Dhandapani, V. GDF 15--A Novel Biomarker in the Offing for Heart Failure. Curr. Cardiol. Rev. 2016, 12, 37–46. [Google Scholar] [CrossRef]
- Zeng, X.; Li, L.; Wen, H.; Bi, Q. Growth-Differentiation Factor 15 as a Predictor of Mortality in Patients with Heart Failure: A Meta-Analysis. J. Cardiovasc. Med. 2017, 18, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lu, L.; Liu, L. Growth Differentiation Factor-15 and the Risk of Cardiovascular Diseases and All-Cause Mortality: A Meta-Analysis of Prospective Studies. Clin. Cardiol. 2019, 42, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Bai, J.; Tan, Y.; Wei, Z.; Dai, Q.; Kang, L.; Wang, L.; Chen, J.; Yang, Y.; Wang, K.; et al. Growth Differentiation Factor-15 as a Negative Predictor for Microvascular Obstruction in ST-Segment Elevation Myocardial Infarction after Primary Percutaneous Coronary Intervention. Int. J. Cardiovasc. Imaging 2024, 40, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.D.; et al. The Transforming Growth Factor-Beta Superfamily Member Growth-Differentiation Factor-15 Protects the Heart from Ischemia/Reperfusion Injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef]
- Kato, E.T.; Morrow, D.A.; Guo, J.; Berg, D.D.; Blazing, M.A.; Bohula, E.A.; Bonaca, M.P.; Cannon, C.P.; de Lemos, J.A.; Giugliano, R.P.; et al. Growth Differentiation Factor 15 and Cardiovascular Risk: Individual Patient Meta-Analysis. Eur. Heart J. 2023, 44, 293–300. [Google Scholar] [CrossRef]
- Hagström, E.; James, S.K.; Bertilsson, M.; Becker, R.C.; Himmelmann, A.; Husted, S.; Katus, H.A.; Steg, P.G.; Storey, R.F.; Siegbahn, A.; et al. Growth Differentiation Factor-15 Level Predicts Major Bleeding and Cardiovascular Events in Patients with Acute Coronary Syndromes: Results from the PLATO Study. Eur. Heart J. 2016, 37, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Recarte, D.; Barroso, E.; Palomer, X.; Wahli, W.; Vázquez-Carrera, M. Knocking on GDF15’s Door for the Treatment of Type 2 Diabetes Mellitus. Trends Endocrinol. Metab. 2022, 33, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Borné, Y.; Muhammad, I.F.; Nilsson, J.; Lind, L.; Melander, O.; Niu, K.; Orho-Melander, M.; Engström, G. Growth Differentiation Factor 15 Is Positively Associated with Incidence of Diabetes Mellitus: The Malmö Diet and Cancer-Cardiovascular Cohort. Diabetologia 2019, 62, 78–86. [Google Scholar] [CrossRef]
- Mullican, S.E.; Rangwala, S.M. Uniting GDF15 and GFRAL: Therapeutic Opportunities in Obesity and Beyond. Trends Endocrinol. Metab. 2018, 29, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Jena, J.; García-Peña, L.M.; Pereira, R.O. The Roles of FGF21 and GDF15 in Mediating the Mitochondrial Integrated Stress Response. Front. Endocrinol. 2023, 14, 1264530. [Google Scholar] [CrossRef] [PubMed]
- Ngamjariyawat, A.; Cen, J.; Wang, X.; Welsh, N. GDF15 Protects Insulin-Producing Beta Cells against Pro-Inflammatory Cytokines and Metabolic Stress via Increased Deamination of Intracellular Adenosine. Int. J. Mol. Sci. 2024, 25, 801. [Google Scholar] [CrossRef]
- Minamino, T.; Orimo, M.; Shimizu, I.; Kunieda, T.; Yokoyama, M.; Ito, T.; Nojima, A.; Nabetani, A.; Oike, Y.; Matsubara, H.; et al. A Crucial Role for Adipose Tissue P53 in the Regulation of Insulin Resistance. Nat. Med. 2009, 15, 1082–1087. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Qin, W.; Zhang, G.; Yuan, J.; Wang, F. Adaptive Induction of Growth Differentiation Factor 15 Attenuates Endothelial Cell Apoptosis in Response to High Glucose Stimulus. PLoS ONE 2013, 8, e65549. [Google Scholar] [CrossRef]
- Aguilar-Recarte, D.; Barroso, E.; Gumà, A.; Pizarro-Delgado, J.; Peña, L.; Ruart, M.; Palomer, X.; Wahli, W.; Vázquez-Carrera, M. GDF15 Mediates the Metabolic Effects of PPARβ/δ by Activating AMPK. Cell Rep. 2021, 36, 109501. [Google Scholar] [CrossRef]
- Ji, X.; Zhao, L.; Ji, K.; Zhao, Y.; Li, W.; Zhang, R.; Hou, Y.; Lu, J.; Yan, C. Growth Differentiation Factor 15 Is a Novel Diagnostic Biomarker of Mitochondrial Diseases. Mol. Neurobiol. 2017, 54, 8110–8116. [Google Scholar] [CrossRef]
- Yatsuga, S.; Fujita, Y.; Ishii, A.; Fukumoto, Y.; Arahata, H.; Kakuma, T.; Kojima, T.; Ito, M.; Tanaka, M.; Saiki, R.; et al. Growth Differentiation Factor 15 as a Useful Biomarker for Mitochondrial Disorders. Ann. Neurol. 2015, 78, 814–823. [Google Scholar] [CrossRef]
- Montero, R.; Yubero, D.; Villarroya, J.; Henares, D.; Jou, C.; Rodríguez, M.A.; Ramos, F.; Nascimento, A.; Ortez, C.I.; Campistol, J.; et al. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS ONE 2016, 11, e0155172. [Google Scholar] [CrossRef]
- Srivastava, S. The Mitochondrial Basis of Aging and Age-Related Disorders. Genes 2017, 8, 398. [Google Scholar] [CrossRef]
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M. The Metabolic Syndrome: Time for a Critical Appraisal: Joint Statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28, 2289–2304. [Google Scholar] [CrossRef] [PubMed]
- Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abegaz, K.H.; Abolhassani, H.; Aboyans, V.; et al. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Salmón-Gómez, L.; Catalán, V.; Frühbeck, G.; Gómez-Ambrosi, J. Relevance of Body Composition in Phenotyping the Obesities. Rev. Endocr. Metab. Disord. 2023, 24, 809–823. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, E984–E1010. [Google Scholar] [CrossRef]
- Balgobin, S.; Basak, S.; Teoh, C.W.; Noone, D. Hypertension in Diabetes. Pediatr. Nephrol. 2023, 39, 1739–1758. [Google Scholar] [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Kjeldsen, S.E. Hypertension and Cardiovascular Risk: General Aspects. Pharmacol. Res. 2018, 129, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.S.; Wong, N.D. Hypertension and Cardiovascular Disease: Contributions of the Framingham Heart Study. Glob. Heart 2013, 8, 49–57. [Google Scholar] [CrossRef]
- Wu, C.Y.; Hu, H.Y.; Chou, Y.J.; Huang, N.; Chou, Y.C.; Li, C.P. High Blood Pressure and All-Cause and Cardiovascular Disease Mortalities in Community-Dwelling Older Adults. Medicine 2015, 94, e2160. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.M. Diabetes Mellitus and Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 558–568. [Google Scholar] [CrossRef] [PubMed]
- BM, L.; TM, M. Diabetes and Cardiovascular Disease: Epidemiology, Biological Mechanisms, Treatment Recommendations and Future Research. World J. Diabetes 2015, 6, 1246. [Google Scholar] [CrossRef]
- Pownall, H.J.; Gotto, A.M. Lipids and Cardiovascular Disease: Putting It All Together. Methodist Debakey Cardiovasc J. 2019, 15, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care 2013, 40, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Cauwels, A.; Rogge, E.; Vandendriessche, B.; Shiva, S.; Brouckaert, P. Extracellular ATP Drives Systemic Inflammation, Tissue Damage and Mortality. Cell Death Dis. 2014, 5, e1102. [Google Scholar] [CrossRef]
- Fagugli, R.M.; Pasini, P.; Quintaliani, G.; Pasticci, F.; Ciao, G.; Cicconi, B.; Ricciardi, D.; Santirosi, P.V.; Buoncristiani, E.; Timio, F.; et al. Association between Extracellular Water, Left Ventricular Mass and Hypertension in Haemodialysis Patients. Nephrol. Dial. Transplant. 2003, 18, 2332–2338. [Google Scholar] [CrossRef]
- Park, S.; Lee, C.J.; Jhee, J.H.; Yun, H.R.; Kim, H.; Jung, S.Y.; Kee, Y.K.; Yoon, C.Y.; Park, J.T.; Kim, H.C.; et al. Extracellular Fluid Excess Is Significantly Associated With Coronary Artery Calcification in Patients with Chronic Kidney Disease. J. Am. Heart Assoc. 2018, 7, e008935. [Google Scholar] [CrossRef]
- Mitsides, N.; Cornelis, T.; Broers, N.J.H.; Diederen, N.M.P.; Brenchley, P.; Van Der Sande, F.M.; Schalkwijk, C.G.; Kooman, J.P.; Mitra, S. Extracellular Overhydration Linked with Endothelial Dysfunction in the Context of Inflammation in Haemodialysis Dependent Chronic Kidney Disease. PLoS ONE 2017, 12, e0183281. [Google Scholar] [CrossRef] [PubMed]
- Pence, B.D. Growth Differentiation Factor-15 in Immunity and Aging. Front. Aging 2022, 3, 837575. [Google Scholar] [CrossRef] [PubMed]
Group Variable | Control (N = 706) | (1) HTN (N = 264) | (2) HLD (N = 343) | (3) T2DM (N = 181) | (4) CVD (N = 111) | P1 | P2 | P3 | P4 |
---|---|---|---|---|---|---|---|---|---|
Age (years) | 38.69 ± 0.41 | 56.19 ± 0.67 | 54.23 ± 0.58 | 55.38 ± 0.75 | 56.33 ± 1.20 | - | - | - | - |
BMI (kg/m2) | 27.78 ± 0.16 | 31.42 ± 0.30 | 30.83 ± 0.27 | 31.69 ± 0.36 | 31.73 ± 0.58 | 4.86 × 10−7 | 0.000005 | 0.000001 | 0.000002 |
Waist circumference (cm) | 93.86 ± 0.41 | 104.48 ± 0.71 | 102.83 ± 0.65 | 105.15 ± 0.88 | 104.34 ± 1.22 | 9.27 × 10−8 | 0.000005 | 2.45 × 10−8 | 1.61 × 10−7 |
WHR | 0.88 ± 0.002 | 0.95 ± 0.004 | 0.94 ± 0.004 | 0.96 ± 0.006 | 0.95 ± 0.007 | 0.0001 | 0.005 | 8.04×10−9 | 0.01 |
FM/WT (kg/kg) | 0.31 ± 0.002 | 0.35 ± 0.005 | 0.34 ± 0.005 | 0.35 ± 0.006 | 0.34 ± 0.009 | 0.002 | 0.01 | 0.01 | 0.0001 |
SMM/WT (kg/kg) | 0.33 ± 0.002 | 0.29 ± 0.004 | 0.29 ± 0.003 | 0.29 ± 0.004 | 0.29 ± 0.006 | NS | NS | NS | 0.01 |
TBW (L) | 38.55 ± 0.24 | 40.88 ± 0.50 | 40.23 ± 0.41 | 40.93 ± 0.58 | 41.45 ± 0.72 | 9.77 × 10−8 | 0.004 | 4.84 × 10−7 | 0.001 |
ECW (L) | 17.60 ± 0.11 | 20.35 ± 0.24 | 19.77 ± 0.19 | 20.12 ± 0.27 | 20.72 ± 0.33 | 1.06 × 10−9 | 0.005 | 0.000002 | 1.63 × 10−8 |
GDF-15 (pg/mL) | 401.32 ± 7.54 | 658.57 ± 21.79 | 695.42 ± 26.11 | 785.12 ± 34.85 | 802.67 ± 46.26 | 0.000002 | 0.000007 | 0.001 | 4.16 × 10−13 |
Chemerin (ng/mL) | 87.91 ± 0.86 | 103.69 ± 1.92 | 100.61 ± 1.60 | 103.36 ± 2.34 | 104.54 ± 3.15 | 0.00003 | 0.002 | 0.001 | 0.00001 |
Follistatin (pg/mL) | 549.46 ± 16.35 | 700.99 ± 26.30 | 679.67 ± 22.51 | 732.21 ± 33.73 | 695.70 ± 36.10 | 0.003 | 0.001 | 0.001 | 0.04 |
L/A ratio | 5.19 ± 0.20 | 8.83 ± 0.44 | 8.14 ± 0.37 | 8.75 ± 0.52 | 8.26 ± 0.74 | 0.0002 | 0.001 | 0.0002 | 0.00007 |
Lymphocyte (×109/L) | 2.13 ± 0.02 | 2.33 ± 0.04 | 2.35 ± 0.04 | 2.39 ± 0.06 | 2.33 ± 0.07 | 0.04 | 0.0001 | 0.001 | 0.002 |
SIRI | 0.76 ± 0.01 | 0.83 ± 0.02 | 0.80 ± 0.02 | 0.79 ± 0.03 | 0.89 ± 0.04 | 0.03 | NS | NS | 0.02 |
PT | 0.99 ± 0.004 | 1.06 ± 0.02 | 1.04 ± 0.02 | 1.02 ± 0.02 | 1.13 ± 0.05 | 0.03 | NS | NS | 0.0009 |
CRP (mg/L) | 0.65 ± 0.05 | 1.15 ± 0.14 | 1.05 ± 0.13 | 1.67 ± 0.15 | 1.43 ± 0.27 | NS | NS | NS | 0.01 |
Dependent Variable | |||||||||
---|---|---|---|---|---|---|---|---|---|
(1) HTN | (2) HLD | (3) T2DM | |||||||
Independent Variable | OR (95% CI) | Β (SE) | p | OR (95% CI) | Β (SE) | p | OR (95% CI) | Β (SE) | p |
Age | 3.40 (2.33–4.96) | 1.22 (0.19) | 2.12 × 10−10 | 3.11 (2.39–4.04) | 1.13 (0.13) | 1.15 × 10−17 | 1.29 (0.96–1.49) | 0.26 (0.14) | NS |
ECW | 1.63 (1.28–2.07) | 0.49 (0.12) | 5.31 × 10−5 | 1.05 (0.86–1.29) | 0.05 (0.10) | NS | 1.20 (0.96–1.49) | 0.18 (0.11) | NS |
GDF-15 | 1.18 (0.91–1.53) | 0.17 (0.13) | NS | 1.15 (0.89–1.48) | 0.14 (0.12) | NS | 1.87 (1.44–2.42) | 0.62 (0.13) | 0.000001 |
L/A ratio | 1.53 (1.19–1.96) | 0.42 (0.12) | 0.0007 | 1.12 (0.90–1.40) | 0.11 (0.11) | NS | 1.35 (1.04–1.75) | 0.30 (0.13) | 0.02 |
HTN | - | - | - | 3.75 (2.44–5.75) | 1.32 (0.21) | 1.13 × 10−8 | 1.62 (1.00–2.64) | 0.48 (0.24) | 0.04 |
HLD | 4.41 (2.48–7.84) | 1.48 (0.29) | 4.21 × 10−7 | - | - | - | 7.06 (4.12–11.83) | 1.95 (0.26) | 1.09 × 10−12 |
T2DM | 1.89 (1.11–3.21) | 0.63 (0.26) | 0.01 | 6.43 (3.86–10.70) | 1.86 (0.25) | 7.25 × 10−12 | - | - | - |
Dependent Variable: CVD. Stage 1. | |||
Independent Variable | OR (95% CI) | B (SE) | p |
Age | 2.67 (1.92–3.72) | 0.98 (0.17) | 5.84 × 10−9 |
ECW | 1.58 (1.25–1.99) | 0.46 (0.11) | 0.0001 |
GDF-15 | 2.42 (1.78–3.30) | 0.88 (0.16) | 1.96 × 10−8 |
L/A ratio | 1.72 (1.33–2.22) | 0.54 (0.13) | 2.73 × 10−5 |
Lymphocyte | 1.50 (1.21–1.85) | 0.40 (0.10) | 0.0001 |
SIRI | 1.49 (1.19–1.87) | 0.40 (0.11) | 0.0001 |
MLR (χ2) = 241.61, p < 0.00001 | |||
Dependent Variable: CVD. Stage 2. | |||
Independent Variable | ROR (95% CI) | B (SE) | p |
ECW | 1.35 (1.06–1.72) | 0.30 (0.12) | 0.01 |
GDF-15 | 1.85 (1.39–2.46) | 0.61 (0.14) | 2.38 × 10−5 |
Lymphocyte | 1.51 (1.21–1.88) | 0.41 (0.11) | 0.0002 |
HTN | 10.89 (6.46–18.38) | 2.38 (0.26) | 2.00 × 10−14 |
HLD | 2.49 (1.43–4.33) | 0.91 (0.28) | 0.001 |
T2DM | 1.93 (1.12–3.33) | 0.66 (0.27) | 0.01 |
MLR (χ2) = 330.60, p < 0.000001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarabeih, N.; Kalinkovich, A.; Ashkenazi, S.; Cherny, S.S.; Shalata, A.; Livshits, G. Analysis of the Associations of Measurements of Body Composition and Inflammatory Factors with Cardiovascular Disease and Its Comorbidities in a Community-Based Study. Biomedicines 2024, 12, 1066. https://doi.org/10.3390/biomedicines12051066
Tarabeih N, Kalinkovich A, Ashkenazi S, Cherny SS, Shalata A, Livshits G. Analysis of the Associations of Measurements of Body Composition and Inflammatory Factors with Cardiovascular Disease and Its Comorbidities in a Community-Based Study. Biomedicines. 2024; 12(5):1066. https://doi.org/10.3390/biomedicines12051066
Chicago/Turabian StyleTarabeih, Nader, Alexander Kalinkovich, Shai Ashkenazi, Stacey S. Cherny, Adel Shalata, and Gregory Livshits. 2024. "Analysis of the Associations of Measurements of Body Composition and Inflammatory Factors with Cardiovascular Disease and Its Comorbidities in a Community-Based Study" Biomedicines 12, no. 5: 1066. https://doi.org/10.3390/biomedicines12051066
APA StyleTarabeih, N., Kalinkovich, A., Ashkenazi, S., Cherny, S. S., Shalata, A., & Livshits, G. (2024). Analysis of the Associations of Measurements of Body Composition and Inflammatory Factors with Cardiovascular Disease and Its Comorbidities in a Community-Based Study. Biomedicines, 12(5), 1066. https://doi.org/10.3390/biomedicines12051066