Can Microfluidics Improve Sperm Quality? A Prospective Functional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Semen Processing and Analysis
2.3. Statistical Analysis
3. Results
3.1. Relationship between DNA Fragmentation and Sperm Quality Parameters
3.2. Comparison between the Microfluidic Device and Density Gradients
3.3. Stratification of the Data by Comparing the Microfluidic Device with Density Gradients
3.4. Comparison between the Microfluidic Device and Swim-Up
3.5. Stratification of Data Comparing the Microfluidic Device with Swim-Up
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Sexual and Reproductive Health and Research, World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; WHO Press: Geneva, Switzerland, 2021. [Google Scholar]
- Olatunji, O.; More, A. A Review of the Impact of Microfluidics Technology on Sperm Selection Technique. Cureus 2022, 14, e27369. [Google Scholar] [CrossRef] [PubMed]
- Panner Selvam, M.K.; Agarwal, A. A Systematic Review on Sperm DNA Fragmentation in Male Factor Infertility: Laboratory Assessment. Arab. J. Urol. 2018, 16, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Chambers, G.M.; Dyer, S.; Zegers-Hochschild, F.; de Mouzon, J.; Ishihara, O.; Banker, M.; Mansour, R.; Kupka, M.S.; Adamson, G.D. International Committee for Monitoring Assisted Reproductive Technologies World Report: Assisted Reproductive Technology, 2014. Hum. Reprod. 2021, 36, 2921–2934. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, R.; Graham, P.J.; Zhang, B.; Riordon, J.; Lagunov, A.; Hannam, T.G.; Escobedo, C.; Jarvi, K.; Sinton, D. Microfluidics for Sperm Analysis and Selection. Nat. Rev. Urol. 2017, 14, 707–730. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Bronson, R.; Smith, T.B.; De Iuliis, G.N. The Source and Significance of DNA Damage in Human Spermatozoa; a Commentary on Diagnostic Strategies and Straw Man Fallacies. Mol. Hum. Reprod. 2013, 19, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Rappa, K.L.; Rodriguez, H.F.; Hakkarainen, G.C.; Anchan, R.M.; Mutter, G.L.; Asghar, W. Sperm Processing for Advanced Reproductive Technologies: Where Are We Today? Biotechnol. Adv. 2016, 34, 578–587. [Google Scholar] [CrossRef] [PubMed]
- González-Marín, C.; Gosálvez, J.; Roy, R. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells. Int. J. Mol. Sci. 2012, 13, 14026–14052. [Google Scholar] [CrossRef]
- Hervás, I.; Pacheco, A.; Gil Julia, M.; Rivera-Egea, R.; Navarro-Gomezlechon, A.; Garrido, N. Sperm Deoxyribonucleic Acid Fragmentation (by Terminal Deoxynucleotidyl Transferase Biotin DUTP Nick End Labeling Assay) Does Not Impair Reproductive Success Measured as Cumulative Live Birth Rates per Donor Metaphase II Oocyte Used. Fertil. Steril. 2022, 118, 79–89. [Google Scholar] [CrossRef]
- Meseguer, M.; Santiso, R.; Garrido, N.; García-Herrero, S.; Remohí, J.; Fernandez, J.L. Effect of Sperm DNA Fragmentation on Pregnancy Outcome Depends on Oocyte Quality. Fertil. Steril. 2011, 95, 124–128. [Google Scholar] [CrossRef]
- Lin, M.H.; Kuo-Kuang Lee, R.; Li, S.H.; Lu, C.H.; Sun, F.J.; Hwu, Y.M. Sperm Chromatin Structure Assay Parameters Are Not Related to Fertilization Rates, Embryo Quality, and Pregnancy Rates in in Vitro Fertilization and Intracytoplasmic Sperm Injection, but Might Be Related to Spontaneous Abortion Rates. Fertil. Steril. 2008, 90, 352–359. [Google Scholar] [CrossRef]
- Newman, H.; Catt, S.; Vining, B.; Vollenhoven, B.; Horta, F. DNA Repair and Response to Sperm DNA Damage in Oocytes and Embryos, and the Potential Consequences in ART: A Systematic Review. Mol. Hum. Reprod. 2022, 28, gaab071. [Google Scholar] [CrossRef] [PubMed]
- Repalle, D.; Saritha, K.V.; Bhandari, S.; Chittora, M.; Choudhary, J. Role of Female Age in Regulating the Effect of Sperm DNA Fragmentation on the Live Birth Rates in Intracytoplasmic Sperm Injection Cycles with Own and Donor Oocytes. J. Hum. Reprod. Sci. 2022, 15, 64–71. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Novo, S.; Torres, M.; Salas-Huetos, A.; Rovira, S.; Antich, M.; Yeste, M. Sperm DNA Integrity Does Play a Crucial Role for Embryo Development after ICSI, Notably When Good-Quality Oocytes from Young Donors Are Used. Biol. Res. 2022, 55, 41. [Google Scholar] [CrossRef] [PubMed]
- Musson, R.; Gasior, Ł.; Bisogno, S.; Ptak, G.E. DNA Damage in Preimplantation Embryos and Gametes: Specification, Clinical Relevance and Repair Strategies. Hum. Reprod. Update 2022, 28, 376–399. [Google Scholar] [CrossRef]
- Esteves, S.C.; Zini, A.; Coward, R.M.; Evenson, D.P.; Gosálvez, J.; Lewis, S.E.M.; Sharma, R.; Humaidan, P. Sperm DNA Fragmentation Testing: Summary Evidence and Clinical Practice Recommendations. Andrologia 2021, 53, e13874. [Google Scholar] [CrossRef] [PubMed]
- Kanakasabapathy, M.K.; Sadasivam, M.; Singh, A.; Preston, C.; Thirumalaraju, P.; Venkataraman, M.; Bormann, C.L.; Draz, M.S.; Petrozza, J.C.; Shafiee, H. An Automated Smartphone-Based Diagnostic Assay for Point-of-Care Semen Analysis. Sci. Transl. Med. 2017, 9, eaai7863. [Google Scholar] [CrossRef]
- Schaff, U.Y.; Fredriksen, L.L.; Epperson, J.G.; Quebral, T.R.; Naab, S.; Sarno, M.J.; Eisenberg, M.L.; Sommer, G.J. Novel Centrifugal Technology for Measuring Sperm Concentration in the Home. Fertil. Steril. 2017, 107, 358–364.e4. [Google Scholar] [CrossRef]
- Asghar, W.; Velasco, V.; Kingsley, J.L.; Shoukat, M.S.; Shafiee, H.; Anchan, R.M.; Mutter, G.L.; Tüzel, E.; Demirci, U. Selection of Functional Human Sperm with Higher DNA Integrity and Fewer Reactive Oxygen Species. Adv. Healthc. Mater. 2014, 3, 1671–1679. [Google Scholar] [CrossRef]
- Quinn, M.M.; Jalalian, L.; Ribeiro, S.; Ona, K.; Demirci, U.; Cedars, M.I.; Rosen, M.P. Microfluidic Sorting Selects Sperm for Clinical Use with Reduced DNA Damage Compared to Density Gradient Centrifugation with Swim-up in Split Semen Samples. Hum. Reprod. 2018, 33, 1388–1393. [Google Scholar] [CrossRef]
- Weng, L.; Lee, G.Y.; Liu, J.; Kapur, R.; Toth, T.L.; Toner, M. On-Chip Oocyte Denudation from Cumulus-Oocyte Complexes for Assisted Reproductive Therapy. Lab Chip 2018, 18, 3892–3902. [Google Scholar] [CrossRef]
- Gode, F.; Bodur, T.; Gunturkun, F.; Gurbuz, A.S.; Tamer, B.; Pala, I.; Isik, A.Z. Comparison of Microfluid Sperm Sorting Chip and Density Gradient Methods for Use in Intrauterine Insemination Cycles. Fertil. Steril. 2019, 112, 842–848.e1. [Google Scholar] [CrossRef] [PubMed]
- Suh, R.; Takayama, S.; Smith, G.D. Microfluidic Applications for Andrology. J. Androl. 2005, 26, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Xie, L.; Han, C.; Su, K.; Qiu, T.; Wang, L.; Huang, G.; Xing, W.; Qiao, J.; Wang, J.; et al. In Vitro Fertilization on a Single-Oocyte Positioning System Integrated with Motile Sperm Selection and Early Embryo Development. Anal. Chem. 2011, 83, 2964–2970. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.S.; Cabrera, L.M.; Bormann, C.L.; Smith, G.D.; Takayama, S. Real Time Culture and Analysis of Embryo Metabolism Using a Microfluidic Device with Deformation Based Actuation. Lab Chip 2012, 12, 2240–2246. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Fu, J. Microfluidics for Cryopreservation. Biotechnol. Adv. 2017, 35, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Takayama, S. Cryopreservation and Microfluidics: A Focus on the Oocyte. Reprod. Fertil. Dev. 2018, 31, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Weng, L. IVF-on-a-Chip: Recent Advances in Microfluidics Technology for in Vitro Fertilization. SLAS Technol. 2019, 24, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Baldini, D.; Ferri, D.; Baldini, G.M.; Lot, D.; Catino, A.; Vizziello, D.; Vizziello, G. Sperm Selection for ICSI: Do We Have a Winner? Cells 2021, 10, 3566. [Google Scholar] [CrossRef]
- Kushnir, V.A.; Smith, G.D.; Adashi, E.Y. The Future of IVF: The New Normal in Human Reproduction. Reprod. Sci. 2022, 29, 849–856. [Google Scholar] [CrossRef]
- Schardein, J.N.; Fendereski, K.; Hotaling, J.M. Evolution of the Basic Semen Analysis and Processing Sperm. Curr. Opin. Urol. 2023, 33, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Vasilescu, S.A.; Ding, L.; Parast, F.Y.; Nosrati, R.; Warkiani, M.E. Sperm Quality Metrics Were Improved by a Biomimetic Microfluidic Selection Platform Compared to Swim-up Methods. Microsyst. Nanoeng. 2023, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Esbert, M.; Pacheco, A.; Soares, S.R.; Amorós, D.; Florensa, M.; Ballesteros, A.; Meseguer, M. High Sperm DNA Fragmentation Delays Human Embryo Kinetics When Oocytes from Young and Healthy Donors Are Microinjected. Andrology 2018, 6, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Egea, R.; Garrido, N.; Sota, N.; Meseguer, M.; Remohí, J.; Dominguez, F. Sperm Lipidic Profiles Differ Significantly between Ejaculates Resulting in Pregnancy or Not Following Intracytoplasmic Sperm Injection. J. Assist. Reprod. Genet. 2018, 35, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Romany, L.; Garrido, N.; Motato, Y.; Aparicio, B.; Remohí, J.; Meseguer, M. Removal of Annexin V-Positive Sperm Cells for Intracytoplasmic Sperm Injection in Ovum Donation Cycles Does Not Improve Reproductive Outcome: A Controlled and Randomized Trial in Unselected Males. Fertil. Steril. 2014, 102, 1567–1575.e1. [Google Scholar] [CrossRef] [PubMed]
- Zini, A.; Fischer, M.A.; Sharir, S.; Shayegan, B.; Phang, D.; Jarvi, K. Prevalence of Abnormal Sperm DNA Denaturation in Fertile and Infertile Men. Urology 2002, 60, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Said, T.M.; Land, J.A. Effects of Advanced Selection Methods on Sperm Quality and ART Outcome: A Systematic Review. Hum. Reprod. Update 2011, 17, 719–733. [Google Scholar] [CrossRef]
- Davies, M.J.; Moore, V.M.; Willson, K.J.; Van Essen, P.; Priest, K.; Scott, H.; Haan, E.A.; Chan, A. Reproductive Technologies and the Risk of Birth Defects. N. Engl. J. Med. 2012, 366, 1803–1813. [Google Scholar] [CrossRef]
- Borges, E.; Setti, A.S.; Vingris, L.; Figueira, R.D.C.S.; Braga, D.P.D.A.F.; Iaconelli, A. Intracytoplasmic Morphologically Selected Sperm Injection Outcomes: The Role of Sperm Preparation Techniques. J. Assist. Reprod. Genet. 2013, 30, 849–854. [Google Scholar] [CrossRef]
- Rao, M.; Tang, L.; Wang, L.; Chen, M.; Yan, G.; Zhao, S. Cumulative Live Birth Rates after IVF/ICSI Cycles with Sperm Prepared by Density Gradient Centrifugation vs. Swim-up: A Retrospective Study Using a Propensity Score-Matching Analysis. Reprod. Biol. Endocrinol. 2022, 20, 60. [Google Scholar] [CrossRef]
- Hsu, C.T.; Lee, C.I.; Lin, F.S.; Wang, F.Z.; Chang, H.C.; Wang, T.E.; Huang, C.C.; Tsao, H.M.; Lee, M.S.; Agarwal, A. Live Motile Sperm Sorting Device for Enhanced Sperm-Fertilization Competency: Comparative Analysis with Density-Gradient Centrifugation and Microfluidic Sperm Sorting. J. Assist. Reprod. Genet. 2023, 40, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Göde, F.; Gürbüz, A.S.; Tamer, B.; Pala, I.; Isik, A.Z. The Effects of Microfluidic Sperm Sorting, Density Gradient and Swim-up Methods on Semen Oxidation Reduction Potential. Urol. J. 2020, 17, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Nikbakht, R.; Saharkhiz, N. The Influence of Sperm Morphology, Total Motile Sperm Count of Semen and the Number of Motile Sperm Inseminated in Sperm Samples on the Success of Intrauterine Insemination. Int. J. Fertil. Steril. 2011, 5, 168–173. [Google Scholar] [PubMed]
- Chapuis, A.; Gala, A.; Ferrières-Hoa, A.; Mullet, T.; Bringer-Deutsch, S.; Vintejoux, E.; Torre, A.; Hamamah, S. Sperm Quality and Paternal Age: Effect on Blastocyst Formation and Pregnancy Rates. Basic Clin. Androl. 2017, 27, 2. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzi, P.; Pouliakis, A.; Sakellariou, M.; Athanasiou, A.; Athanasiou, A.; Colaghis, A.; Finelli, R.; Loutradis, D.; Henkel, R.; Agarwal, A. Male Age and Progressive Sperm Motility Are Critical Factors Affecting Embryological and Clinical Outcomes in Oocyte Donor ICSI Cycles. Reprod. Sci. 2022, 29, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Guler, C.; Melil, S.; Ozekici, U.; Cakil, Y.D.; Selam, B.; Cincik, M. Sperm Selection and Embryo Development: A Comparison of the Density Gradient Centrifugation and Microfluidic Chip Sperm Preparation Methods in Patients with Astheno-Teratozoospermia. Life 2021, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Anbari, F.; Khalili, M.A.; Sultan Ahamed, A.M.; Mangoli, E.; Nabi, A.; Dehghanpour, F.; Sabour, M. Microfluidic Sperm Selection Yields Higher Sperm Quality Compared to Conventional Method in ICSI Program: A Pilot Study. Syst. Biol. Reprod. Med. 2021, 67, 137–143. [Google Scholar] [CrossRef]
- Shirota, K.; Yotsumoto, F.; Itoh, H.; Obama, H.; Hidaka, N.; Nakajima, K.; Miyamoto, S. Separation Efficiency of a Microfluidic Sperm Sorter to Minimize Sperm DNA Damage. Fertil. Steril. 2016, 105, 315–321.e1. [Google Scholar] [CrossRef] [PubMed]
- Findeklee, S.; Radosa, J.C.; Radosa, M.P.; Hammadeh, M.E. Correlation between Total Sperm Count and Sperm Motility and Pregnancy Rate in Couples Undergoing Intrauterine Insemination. Sci. Rep. 2020, 10, 7555. [Google Scholar] [CrossRef]
- Vega-Hidalgo, J.; Rodriguez, M.; Dipaz-Berrocal, D.; Rivas, J.; Huayhua, C.; Mellisho, E. Sperm Selection Techniques in Cattle: Microfilter Device versus Conventional Methods. Andrologia 2022, 54, e14585. [Google Scholar] [CrossRef]
- Borges, E.; Setti, A.S.; Braga, D.P.A.F.; Figueira, R.C.S.; Iaconelli, A. Total Motile Sperm Count Has a Superior Predictive Value over the WHO 2010 Cut-off Values for the Outcomes of Intracytoplasmic Sperm Injection Cycles. Andrology 2016, 4, 880–886. [Google Scholar] [CrossRef]
- Hamilton, J.A.M.; Cissen, M.; Brandes, M.; Smeenk, J.M.J.; De Bruin, J.P.; Kremer, J.A.M.; Nelen, W.L.D.M.; Hamilton, C.J.C.M. Total Motile Sperm Count: A Better Indicator for the Severity of Male Factor Infertility than the WHO Sperm Classification System. Hum. Reprod. 2015, 30, 1110–1121. [Google Scholar] [CrossRef]
- Momeni, H.R.; Abnosi, M.H.; Eskandari, N. Quantitative Evaluation of Human Sperm Viability Using MTT Assay: A Laboratory Study. Int. J. Reprod. Biomed. 2020, 18, 983–988. [Google Scholar] [CrossRef]
- Moskovtsev, S.I.; Librach, C.L. Methods of Sperm Vitality Assessment. Methods Mol. Biol. 2013, 927, 13–19. [Google Scholar] [CrossRef]
- Stalf, T.; Mehnert, C.; Hajimohammad, A.; Manolopoulos, K.; Shen, Y.; Schuppe, H.C.; Diemer, T.; Schill, W.B.; Weidner, W.; Tinneberg, H.R. Influence of Motility and Vitality in Intracytoplasmic Sperm Injection with Ejaculated and Testicular Sperm. Andrologia 2005, 37, 125–130. [Google Scholar] [CrossRef]
- Negri, L.; Patrizio, P.; Albani, E.; Morenghi, E.; Benaglia, R.; Desgro, M.; Levi Setti, P.E. ICSI Outcome Is Significantly Better with Testicular Spermatozoa in Patients with Necrozoospermia: A Retrospective Study. Gynecol. Endocrinol. 2014, 30, 48–52. [Google Scholar] [CrossRef]
- Gatimel, N.; Moreau, J.; Parinaud, J.; Léandri, R.D. Sperm Morphology: Assessment, Pathophysiology, Clinical Relevance, and State of the Art in 2017. Andrology 2017, 5, 845–862. [Google Scholar] [CrossRef]
- Cito, G.; Picone, R.; Fucci, R.; Giachini, C.; Micelli, E.; Cocci, A.; Falcone, P.; Minervini, A.; Carini, M.; Natali, A.; et al. Sperm Morphology: What Implications on the Assisted Reproductive Outcomes? Andrology 2020, 8, 1867–1874. [Google Scholar] [CrossRef]
- Zhou, W.J.; Huang, C.; Jiang, S.H.; Ji, X.R.; Gong, F.; Fan, L.Q.; Zhu, W.B. Influence of Sperm Morphology on Pregnancy Outcome and Offspring in in Vitro Fertilization and Intracytoplasmic Sperm Injection: A Matched Case-Control Study. Asian J. Androl. 2021, 23, 421–428. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, W.; Fan, L.; Gong, F. Human Normal Sperm Morphology Rate and in Vitro Fertilization Outcome. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010, 35, 738–742. [Google Scholar] [CrossRef]
- Patel, P.; Carrasquillo, R.; Madhusoodanan, V.; Dadoun, S.; Patel, A.; Smith, N.; Collazo, I.; Kohn, T.; Ramasamy, R. Impact of Abnormal Sperm Morphology on Live Birth Rates Following Intrauterine Insemination. J. Urol. 2019, 202, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Stanhiser, J.; Mersereau, J.E.; Dock, D.; Boylan, C.; Caprell, H.; Coward, R.M.; Berger, D.S.; Fritz, M. Sperm Morphology from the Actual Inseminated Sample Does Not Predict Clinical Pregnancy Following Intrauterine Insemination. F&S Rep. 2020, 2, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Hammadeh, M.E.; Kühnen, A.; Amer, A.S.; Rosenbaum, P.; Schmidt, W. Comparison of Sperm Preparation Methods: Effect on Chromatin and Morphology Recovery Rates and Their Consequences on the Clinical Outcome after in Vitro Fertilization Embryo Transfer. Int. J. Androl. 2001, 24, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Brinkworth, M.; Iles, D. Paternal DNA Packaging in Spermatozoa: More than the Sum of Its Parts? DNA, Histones, Protamines and Epigenetics. Reproduction 2010, 139, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Pourmasumi, S.; Khoradmehr, A.; Rahiminia, T.; Sabeti, P.; Talebi, A.R.; Ghasemzadeh, J. Evaluation of Sperm Chromatin Integrity Using Aniline Blue and Toluidine Blue Staining in Infertile and Normozoospermic Men. J. Reprod. Infertil. 2019, 20, 95–101. [Google Scholar] [PubMed]
- Muratori, M.; Marchiani, S.; Maggi, M.; Forti, G.; Baldi, E. Origin and Biological Significance of DNA Fragmentation in Human Spermatozoa. Front. Biosci. 2006, 11, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Colaco, S.; Sakkas, D. Paternal Factors Contributing to Embryo Quality. J. Assist. Reprod. Genet. 2018, 35, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Bibi, R.; Jahan, S.; Razak, S.; Hammadeh, M.E.; Almajwal, A.; Amor, H. Protamines and DNA Integrity as a Biomarkers of Sperm Quality and Assisted Conception Outcome. Andrologia 2022, 54, e14418. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Liu, L.; Murphy, K.; Ge, S.; Hotaling, J.; Aston, K.I.; Emery, B.; Carrell, D.T. Comparative Analysis of Three Sperm DNA Damage Assays and Sperm Nuclear Protein Content in Couples Undergoing Assisted Reproduction Treatment. Hum. Reprod. 2014, 29, 904–917. [Google Scholar] [CrossRef]
- Irez, T.; Sahmay, S.; Ocal, P.; Goymen, A.; Senol, H.; Erol, N.; Kaleli, S.; Guralp, O. Investigation of the Association between the Outcomes of Sperm Chromatin Condensation and Decondensation Tests, and Assisted Reproduction Techniques. Andrologia 2015, 47, 438–447. [Google Scholar] [CrossRef]
- Óvári, L.; Sati, L.; Stronk, J.; Borsos, A.; Ward, D.C.; Huszar, G. Double Probing Individual Human Spermatozoa: Aniline Blue Staining for Persistent Histones and Fluorescence in Situ Hybridization for Aneuploidies. Fertil. Steril. 2010, 93, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.R.; Lakpour, N.; Heidari-Vala, H.; Hodjat, M.; Amirjannati, N.; Hossaini Jadda, H.; Binaafar, S.; Akhondi, M.M. Relationship between Sperm Chromatin Status and ICSI Outcome in Men with Obstructive Azoospermia and Unexplained Infertile Normozoospermia. Rom. J. Morphol. Embryol. 2011, 52, 645–651. [Google Scholar] [PubMed]
- Gill, K.; Rosiak, A.; Gaczarzewicz, D.; Jakubik, J.; Kurzawa, R.; Kazienko, A.; Rymaszewska, A.; Laszczynska, M.; Grochans, E.; Piasecka, M. The Effect of Human Sperm Chromatin Maturity on ICSI Outcomes. Hum. Cell 2018, 31, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Emery, B.; Carrell, D.T. Sperm DNA Fragmentation: Consequences for Reproduction. Adv. Exp. Med. Biol. 2019, 1166, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Majzoub, A.; Baskaran, S.; Selvam, M.K.P.; Cho, C.L.; Henkel, R.; Finelli, R.; Leisegang, K.; Sengupta, P.; Barbarosie, C.; et al. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J. Mens. Health 2020, 38, 412–471. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Aston, K.I.; Emery, B.R.; Hotaling, J.; Carrell, D.T. Sperm DNA Damage Output Parameters Measured by the Alkaline Comet Assay and Their Importance. Andrologia 2017, 49, e12608. [Google Scholar] [CrossRef] [PubMed]
- Hervás, I.; Pacheco, A.; Rivera-Egea, R.; Gil Julia, M.; Navarro-Gomezlechon, A.; Garrido, N. IVF/ICSI Cumulative Live Birth Rates per Consumed Oocyte Remain Comparable Regardless of Sperm DNA Fragmentation by TUNEL. Reprod. Biomed. Online 2022, 44, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, U.; Van Mulders, H.; Goovaerts, I.; Peeters, K.; Clasen, K.; Janssens, P.; Zemtsova, O.; De Neubourg, D. Sperm DNA Fragmentation in the Total and Vital Fractions before and after Density Gradient Centrifugation: Significance in Male Fertility Diagnosis. Clin. Biochem. 2018, 62, 47–54. [Google Scholar] [CrossRef]
- Muratori, M.; Tarozzi, N.; Carpentiero, F.; Danti, S.; Perrone, F.M.; Cambi, M.; Casini, A.; Azzari, C.; Boni, L.; Maggi, M.; et al. Sperm Selection with Density Gradient Centrifugation and Swim up: Effect on DNA Fragmentation in Viable Spermatozoa. Sci. Rep. 2019, 9, 7492. [Google Scholar] [CrossRef]
- Muratori, M.; Tarozzi, N.; Cambi, M.; Boni, L.; Iorio, A.L.; Passaro, C.; Luppino, B.; Nadalini, M.; Marchiani, S.; Tamburrino, L.; et al. Variation of DNA Fragmentation Levels during Density Gradient Sperm Selection for Assisted Reproduction Techniques: A Possible New Male Predictive Parameter of Pregnancy? Medicine 2016, 95, e3624. [Google Scholar] [CrossRef]
- Zini, A.; Finelli, A.; Phang, D.; Jarvi, K. Influence of Semen Processing Technique on Human Sperm DNA Integrity. Urology 2000, 56, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Casciani, V.; Galliano, D.; Franasiak, J.M.; Mariani, G.; Meseguer, M. Are We Approaching Automated Assisted Reproductive Technology? Sperm Analysis, Oocyte Manipulation, and Insemination. FS Rev. 2021, 2, 189–203. [Google Scholar] [CrossRef]
Sperm Quality Parameters Sample Size | Unprocessed | SwimCount™ Harvester | DGC | p-Value a | p-Value b | p-Value c |
---|---|---|---|---|---|---|
Sperm Concentration (mill/mL) Median (IQR) n =100 | 40.45 (23.68–63.43) | 8.05 (3.55–15.23) | 7.15 (3.35–15.45) | p < 0.001 | p < 0.001 | p = 1.00 |
Progressive Motile Sperm Cells (%) Median (IQR) n = 100 | 42.00 (34.00–48.00) | 80.00 (75.00–84.00) | 75.00 (69.00–79.00) | p < 0.001 | p < 0.001 | p = 0.003 |
Total Progressive Motile Sperm Count (mill) Median (IQR) n = 100 | 48.77 (26.29–85.50) | 4.71 (2.12–10.07) | 2.69 (1.39–6.13) | p < 0.001 | p < 0.001 | p = 0.047 |
Sperm Vitality (%) Median (IQR) n = 78 | 76.00 (71.00–80.00) | 89.00 (85.00–91.00) | 80.00 (74.00–86.00) | p < 0.001 | p = 0.009 | p < 0.001 |
Normal Morphology (%) Median (IQR) n = 88 | 2.00 (1.00–3.00) | 4.00 (3.00–5.00) | 3.00 (2.25–4.00) | p < 0.001 | p < 0.001 | p = 0.039 |
Sperm Chromatin Stability (%) Median (IQR) n = 86 | 69.00 (64.00–74.00) | 79.00 (75.00–83.25) | 76.00 (70.00–82.00) | p < 0.001 | p < 0.001 | p = 0.149 |
DNA Fragmentation Index (%) Median (IQR) DGC n = 90 | 10.36 (7.12–15.10) | 4.14 (2.07–9.01) | 12.14 (6.72–22.44) | p < 0.001 | p = 0.583 | p < 0.001 |
Sperm Quality Parameters Sample Size | Unprocessed | SwimCount™ Harvester | Swim-Up | p-Value a | p-Value b | p-Value c |
---|---|---|---|---|---|---|
Sperm Concentration (mill/mL) Median (IQR) n =100 | 47.00 (26.85–64.80) | 14.00 (8.70–25.00) | 8.95 (5.20–15.08) | p < 0.001 | p < 0.001 | p = 0.002 |
Progressive Motile Sperm Cells (%) Median (IQR) n = 100 | 45.00 (35.00–54.00) | 89.00 (85.00–91.00) | 87.00 (84.00–91.00) | p < 0.001 | p < 0.001 | p = 1.00 |
Total Progressive Motile Sperm Count (mill) Median (IQR) n = 100 | 59.63 (32.06–92.21) | 9.69 (6.16–15.91) | 6.05 (3.44–10.34) | p < 0.00 | p < 0.001 | p = 0.002 |
Sperm Vitality (%) Median (IQR) n = 94 | 85.00 (81.00–88.00) | 96.00 (93.00–98.00) | 94.00 (91.00–97.00) | p < 0.001 | p < 0.001 | p = 0.038 |
Normal Morphology (%) Median (IQR) n = 99 | 2.00 (1.00–3.00) | 5.00 (4.00–6.00) | 4.00 (3.00–5.00) | p < 0.001 | p < 0.001 | p = 0.05 |
Sperm Chromatin Stability (%) Median (IQR) n = 92 | 82.00 (78.00–88.00) | 90.50 (89.00–92.75) | 90.00 (86.50–92.00) | p < 0.001 | p < 0.001 | p = 0.487 |
DNA Fragmentation Index (%) Median (IQR) n = 90 | 6.64 (4.19–12.62) | 3.13 (1.62–5.52) | 4.17 (1.74–8.13) | p < 0.001 | p < 0.001 | p = 0.161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meseguer, F.; Giménez Rodríguez, C.; Rivera Egea, R.; Carrión Sisternas, L.; Remohí, J.A.; Meseguer, M. Can Microfluidics Improve Sperm Quality? A Prospective Functional Study. Biomedicines 2024, 12, 1131. https://doi.org/10.3390/biomedicines12051131
Meseguer F, Giménez Rodríguez C, Rivera Egea R, Carrión Sisternas L, Remohí JA, Meseguer M. Can Microfluidics Improve Sperm Quality? A Prospective Functional Study. Biomedicines. 2024; 12(5):1131. https://doi.org/10.3390/biomedicines12051131
Chicago/Turabian StyleMeseguer, Fernando, Carla Giménez Rodríguez, Rocío Rivera Egea, Laura Carrión Sisternas, Jose A. Remohí, and Marcos Meseguer. 2024. "Can Microfluidics Improve Sperm Quality? A Prospective Functional Study" Biomedicines 12, no. 5: 1131. https://doi.org/10.3390/biomedicines12051131
APA StyleMeseguer, F., Giménez Rodríguez, C., Rivera Egea, R., Carrión Sisternas, L., Remohí, J. A., & Meseguer, M. (2024). Can Microfluidics Improve Sperm Quality? A Prospective Functional Study. Biomedicines, 12(5), 1131. https://doi.org/10.3390/biomedicines12051131