Essential Oils: Chemistry and Pharmacological Activities—Part II
Abstract
:1. The Transformation of Readily Available Essential Oil Constituents into High-Value Products
2. Mechanisms of Pharmacological Action of Essential Oils
2.1. Mechanisms of Antiulcer Action of Essential Oils
2.1.1. Antioxidant Activity
2.1.2. Mucosal Proliferation
2.1.3. H+/K+ ATPase Activity
2.1.4. Nitric Oxide
2.1.5. Prostaglandin E2 Levels
2.1.6. Reduction of Bacterial Colonization: Helicobacter pylori
2.1.7. Inflammation: Role of Proinflammatory Cytokines
2.1.8. Cell Proliferation
2.2. Mechanisms of Chemopreventive Action of Essential Oils
2.3. Mechanisms of Cardiovascular Action of Essential Oils
2.3.1. Inhibition of Angiotensin Converting Enzyme (ACE)
2.3.2. Modulation NO/cGMP Pathway
2.3.3. Modulation of Ion Channels
2.4. Antidiabetes Action Mechanisms of Essential Oil
2.4.1. Inhibition of α-Amylase and α-Glucosidase
2.4.2. Oxidative Stress and Inflammation-Related Mechanisms
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAT | Catalase |
cGMP | Cyclic guanosine monophosphate |
COX-1 | Cyclooxygenase 1 |
COX-2 | Cyclooxygenase 2 |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
GSH | Glutathione |
H+/K+ ATPase | Hydrogen potassium ATPase |
IL-1β | Interleukin 1β |
IL-6 | Interleukin 6 |
IL-10 | Interleukin 10 |
L-NAME | N (G)-nitro-L-arginine methyl ester |
MDA | Malondialdehyde |
MIC | Minimum inhibitory concentration |
MPO | Myeloperoxidase |
NF-κB | Nuclear factor kappa B |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
NP-SH | Non-protein Sulfhydryl |
NSAIDs | Non-steroidal anti-inflammatory drugs |
PGE2 | Prostaglandin E2 |
p-IκBα and IκBα | Inhibitors of the transcription factor NF-κB |
p-p65 and p65 | NF-κB subunits |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
TNF-α | Tumor necrosis factor alpha |
References
- Swift, K.A. Catalytic transformations of the major terpene feedstocks. Top. Cat. 2004, 27, 143–155. [Google Scholar] [CrossRef]
- Schwab, W.; Fuchs, C.; Huang, F.C. Transformation of terpenes into fine chemicals. Eur. J. Lipid Sci. Technol. 2013, 115, 3–8. [Google Scholar] [CrossRef]
- Brill, Z.G.; Condakes, M.L.; Ting, C.P.; Maimone, T.J. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem. Rev. 2017, 117, 11753–11795. [Google Scholar] [CrossRef]
- Brocksom, T.J.; Desidera, A.L.; de Carvalho Alves, L.; Thiago de Oliveira, K. The New Directions of Organic Synthesis. Curr. Org. Synth. 2015, 12, 496–522. [Google Scholar] [CrossRef]
- Corey, E.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley-Interscience: New York, NY, USA, 1995; p. 436. [Google Scholar]
- De Souza, J.M.; Galaverna, R.; de Souza, A.A.N.; Brocksom, T.J.; Pastre, J.C.; de Souza, R.O.M.A.; de Olveira, K.T. Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. An. Acad. Bras. Cienc. 2018, 90, 1131–1174. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.A.N.; Paez, E.B.A.; de Assis, F.F.; Brocksom, T.J.; de Oliveira, K.T. Improved Synthesis of Bioactive Molecules Through Flow Chemistry. Top. Med. Chem. 2021, 38, 317–372. [Google Scholar]
- Nyamwihura, R.J.; Ogungbe, I.V. The pinene scaffold: Its occurrence, chemistry, synthetic utility, and pharmacological importance. RSC Adv. 2022, 12, 11346–11375. [Google Scholar] [CrossRef] [PubMed]
- Sagorin, G.; Cazeils, E.; Basset, J.-F.; Reiter, M. From Pine to Perfume. Chimia 2021, 75, 780–787. [Google Scholar] [CrossRef]
- de Carvalho, B.L.C.; Aguillon, A.R.; Leão, R.A.C.; de Souza, R.O.M.A. Two-step continuous flow synthesis of a-terpineol. Tetrahedron Lett. 2021, 80, 153318. [Google Scholar] [CrossRef]
- Rosa, G.H.S.; Santos, T.I.S.; Brocksom, T.J.; de Oliveira, K.T. Diverse continuous photooxygenation reactions of (+) and (−)-α-pinenes to the corresponding pinocarvones or trans-pinocarveols. React. Chem. Eng. 2023, 8, 790–797. [Google Scholar] [CrossRef]
- Park, C.Y.; Kim, Y.J.; Lim, H.J.; Park, J.H.; Kim, M.J.; Seo, S.W.; Park, C.P. Continuous flow photooxygenation of monoterpenes. RSC Adv. 2015, 5, 4233–4237. [Google Scholar] [CrossRef]
- Ciriminna, R.; Lomeli-Rodriguez, M.; Carà, P.D.; Lopez-Sanchez, J.A.; Pagliaro, M. Limonene: A versatile chemical of the bioeconomy. Chem. Commun. 2014, 50, 15288–15296. [Google Scholar] [CrossRef] [PubMed]
- Aguillon, A.R.; Leão, R.A.C.; de Oliveira, K.T.; Brocksom, T.J.; Miranda, L.S.M.; de Souza, R.O.M.A. Process Intensification for Obtaining a Cannabidiol Intermediate by Photo-oxygenation of Limonene under Continuous-Flow Conditions. Org. Process. Res. Dev. 2020, 24, 2017–2024. [Google Scholar] [CrossRef]
- Maiocchi, A.; Barbieri, J.; Fasano, V.; Passarella, D. Stereoselective Synthetic Strategies to (-)-Cannabidiol. Chem. Sel. 2022, 7, e202202400. [Google Scholar] [CrossRef]
- Aguillón, A.R.; Leão, R.A.C.; Miranda, L.S.M.; de Souza, R.O.M.A. Cannabidiol Discovery and Synthesis, a Target-Oriented Analysis in Drug Production Process. Chem. Eur. J. 2021, 27, 5577–5600. [Google Scholar] [CrossRef] [PubMed]
- Lenardão, E.J.; Botteselle, G.V.; de Azambuja, F.; Perin, G.; Jacob, R.G. Citronellal as key compound in organic synthesis. Tetrahedron 2007, 63, 6671–6712. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Simakova, I.; Vajglová, Z.; Murzin, D.Y. One-Pot Synthesis of Menthol from Citral and Citronellal Over Heterogeneous Catalysts. Catal. Surv. Asia 2023, 27, 2–19. [Google Scholar] [CrossRef]
- Emura, M.; Matsuda, H. A Green and Sustainable Approach: Celebrating the 30th Anniversary of the Asymmetric l-Menthol Process. Chem. Biodiversity 2014, 11, 1688–1699. [Google Scholar] [CrossRef] [PubMed]
- Dylong, D.; Hausoul, P.J.C.; Palkovits, R.; Eisenacher, M. Synthesis of (−)-menthol: Industrial synthesis routes and recent development. Flavour. Fragr. J. 2022, 37, 195–209. [Google Scholar] [CrossRef]
- Simakova, I.L.; Vajglová, Z.; Martínez-Klimov, M.; Eränen, K.; Peurla, M.; Mäki-Arvela, P.; Murzin, D.Y. One-Pot Synthesis of Menthol from Citral over Ni/H-β-38 Extrudates Containing Bentonite Clay Binder in Batch and Continuous Reactors. Org. Process. Res. Dev. 2023, 27, 295–310. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, H.; Wen, Z.; Zhang, B.; Chen, G. Toward the Efficient Synthesis of Pseudoionone from Citral in a Continuous-Flow Microreactor. Ind. Eng. Chem. Res. 2018, 57, 11288–11298. [Google Scholar] [CrossRef]
- Carmona-Vargas, C.C.; Alves, L.D.C.; Brocksom, T.J.; de Oliveira, K.T. Combining batch and continuous flow setups in the end-to-end synthesis of naturally occurring curcuminoids. React. Chem. Eng. 2017, 2, 366–374. [Google Scholar] [CrossRef]
- de Carvalho, C.C.C.R.; da Fonseca, M.M.R. Biotransformation of terpenes. Biotechnol. Adv. 2006, 24, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Marmulla, R.; Harder, J. Microbial monoterpene transformations—A review. Front. Microbiol. 2014, 5, 346. [Google Scholar] [CrossRef] [PubMed]
- Soares-Castro, P.; Soares, F.; Santos, P.M. Current Advances in the Bacterial Toolbox for the Biotechnological Production of Monoterpene-Based Aroma Compounds. Molecules 2021, 26, 91. [Google Scholar] [CrossRef] [PubMed]
- de Souza Sevalho, E.; Paulino, B.N.; de Souza, A.Q.L.; de Souza, A.D.L. Fungal biotransformation of limonene and pinene for aroma production. Braz. J. Chem. Eng. 2023, 40, 1–21. [Google Scholar] [CrossRef]
- Wriessnegger, T.; Augustin, P.; Engleder, M.; Leitner, E.; Müller, M.; Kaluzna, I.; Schürmann, M.; Mink, D.; Zellnig, G.; Schwab, H.; et al. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab. Eng. 2014, 24, 8–29. [Google Scholar] [CrossRef]
- Kavitt, R.T.; Lipowska, A.M.; Anyane-Yebo, A.; Gralnek, I.M. Diagnosis and treatment of peptic ulcer disease. Am. J. Med. 2019, 132, 447–456. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Chan, F.K.; McColl, K.E. Among all complications, peptic ulcer bleeding is one of the common clinical diseases Peptic ulcer disease. Lancet 2009, 374, 1449–1461. [Google Scholar] [CrossRef]
- Bardhan, K.D.; Williamson, M.; Royston, C.; Lyon, C. Admission rates for peptic ulcer in the trent region, UK, 1972–2000. changing pattern, a changing disease? Dig. Liver Dis. 2004, 36, 577–588. [Google Scholar] [CrossRef]
- Proctor, M.J.; Deans, C. Oesophagus and stomach. Complications of peptic ulcers. Surgery 2014, 32, 599–607. [Google Scholar] [CrossRef]
- Mehdi, S.-R.; Fokou, P.V.T.; Sharopov, F.; Martorell, M.; Ademiluyi, A.O.; Rajkovic, J.; Salehi, B.; Martins, N.; Iriti, M.; Javad, S.-R. Antiulcer Agents: From plant extracts to phytochemicals in healing promotion. Molecules 2018, 23, 1751. [Google Scholar] [CrossRef] [PubMed]
- Søreide, K.; Thorsen, K.; Harrison, E.M.; Søreide, J.A. Perforated peptic ulcer. Lancet 2015, 386, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Lanas, A.; Chan, F.K.L. Peptic ulcer disease. Lancet 2017, 390, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Zelickson, M.S.; Bronder, C.M.; Johnson, B.L.; Camunas, J.A.; Smith, D.E.; Rawlinson, D.; Von, S.; Stone, H.H.; Taylor, S.M. Helicobacter pylori is not the predominant etiology for peptic ulcers requiring operation. Am. Surg. 2011, 77, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Padol, I.T.; Hunt, R.H. Peptic ulcer disease today. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 80–89. [Google Scholar] [CrossRef]
- Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG Clinical guideline: Treatment of Helicobacter pylori infection. Am. J. Gastroenterol. 2017, 112, 212–239. [Google Scholar] [CrossRef]
- Cekin, A.H.; Sahinturk, Y.; Akbay Harmandar, F.; Uyar, S.; Yolcular, B.O.; Cekin, Y. Use of probiotics as an adjuvant to sequential H. pylori eradication therapy: Impact on eradication rates, treatment resistance, treatment-related side effects, and patient compliance. Turk. J. Gastroenterol. 2017, 28, 3–11. [Google Scholar] [CrossRef]
- Tran-Duy, A.; Spaetgens, B.; Hoes, A.W.; de Wit, N.J.; Stehouwer, C.D. Use of proton pump inhibitors and risks of fundic gland polyps and gastric cancer: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2016, 14, 1706–1719. [Google Scholar] [CrossRef]
- Waldum, H.L.; Fossmark, R. Proton pump inhibitors and gastric cancer: A long expected side effect finally reported also in man. Gut 2018, 67, 199–200. [Google Scholar] [CrossRef]
- Koyyada, A. Long-term use of proton pump inhibitors as a risk factor for various adverse manifestations. Therapies 2021, 76, 13–21. [Google Scholar] [CrossRef]
- Manolis, A.A.; Massaad, J.; Cai, Q.; Wehbi, M. Proton pump inhibitors and cardiovascular adverse effects: Real or surreal worries? Eur. J. Int. Med. 2020, 72, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Dacha, S.; Razvi, M.; Massaad, J.; Cai, Q.; Wehbi, M. Hypergastrinemia. Gastroenterology 2015, 3, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Gohar, A.A.; Zaki, A.A. Assessment of some herbal drugs for prophylaxis of peptic ulcer. Iran. J. Pharm. Res. 2014, 13, 1081–1086. [Google Scholar] [PubMed]
- Adinortey, M.B.; Ansah, C.; Adinortey, C.A.; McGiboney, J.; Nyarko, A. In vitro H+/K+-ATPase inhibition, antiradical effects of a flavonoid-rich fraction of dissotisrotundifolia, and in silico pass prediction of its isolated compounds. J. Nat. Sci. Biol. Med. 2018, 9, 47–53. [Google Scholar] [CrossRef]
- Awaad, A.S.; El-Meligy, R.M.; Soliman, G.A. Natural products in treatment of ulcerative colitis and peptic ulcer. J. Saudi Chem. Soc. 2013, 17, 101–124. [Google Scholar] [CrossRef]
- Bi, W.P.; Man, H.B.; Man, M.Q. Efficacy and safety of herbal medicines in treating gastric ulcer: A review. World J. Gastroenterol. 2014, 20, 17020–17028. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, S.K.; Singh, P.P.; Srivastava, A.K.; Pandey, K.D.; Kumar, A.; Yadav, H. Biotechnological aspects of plants metabolites in the treatment of ulcer: A new prospective. Biotechnol. Rep. 2018, 18, e00256. [Google Scholar] [CrossRef] [PubMed]
- Agra, M.F.; Silva, K.N.; Basılio, I.J.L.D.; Franca, P.F.; Barbosa-Filho, J.M. Survey of medicinal plants used in the region northeast of Brazil. Braz. J. Pharmacog. 2008, 18, 472–508. [Google Scholar] [CrossRef]
- Caldas, G.F.R.; Oliveira, A.R.S.; Araujo, A.V.; Quixabeira, D.C.A.; Silva-Neto, J.C.; Costa-Silva, J.R.; Menezes, I.R.A.; Ferreira, F.; Leite, A.C.L.; Costa, J.G.M.; et al. Gastroprotective and ulcer healing effects of essential oil of Hyptis martiusii Benth. (Lamiaceae). PLoS ONE 2014, 9, e84400. [Google Scholar] [CrossRef]
- Caldas, G.F.R.; Oliveira, A.R.S.; Araújo, A.V.; Lafayette, S.S.L.; Albuquerque, G.S.; Silva-Neto, J.C.; Costa-Silva, J.R.; Ferreira, F.; Costa, J.G.M.; Wanderley, A.G. Gastroprotective effect of the monoterpene 1,8-cineole (eucalyptol). PLoS ONE 2015, 10, e0134558. [Google Scholar] [CrossRef] [PubMed]
- Robert, A. Cytoprotection by prostaglandins. Gastroenterology 1979, 77, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Herrera, A.; Pozos-Guillén, A.; Ruiz-Rodríguez, S.; Garrocho-Rangel, A.; Vértiz-Hernández, A.; Escobar-García, D.M. Effect of 4-Allyl-1-hydroxy-2-methoxybenzene (eugenol) on inflammatory and apoptosis processes in dental pulp fibroblasts. Mediat. Inflamm. 2016, 2016, 9371403. [Google Scholar] [CrossRef] [PubMed]
- Aisha, A.; Nassar, Z.; Siddiqui, M.; Abu-Salah, K.; Alrokayan, S.; Ismail, Z.; Abdul Majid, A. Evaluation of antiangiogenic, cytotoxic and antioxidant effects of Syzygium aromaticum L. extracts. Asian J. Biol. Sci. 2011, 4, 282–290. [Google Scholar] [CrossRef]
- Bakour, M.; Soulo, N.; Hammas, N.; Fatemi, H.; Aboulghazi, A.; Taroq, A.; Abdellaoui, A.; Al-waili, N.; Lyoussi, B. The antioxidant content and protective effect of argan oil and Syzygium aromaticum essential oil in hydrogen peroxide-induced biochemical and histological changes. Int. J. Mol. Sci. 2018, 19, 610. [Google Scholar] [CrossRef] [PubMed]
- Elbestawy, M.K.M.; El-Sherbiny, G.M.; Moghannem, S.A. Antibacterial, antibiofilm and anti-inflammatory activities of eugenol clove essential oil against resistant Helicobacter pylori. Molecules 2023, 28, 2448. [Google Scholar] [CrossRef]
- Hobani, Y.H.; Mohan, S.; Shaheen, E.; Abdelhaleem, A.; Ahmad, M.F.; Bhatia, S.; Abou-Elhamd, A.S. Gastroprotective effect of low dose Eugenol in experimental rats against ethanol induced toxicity: Involvement of antiinflammatory and antioxidant mechanism. J. Ethnopharmacol. 2022, 289, 115055. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, O.M.E.; Czimmer, J.; Debreceni, A.; Szolcsanyi, J.; Mozsik, G. Gastric mucosal integrity: Gastric mucosal blood flow and microcirculation. An overview. J. Physiol. Paris 2001, 95, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Kwiecieñ, S.; Brzozowski, T.; Konturek, P.C.H.; Konturek, S.J. The role of reactive oxygen species in action of nitric oxide-donors on stress-induced gastric mucosal lesions. J. Physiol. Pharmacol. 2002, 53, 761–773. [Google Scholar]
- Barboza, J.N.; Bezerra Filho, C.S.M.; Silva, R.O.; Medeiros, J.V.R.; Sousa, D.P. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid. Med. Cell. Longev. 2018, 2018, 3957262. [Google Scholar] [CrossRef]
- Jung, J.; Lee, J.H.; Bae, K.H.; Jeong, C.S. Anti-gastric actions of eugenol and cinnamic acid isolated from Cinnamomi Ramulus. Yakugaku Zasshi 2011, 131, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Lu, J.; Leung, K.; Chan, C.L.; Jiang, Z.H. Determination of patchoulic alcohol in Herba Pogostemonis by GC–MS–MS. Chem. Pharm. Bull. 2005, 53, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Liang, J.L.; Wu, J.Z.; Chen, H.B.; Zhang, Z.B.; Yang, H.M.; Chen, L.P.; Chen, H.M.; Su, Z.R.; Li, Y.C. Transformation of patchouli alcohol to beta-patchoulene by gastric juice: Beta-patchoulene is more effective in preventing ethanolinduced gastric injury. Sc. Rep. 2017, 7, 5591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Z.; Chen, X.Y.; Chen, H.B.; Wang, L.; Liang, J.L.; Luo, D.D.; Liu, Y.H.; Yang, H.M.; Li, Y.C.; Xie, J.H. Anti-inflammatory activity of beta-patchoulene isolated from patchouli oil in mice. Eur. J. Pharmacol. 2016, 781, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Liao, H.J.; Liu, Y.H.; Zheng, Y.F.; Wu, X.L.; Su, Z.Q.; Zhang, X.; Lai, Z.Q.; Lai, X.P.; Xiu, Z.X. Protective effects of pogostone from Pogostemonis Herba against ethanol-induced gastric ulcer in rats. Fitoterapia 2015, 100, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yang, Q.; Wu, L.; Qi, R.; Wu, Y.; Li, Y.; Tang, L.; Guo, D.; Liu, B. Investigation of inclusion complex of patchouli alcohol with β-cyclodextrin. PLoS ONE 2017, 12, e0169578. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xie, J.H.; Xu, Y.F.; Liang, Y.Z.; Mo, Z.Z.; Jiang, W.W.; Chen, X.Y.; Liu, Y.H.; Yu, X.D.; Huang, O.; et al. Gastroprotective effect and mechanism of patchouli alcohol against ethanol, indomethacin and stress-induced ulcer in rats. Chem. Biol. Interact. 2014, 222, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhu, F.; Shen, W.; Fu, A.; Zheng, L.; Yan, Z.; Zhao, L.; Fu, G. Protective effects of DIDS against ethanol-induced gastric mucosal injury in rats. Acta Biochim. Biophys. Sin. 2009, 41, 301–308. [Google Scholar] [CrossRef]
- Huilgol, S.V.; Kumar, V.H. Evaluation of antiulcerogenic potential of antioxidant α-tocopherol in pylorus-ligated albino rats. J. Basic Clin. Physiol. Pharmacol. 2014, 25, 81–85. [Google Scholar] [CrossRef]
- Vats, S.; Gupta, T. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol. Mol. Biol. Plants. 2017, 23, 239–248. [Google Scholar] [CrossRef]
- Bi, L.C.; Kaunitz, J.D. Gastroduodenal mucosal defense: An integrated protective response. Curr. Opin. Gastroen. 2003, 19, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Repetto, M.G.; LlesuyBraz, S.F. Antioxidant properties of natural compounds used in popular medicine for gastric ulcers. J. Med. Biol. Res. 2002, 35, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Gupta, G.; Afzal, M.; Kazmi, I.; Anwar, F. Antiulcer and antioxidante activities of a new steroid from Morus alba. Life Sci. 2013, 92, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.C.A.; Pereira, U.A.; Martinazzo, A.P.; Maltha, C.R.A.; Teixeira, R.T.; Melo, E.C. Evaluation of the chemical composition of brazilian commercial Cymbopogon citratus (D.C.) Stapf samples. Molecules 2008, 13, 1864–1874. [Google Scholar] [CrossRef] [PubMed]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef] [PubMed]
- Venzon, L.; Mariano, L.N.B.; Somensi, L.B.; Boeing, T.; Souza, P.; Wagner, T.M.; Andrade, S.F.; Nesello, L.A.N.; Silva, L.M. Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. Biomed. Pharmacother. 2018, 98, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Munson, K.; Vagin, O.; Sachs, G. The gastric HK-ATPase: Structure, function, and inhibition. Pflüg. Arch. Europ. J. Phy. 2009, 457, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Naik, Y.; Jayaram, S.; Nayaka, M.A.H.; Lakshman; Dharmesh, S.M. Gastroprotective effect of swallow root (Decalepis hamiltonii) extract: Possible involvement of H+–K+–ATPase inhibition and antioxidative mechanism. J. Ethnopharmacol. 2007, 112, 173–179. [Google Scholar] [CrossRef]
- Khan, M.A.; Howden, C.W. The role of proton pump inhibitors in the management of upper gastrointestinal disorders. Gastroenterol. Hepatol. 2018, 14, 169–175. [Google Scholar]
- Wallace, J.L. Nitric oxide, aspirin-triggered lipoxins and NOaspirin in gastric protection. Inflamm. Allergy Drug Targets. 2006, 5, 133–137. [Google Scholar] [CrossRef]
- Kawano, S.; Tsuji, S. Role of mucosal blood flow: A conceptional review in gastrointestinal injury and protection. J. Gastrointest. Hepatol. 2000, 15, D1–D6. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.L.C.; Neto, E.M.F.L.; Araújo, E.L.; Albuquerque, U.P. Conservation priorities and population structure of woody medicinal plants in an area of caatinga vegetation (Pernambuco State, NE Brazil). Environ. Monit. Assess. 2007, 132, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Randau, K.P.; Florêncio, D.C.; Ferreira, C.P.; Xavier, H.S. Pharmacognostic study of Croton rhamnifolius HBK and Croton rhamnifolioides Pax & Hoffm. (Euphorbiaceae). Rev. Bras. Farmacogn. 2004, 14, 89–96. [Google Scholar] [CrossRef]
- Santos, G.K.N.; Dutra, K.A.; Lira, C.S.; Lima, B.N.; Napoleão, T.H.; Paiva, P.M.G.; Maranhão, C.A.; Brandão, S.S.F.; Navarro, D.M.A.F. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules 2014, 19, 16573–16587. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.O.B.P.B.; Rodrigues, L.B.; Cesário, F.R.A.S.; Oliveira, M.R.C.; Tintino, C.D.M.; Castro, F.F.; Alcântara, I.S.; Fernandes, M.N.M.; Albuquerque, T.R.; Silva, M.S.A.; et al. Anti-Inflammatory and Physicochemical Characterization of the Croton rhamnifolioides Essential Oil Inclusion Complex in β-Cyclodextrin. Biology 2020, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.S.; Martins, A.O.B.P.B.; Silva, A.A.; Oliveira, M.R.C.; Ribeiro-Filho, J.; Albuquerque, T.R.; Coutinho, H.D.M.; Almeida, J.R.G.S.; Quintans Junior, L.J.; Menezes, I.R.A. Gastroprotective effect and mechanism of action of Croton rhamnifolioides essential oil in mice. Biomed. Pharmacother. 2017, 89, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Lima-Accioly, P.M.; Lavor-Porto, P.R.; Cavalcante, F.S.; Magalhães, P.J.C.; Lahlou, S.; Morais, S.M.; Leal-Cardoso, J.H. Essential oil of Croton nepetaefolius and its main constituent, 1, 8-cineole, block excitability of rat sciatic nerve in vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33, 1158–1163. [Google Scholar] [CrossRef]
- Whittle, B.J.R.; Lopez-Belmonte, J.; Moncada, S. Regulation of gastric mucosal integrity by endogenous nitric oxide: Interactions with prostanoids and sensory neuropeptides in the rat. Br. J. Pharmacol. 1990, 99, 607–611. [Google Scholar] [CrossRef]
- Kwiecien, S.; Pawlik, M.W.; Brzozowski, T.; Konturek, P.C.; Sliwowski, Z.; Pawlik, W.W.; Konturek, S.J. Nitricoxide (NO)-releasing aspirin and (NO) donors in protection of gastric mucosa against stress. J. Physiol. Pharmacol. 2008, 59, 103–115. [Google Scholar]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- M’hiri, N.; Ghali, R.; Nasr, I.B.; Boudhrioua, N. Effect of different drying processes on functional properties of industrial lemon by product. Process. Saf. Environ. Prot. 2018, 116, 450–460. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Halima, N.B.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated inminced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 3. [Google Scholar]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Review therapeutic potential of α- and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Rozza, A.L.; Moraes, T.M.; Kushimab, H.; Tanimoto, A.; Marques, M.O.M.; Bauab, T.M.; Hiruma-Lima, C.A.; Pellizzona, C.L. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and beta-pinene: Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E2. Chem. Biol. Interact. 2011, 189, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Naito, Y.; Kishi, A.; Tomii, T.; Kaneko, T.; Iinuma, S.; Ichikawa, H.; Yasuda, M.; Takahashi, S.; Kondo, M. Role of active oxygen, lipid peroxidation and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats. Gut 1993, 34, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Asako, H.; Kubes, P.; Wallace, J.; Gaginella, T.; Wolf, R.E.; Granger, D.N. Indomethacin-induced leukocyte adhesion in mesenteric venules: Role of lipoxygenase products. Am. J. Physiol.-Gastrointest. Liver Physiol. 1992, 262, G903–G908. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Quan, L.H.; Xu, L.Z.; Cong, P.Z. Chemical constituents of Pogostemon cablin (Blanco) Benth. Planta Med. 1998, 64, 464–466. [Google Scholar]
- Luo, J.; Feng, Y.; Guo, X.; Li, X. GC-MS analysis of volatile oil of Herba Pogostemonis collected from Gaoyao county. Zhong Yao Cai 1999, 22, 25–28. [Google Scholar]
- Chen, X.Y.; Chen, H.M.; Liu, Y.H.; Zhang, Z.B.; Zheng, Y.F.; Su, Z.Q.; Zhang, X.; Xie, J.H.; Liang, Y.Z.; Fu, L.D.; et al. The gastroprotective effect of pogostone from Pogostemonis Herba against indomethacin-induced gastric ulcer in rats. Exp. Biol. Med. 2016, 241, 193–204. [Google Scholar] [CrossRef]
- Lei, Y.; Fu, P.; Jun, X.; Cheng, P. Pharmacological Properties of Geraniol—A Review. Planta Med. 2019, 85, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Bhattamisra, S.K.; Kuean, C.H.; Chieh, B.L.; Yan, V.L.Y.; Lee, C.K.; Hooi, L.P.; Shyan, L.P.; Liew, Y.K.; Candasamy, M.; Sahu, P.S. Antibacterial activity of geraniol in combination with standard antibiotics against Staphylococcus aureus, Escherichia coli and Helicobacter pylori. Nat. Prod. Commun. 2018, 13, 791–793. [Google Scholar] [CrossRef]
- Noh, C.K.; Lee, G.H.; Park, J.W.; Roh, J.R.; Han, J.H.; Lee, E.; Park, B.; Lim, S.G.; Shin, S.J.; Cheong, J.Y.; et al. Diagnostic accuracy of “sweeping” method compared to conventional sampling in rapid urease test for Helicobacter pylori detection in atrophic mucosa. Sci. Rep. 2020, 10, 18483. [Google Scholar] [CrossRef]
- Uotani, T.; Graham, D.Y. Diagnosis of Helicobacter pylori using the rapid urease test. Ann. Transl. Med. 2015, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Bergonzelli, G.E.; Donnicola, D.; Porta, N.; Corthésy-Theulaz, I.E. Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob. Agents Chemother. 2003, 47, 3240–3246. [Google Scholar] [CrossRef]
- Takagi, K.; Okabe, S.; Saziki, R. A new method for the production of chronic gastric ulcer in rats and the effect of several drugs on its healing. Jpn. J. Pharmacol. 1969, 19, 418–426. [Google Scholar] [CrossRef]
- Okabe, S.; Amagase, K. An Overview of acetic acid ulcer models—The history and state of the art of peptic ulcer research. Biol. Pharm. Bull. 2005, 28, 1321–1341. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ohta, Y.; Yoshino, J.; Nakazawa, S. Teprenone promotes the healing of acetic acid-induced chronic gastric ulcers in rats by inhibiting neutrophil infiltration and lipid peroxidation in ulcerated gastric tissues. Pharmacol. Res. 2001, 43, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.R.; Hui, C.W.C.; Chen, Y.X.; Chun, B.; Wong, Y.; Fung, P.C.W.; Metz, C.; Cho, C.H.; Hui, W.M.; Bucala, R.; et al. Macrophage migration inhibitory factor is an important mediator in the pathogenesis of gastric inflammation in rats. Gastroenterology 2001, 21, 619–630. [Google Scholar] [CrossRef]
- Watanabe, T.; Higuchi, K.; Tominaga, K.; Fujiwara, Y.; Arakawa, T. Acid regulates inflammatory response in a rat model of induction of gastric ulcer recurrence by interleukin 1β. Gut 2001, 48, 774–781. [Google Scholar] [CrossRef]
- Martin, G.R.; Wallace, J.L. Gastrointestinal inflammation: A central component of mucosal defense and repair. Exp. Biol. Med. 2006, 231, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Luo, Y.; Cheng, Y.; Zou, D.; Zeng, A.; Yang, C.; Xu, J.; Zhan, H. Gastrin attenuates ischemia-reperfusion-induced intestinal injury in rats. Exp. Biol. Med. 2016, 241, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Akisue, M.K.; Akisue, G.; Oliveira, F.C.C. Pharmacognostic characterization of pau d’alho Gallesia integrifolia (Spreng.) Harms. Rev. Bras. Farmacogn. 1986, 1, 166–182. [Google Scholar] [CrossRef]
- Grandtner, M.M.; Chevrette, J. Dictionary of Trees, 1st ed.; Academic Press: London, UK, 2013. [Google Scholar]
- Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil, 4th ed.; Instituto Plantarum de Estudos da Flora Ltda: São Paulo, Brazil, 2002. [Google Scholar]
- Arunachalama, K.; Baloguna, S.O.; Pavana, E.; Almeida, G.V.B.; Oliveira, R.G.; Wagner, T.; Cechinel Filho, V.; Martins, D.T.O. Chemical characterization, toxicology and mechanism of gastric antiulcer action of essential oil from Gallesia integrifolia (Spreng.) Harms in the in vitro and in vivo experimental models. Biomed. Pharmacother. 2017, 94, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Wua, J.Z.; Liu, Y.-H.; Liang, J.L.; Huang, Q.H.; Dou, Y.X.; Nie, J.; Zhuo, J.Y.; Wu, X.; Chend, J.N.; Sub, Z.R.; et al. Protective role of β-patchoulene from Pogostemon cablin against indomethacin-induced gastric ulcer in rats: Involvement of anti-inflammation and angiogenesis. Phytomedicine 2018, 39, 111–118. [Google Scholar] [CrossRef]
- Liang, J.; Dou, Y.; Wu, X.; Li, H.; Wu, J.; Huang, Q.; Luo, D.; Yi, T.; Liu, Y.; Su, Z.; et al. Prophylactic efficacy of patchoulene epoxide against ethanol-induced gastric ulcer in rats: Influence on oxidative stress, inflammation and apoptosis. Chem. Biol. Interact. 2018, 283, 30–37. [Google Scholar] [CrossRef]
- Tarnawski, A.S. Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig. Dis. Sci. 2005, 50, S24–S33. [Google Scholar] [CrossRef]
- Çelebi, N.; Turkyilmaz, A.; Gonul, B.; Ozogu, C. Effects of epidermal growth factor microemulsion formulationon the healing of stress-induced gastric ulcers in rats. J. Control. Release 2002, 83, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Tarnawski, A.; Stachura, J.; Durbin, T.; Sarfeh, I.J.; Gergely, H. Increased expression of epidermal growth factor receptor during gastric ulcer healing in rats. Gastroenterology 1992, 102, 695–698. [Google Scholar] [CrossRef]
- Milani, S.; Calabro, A. Role of growth factors and their receptors in gastric ulcer healing. Microsc. Res. Tech. 2001, 53, 360–371. [Google Scholar] [CrossRef]
- Szabo, S.; Vincze, A. Growth factors in ulcer healing: Lessons from recent studies. J. Physiol. 2000, 94, 77–81. [Google Scholar] [CrossRef]
- Jones, M.K.; Kawanaka, H.; Baatar, D.; Szabo, I.L.; Tsugawa, K.; Pai, R.; Koh, G.Y.; Kim, I.; Sarfeh, I.J.; Tarnawski, A.S. Gene therapy for gastric ulcers with single local injection of naked DNA encoding VEGF and angiopoietin-1. Gastroenterology 2001, 121, 1040–1047. [Google Scholar] [CrossRef]
- Tarnawski, A.; Sekhon, S.; Ichikawa, Y.; Sarfeh, I.J. Vascular endotelial growth factor (VEGF) enhances angiogenesis in injured gastric mucosa and accelerates healing of ethanol-induced erosions. Gastroenterology 1998, 114, A307. [Google Scholar] [CrossRef]
- Luo, J.C.; Shin, V.Y.; Liu, E.S.L.; Ye, Y.N.; Wu, W.K.K.; So, W.H.L.; Chang, F.Y.; Cho, C.H. Dexamethasone delays ulcer healing by inhibition of angiogenesis in rat stomachs. Eur. J. Pharmacol. 2004, 485, 275–281. [Google Scholar] [CrossRef]
- Suzuki, N.; Takahashi, S.; Okabe, S. Relationship between vascular endothelial growth factor and angiogenesis in spontaneous and indomethacin-delayed healing of acetic acid-induced gastric ulcers in rats. J. Physiol. Pharmacol. 1998, 49, 515–527. [Google Scholar]
- Bueno, G.; Rico, S.L.C.; Perico, L.L.; Ohara, R.; Rodrigues, V.P.; Emílio-Silva, M.T.; Assunçao, R.; Rocha, L.R.M.; Nunes, D.S.; Besten, M.A.; et al. The essential oil from Baccharis trimera (Less.) DC improves gastric ulcer healing in rats through modulation of VEGF and MMP-2 activity. J. Ethnopharmacol. 2021, 271, 113832. [Google Scholar] [CrossRef]
- Bulanda, S.; Lau, K.; Nowak, A.; Łyko-Morawska, D.; Kotylak, A.; Janoszka, B. The Risk of Oral Cancer and the High Consumption of Thermally Processed Meat Containing Mutagenic and Carcinogenic Compounds. Nutrients 2024, 16, 1084. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Lian, S.; Lu, Y.; Jia, L. Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther. 2022, 7, 341. [Google Scholar] [CrossRef]
- Narang, A.S.; Desai, D.S. Anticancer Drug Development—Unique Aspects of Pharmaceutical Development. Pharm. Perspect. Cancer Ther. 2009, 49–52. [Google Scholar] [CrossRef]
- Di Sotto, A.; Mancinelli, R.; Gullì, M.; Eufemi, M.; Mammola, C.L.; Mazzanti, G.; Di Giacomo, S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers 2020, 12, 3034. [Google Scholar] [CrossRef]
- Kamal, N.; Ilowefah, M.A.; Hilles, A.R.; Anua, N.A.; Awin, T.; Alshwyeh, H.A.; Aldosary, S.K.; Jambocus, N.G.S.; Alosaimi, A.A.; Rahman, A.; et al. Genesis and Mechanism of Some Cancer Types and an Overview on the Role of Diet and Nutrition in Cancer Prevention. Molecules 2022, 27, 1794. [Google Scholar] [CrossRef]
- Puah, B.-P.; Jalil, J.; Attiq, A.; Kamisah, Y. New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene. Molecules 2021, 26, 3888. [Google Scholar] [CrossRef]
- Machado, T.Q.; da Fonseca, A.C.C.; Duarte, A.B.S.; Robbs, B.K.; de Sousa, D.P. A Narrative Review of the Antitumor Activity of Monoterpenes from Essential Oils: An Update. Biomed Res. Int. 2022, 2022, 6317201. [Google Scholar] [CrossRef]
- Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor activity of monoterpenes found in essential oils. Sci. World J. 2014, 2014, 953451. [Google Scholar] [CrossRef]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Elson, C.E. Suppression of mevalonate pathway activities by dietary isoprenoids: Protective roles in cancer and cardiovascular disease. J. Nutr. 1995, 125, 1666S–1672S. [Google Scholar] [CrossRef]
- Ong, T.P.; Cardozo, M.T.; de Conti, A.; Moreno, F.S. Chemoprevention of hepatocarcinogenesis with dietary isoprenic derivatives: Cellular and molecular aspects. Curr. Cancer Drug Targets 2012, 12, 1173–1190. [Google Scholar]
- Mo, H.; Elson, C.E. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. 2004, 229, 567–585. [Google Scholar] [CrossRef]
- Mo, H.; Jeter, R.; Bachmann, A.; Yount, S.T.; Shen, C.L.; Yeganehjoo, H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front. Pharmacol. 2019, 9, 1515. [Google Scholar] [CrossRef]
- de Vasconcelos, C.B.J.; de Carvalho, F.O.; de Vasconcelos, C.; Meneses, D.; Calixto, F.A.F.; Santana, H.S.R.; Almeida, I.B.; de Aquino, L.A.G.; de Souza, A.A.A.; Serafini, M.R. Mechanism of Action of Limonene in Tumor Cells: A Systematic Review and Meta-Analysis. Curr. Pharm. Des. 2021, 27, 2956–2965. [Google Scholar] [CrossRef]
- Silva, G.D.S.E.; Marques, J.N.J.; Linhares, E.P.M.; Bonora, C.M.; Costa, É.T.; Saraiva, M.F. Review of anticancer activity of monoterpenoids: Geraniol, nerol, geranial and neral. Chem. Biol. Interact. 2022, 362, 109994. [Google Scholar] [CrossRef]
- Ahmad, S.T.; Arjumand, W.; Seth, A.; Nafees, S.; Rashid, S.; Ali, N.; Sultana, S. Preclinical renal cancer chemopreventive efficacy of geraniol by modulation of multiple molecular pathways. Toxicology 2011, 290, 69–81. [Google Scholar] [CrossRef]
- Jung, Y.Y.; Hwang, S.T.; Sethi, G.; Fan, L.; Arfuso, F.; Ahn, K.S. Potential Anti-Inflammatory and Anti-Cancer Properties of Farnesol. Molecules 2018, 23, 2827. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature 1990, 343, 425–430. [Google Scholar] [CrossRef]
- Winter-Vann, A.M.; Casey, P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 2005, 5, 405–412. [Google Scholar] [CrossRef]
- Gregg, R.G.; Davidson, M.; Wilce, P.A. Cholesterol synthesis and HMG CoA reductase activity during hepatocarcinogenesis in rats. Int. J. Biochem. 1986, 18, 389–393. [Google Scholar] [CrossRef]
- Bathaie, S.Z.; Ashrafi, M.; Azizian, M.; Tamanoi, F. Mevalonate Pathway and Human Cancers. Curr. Mol. Pharmacol. 2017, 10, 77–85. [Google Scholar] [CrossRef]
- Ong, T.P.; Heidor, R.; de Conti, A.; Dagli, M.L.; Moreno, F.S. Farnesol and geraniol chemopreventive activities during the initial phases of hepatocarcinogenesis involve similar actions on cell proliferation and DNA damage, but distinct actions on apoptosis, plasma cholesterol and HMGCoA reductase. Carcinogenesis 2006, 27, 1194–1203. [Google Scholar] [CrossRef]
- Peffley, D.M.; Gayen, A.K. Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level. J. Nutr. 2003, 133, 38–44. [Google Scholar] [CrossRef]
- Moreno, F.S.; Rossiello, M.R.; Manjeshwar, S.; Nath, R.; Rao, P.M.; Rajalakshmi, S.; Sarma, D.S. Effect of beta-carotene on the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat liver. Cancer Lett. 1995, 96, 201–208. [Google Scholar] [CrossRef]
- Chebet, J.J.; Ehiri, J.E.; McClelland, D.J.; Taren, D.; Hakim, I.A. Effect of d-limonene and its derivatives on breast cancer in human trials: A scoping review and narrative synthesis. BMC Cancer 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Crowell, P.L.; Chang, R.R.; Ren, Z.; Elson, C.E.; Gould, M.N. Selective inhibition of isoprenylation of 21–26 kDa proteins by anticarcinogen D-limonene and its metabolites. J. Biol. Chem. 1991, 266, 17679–17685. [Google Scholar] [CrossRef]
- Chen, X.; Yano, Y.; Hasuma, T.; Yoshimata, T.; Yinna, W.; Otani, S. Inhibition of farnesyl protein transferase and P21ras memebrane association by d-limonene in human pancreas tumor cells in vitro. Chin. Med. Sci. J. 1999, 14, 138–144. [Google Scholar]
- Kawata, S.; Nagase, T.; Yamasaki, E.; Ishiguro, H.; Matsuzawa, Y. Modulation of the mevalonate pathway and cell growth by pravastatin and d-limonene in a human hepatoma cell line (Hep G2). Br. J. Cancer 1994, 69, 1015–1020. [Google Scholar] [CrossRef]
- Chaudhary, S.C.; Siddiqui, M.S.; Athar, M.; Alam, M.S. D-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Hum. Exp. Toxicol. 2012, 31, 798–811. [Google Scholar] [CrossRef]
- Mukhtar, Y.M.; Adu-Frimpong, M.; Xu, X.; Yu, J. Biochemical significance of limonene and its metabolites: Future prospects for designing and developing highly potent anticancer drugs. Biosci. Rep. 2018, 38, BSR20181253. [Google Scholar] [CrossRef]
- Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. Onco Targets Ther. 2018, 11, 1833–1847. [Google Scholar] [CrossRef]
- Ye, Z.; Liang, Z.; Mi, Q.; Guo, Y. Limonene terpenoid obstructs human bladder cancer cell (T24 cell line) growth by inducing cellular apoptosis, caspase activation, G2/M phase cell cycle arrest and stops cancer metastasis. J. BUON 2020, 25, 280–285. [Google Scholar]
- Chidambara, K.N.M.; Jayaprakasha, G.K.; Patil, B.S. D-limonene rich volatile oil from blood oranges inhibits angiogenesis, metastasis and cell death in human colon cancer cells. Life Sci. 2012, 91, 429–439. [Google Scholar] [CrossRef]
- Jia, S.S.; Xi, G.P.; Zhang, M.; Chen, Y.B.; Lei, B.; Dong, X.S.; Yang, Y.M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep. 2013, 29, 349–354. [Google Scholar] [CrossRef]
- Manuele, M.G.; Barreiro, M.L.A.; Davicino, R.; Ferraro, G.; Cremaschi, G.; Anesini, C. Limonene exerts antiproliferative effects and increases nitric oxide levels on a lymphoma cell line by dual mechanism of the ERK pathway: Relationship with oxidative stress. Cancer Investig. 2010, 28, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Usuki, T. Extraction of essential oils from tea tree (Melaleuca alternifolia) and lemon grass (Cymbopogon citratus) using betaine-based deep eutectic solvent (DES). Phytochem. Anal. 2022, 33, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.G.; Hildebrandt, L.A.; Elson, C.E. Geraniol, an inhibitor of mevalonate biosynthesis, suppresses the growth of hepatomas and melanomas transplanted to rats and mice. J. Nutr. 1995, 125, 2763–2767. [Google Scholar] [CrossRef]
- Cardozo, M.T.; de Conti, A.; Ong, T.P.; Scolastici, C.; Purgatto, E.; Horst, M.A.; Bassoli, B.K.; Moreno, F.S. Chemopreventive effects of β-ionone and geraniol during rat hepatocarcinogenesis promotion: Distinct actions on cell proliferation, apoptosis, HMGCoA reductase, and RhoA. J. Nutr. Biochem. 2011, 22, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Madankumar, A.; Jayakumar, S.; Gokuladhas, K.; Rajan, B.; Raghunandhakumar, S.; Asokkumar, S.; Devaki, T. Geraniol modulates tongue and hepatic phase I and phase II conjugation activities and may contribute directly to the chemopreventive activity against experimental oral carcinogenesis. Eur. J. Pharmacol. 2013, 705, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Crespo, R.; Montero, S.V.; Abba, M.C.; de Bravo, M.G.; Polo, M.P. Transcriptional and posttranscriptional inhibition of HMGCR and PC biosynthesis by geraniol in 2 Hep-G2 cell proliferation linked pathways. Biochem. Cell Biol. 2013, 91, 131–139. [Google Scholar] [CrossRef]
- Duncan, R.E.; Lau, D.; El-Sohemy, A.; Archer, M.C. Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem. Pharmacol. 2004, 68, 1739–1747. [Google Scholar] [CrossRef]
- Vuch, J.; Marcuzzi, A.; Zanin, V.; Crovella, S. Comments to the editor concerning the paper entitled “Preclinical renal cancer chemopreventive efficacy of geraniol by modulation of multiple molecular pathways” Shiekh Tanveer Ahmad et al. Toxicology 2012, 293, 123–124. [Google Scholar] [CrossRef]
- Polo, M.P.; de Bravo, M.G. Effect of geraniol on fatty-acid and mevalonate metabolism in the human hepatoma cell line Hep G2. Biochem. Cell Biol. 2006, 84, 102–111. [Google Scholar] [CrossRef]
- Galle, M.; Crespo, R.; Kladniew, B.R.; Villegas, S.M.; Polo, M.; de Bravo, M.G. Suppression by geraniol of the growth of A549 human lung adenocarcinoma cells and inhibition of the mevalonate pathway in culture and in vivo: Potential use in cancer chemotherapy. Nutr. Cancer 2014, 66, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, Y.R.; Kim, S.H.; Park, E.J.; Kang, M.J.; So, I.; Chun, J.N.; Jeon, J.H. Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016, 5, 2899–2908. [Google Scholar] [CrossRef] [PubMed]
- Gaonkar, R.; Singh, J.; Chauhan, A.; Avti, P.K.; Hegde, G. Geraniol and Citral as potential therapeutic agents targeting the HSP90 activity: An in silico and experimental approach. Phytochemistry 2022, 195, 113058. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Huang, Y.; Ni, Y.H.; Xu, Z.M. Systematic elucidation of the mechanism of geraniol via network pharmacology. Drug. Des. Dev. Ther. 2019, 13, 1069–1075. [Google Scholar] [CrossRef]
- Cho, M.; So, I.; Chun, J.N.; Jeon, J.H. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review). Int. J. Oncol. 2016, 48, 1772–1782. [Google Scholar] [CrossRef]
- El-Ganainy, S.O.; Shehata, A.M.; El-Mallah, A.; Abdallah, D.; El-Din, M.M.M. Geraniol suppresses tumour growth and enhances chemosensitivity of 5-fluorouracil on breast carcinoma in mice: Involvement of miR-21/PTEN signalling. J. Pharm. Pharmacol. 2023, 75, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Burke, Y.D.; Stark, M.J.; Roach, S.L.; Sen, S.E.; Crowell, P.L. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 1997, 32, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Balaraman, G.; Sundaram, J.; Mari, A.; Krishnan, P.; Salam, S.; Subramaniam, N.; Sirajduddin, I.; Thiruvengadam, D. Farnesol alleviates diethyl nitrosamine induced inflammation and protects experimental rat hepatocellular carcinoma. Environ. Toxicol. 2021, 36, 2467–2474. [Google Scholar] [CrossRef]
- Rao, C.V.; Newmark, H.L.; Reddy, B.S. Chemopreventive effect of farnesol and lanosterol on colon carcinogenesis. Cancer Detect. Prev. 2002, 26, 419–425. [Google Scholar] [CrossRef]
- Chaudhary, S.C.; Alam, M.S.; Siddiqui, M.S.; Athar, M. Chemopreventive effect of farnesol on DMBA/TPA-induced skin tumorigenesis: Involvement of inflammation, Ras-ERK pathway and apoptosis. Life Sci. 2009, 85, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Delmondes, G.A.; Bezerra, D.S.; Dias, D.Q.; Borges, A.S.; Araújo, I.M.; Lins, G.C.; Bandeira, P.F.R.; Barbosa, R.; Coutinho, H.D.M.; Felipe, C.F.B.; et al. Toxicological and pharmacologic effects of farnesol (C15H26O): A descriptive systematic review. Food Chem. Toxicol. 2019, 129, 169–200. [Google Scholar] [CrossRef] [PubMed]
- Meigs, T.E.; Simoni, R.D. Farnesol as a regulator of HMG-CoA reductase degradation: Characterization and role of farnesyl pyrophosphatase. Arch. Biochem. Biophys. 1997, 345, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vinholes, J.; Gonçalves, P.; Martel, F.; Coimbra, M.A.; Rocha, S.M. Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models. Food Chem. 2014, 156, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Chagas, C.E.; Vieira, A.; Ong, T.P.; Moreno, F.S. Farnesol inhibits cell proliferation and induces apoptosis after partial hepatectomy in rats. Acta Cir. Bras. 2009, 24, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Sultana, S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem. Biol. Interact. 2011, 192, 193–200. [Google Scholar] [CrossRef]
- Qamar, W.; Sultana, S. Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: An initial step in lung chemoprevention. Chem. Biol. Interact. 2008, 176, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kwon, J.K.; Kim, H.R.; Kim, H.J.; Kim, B.S.; Jung, J.Y. Farnesol induces apoptosis of DU145 prostate cancer cells through the PI3K/Akt and MAPK pathways. Int. J. Mol. Med. 2014, 33, 1169–1176. [Google Scholar] [CrossRef]
- Wang, Y.L.; Liu, H.F.; Shi, X.J.; Wang, Y. Antiproliferative activity of Farnesol in HeLa cervical cancer cells is mediated via apoptosis induction, loss of mitochondrial membrane potential (ΛΨm) and PI3K/Akt signalling pathway. J. BUON 2018, 23, 752–757. [Google Scholar]
- Au-Yeung, K.K.; Liu, P.L.; Chan, C.; Wu, W.Y.; Lee, S.S.; Ko, J.K. Herbal isoprenols induce apoptosis in human colon cancer cells through transcriptional activation of PPARgamma. Cancer Investig. 2008, 26, 708–717. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, C.; Kim, S.H.; Sethi, G.; Ahn, K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015, 360, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Ueda, E.; Bortner, C.D.; Yang, X.P.; Liao, G.; Jetten, A.M. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. Biochem. Pharmacol. 2015, 97, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Zuzarte, M.; Girão, H.; Salgueiro, L. The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules 2021, 26, 3506. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.K.; Mohammed, L.K.M.H.M. Cardamom as a blood pressure lowering natural food supplement in patients with grade one hypertension. Hypertension 2020, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Anantha, T.; Ramesh, M.; Mounika, B.; Bhuvaneswari, K.; Nama, S. Review on Hypertension. Int. J. Curr. Trends Pharm. Res. 2013, 1, 88–96. [Google Scholar]
- Takimoto-Ohnishi, E.; Murakami, K. Renin–angiotensin system research: From molecules to the whole body. J. Physiol. Sci. 2019, 69, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, N.; Takai, S.; Hirose, F.; Yoshida, R.; Sanematsu, K.; Ninomiya, Y. Expression of Renin-Angiotensin System Components in the Taste Organ of Mice. Nutrients 2019, 11, 2251. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Society of Hypertension (SBH). VI Brazilian Guidelines of Hypertension-DBH VI. Rev. Bras. Hipertens 2010, 17, 11–17. [Google Scholar]
- Osaili, T.M.; Dhanasekaran, D.K.; Zeb, F.; Faris, M.E.; Naja, F.; Radwan, H.; Cheikh Ismail, L.; Hasan, H.; Hashim, M.; Obaid, R.S. A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. Molecules 2023, 28, 1809. [Google Scholar] [CrossRef]
- Suručić, R.; Kundaković, T.; Lakušić, B.; Drakul, D.; Milovanović, S.R.; Kovačević, N. Variations in Chemical Composition, Vasorelaxant and Angiotensin I-Converting Enzyme Inhibitory Activities of Essential Oil from Aerial Parts of Seseli pallasii Besser (Apiaceae). Chem. Biodivers 2017, 14, e1600407. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Olasehinde, T.A.; Oboh, G. Essential Oil Composition, Antioxidant, Antidiabetic and Antihypertensive Properties of Two Aframomum Species. J. Oleo Sci. 2017, 66, 51–63. [Google Scholar] [CrossRef]
- Shiva, A.K.; Jeyaprakash, K.; Chellappan, D.R.; Murugan, R. Vasorelaxant and cardiovascular properties of the essential oil of Pogostemon elsholtzioides. J. Ethnopharmacol. 2017, 199, 86–90. [Google Scholar] [CrossRef]
- Rocha, D.G.; Holanda, T.M.; Braz, H.L.B.; de Moraes, J.A.S.; Marinho, A.D.; Maia, P.H.F.; de Moraes, M.E.A.; Fechine-Jamacaru, F.V.; Filho, M.O.M. Vasorelaxant effect of Alpinia zerumbet’s essential oil on rat resistance artery involves blocking of calcium mobilization. Fitoterapia 2023, 169, 105623. [Google Scholar] [CrossRef]
- Zadeh, G.S.; Panahi, N. Endothelium-independent vasorelaxant activity of Trachyspermum ammi essential oil on rat aorta. Clin. Exp. Hypertens. 2017, 39, 133–138. [Google Scholar] [CrossRef]
- Dib, I.; Fauconnier, M.L.; Sindic, M.; Belmekki, F.; Assaidi, A.; Berrabah, M.; Mekhfi, H.; Aziz, M.; Legssyer, A.; Bnouham, M.; et al. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC Complement. Altern. Med. 2017, 17, 82. [Google Scholar] [CrossRef]
- Da Silva, R.E.R.; De Morais, L.P.; Silva, A.A.; Bastos, C.M.S.; Pereira-Gonçalves, Á.; Kerntopf, M.R.; Menezes, I.R.A.; Leal-Cardoso, J.H.; Barbosa, R. Vasorelaxant effect of the Lippia alba essential oil and its major constituent, citral, on the contractility of isolated rat aorta. Biomed. Pharmacother. 2018, 108, 792–798. [Google Scholar] [CrossRef]
- Sivakumar, L.; Chellappan, D.R.; Sriramavaratharajan, V.; Murugan, R. Root essential oil of Chrysopogon zizanioides relaxes rat isolated thoracic aorta—An ex vivo approach. Z. Naturforsch C J. Biosci. 2020, 76, 161–168. [Google Scholar] [CrossRef]
- Singh, M.K.; Savita, K.; Singh, S.; Mishra, D.; Rani, P.; Chanda, D.; Verma, R.S. Vasorelaxant property of 2-phenyl ethyl alcohol isolated from the spent floral distillate of damask rose (Rosa damascena Mill.) and its possible mechanism. J. Ethnopharmacol. 2023, 313, 116603. [Google Scholar] [CrossRef]
- Moreira, C.M.; Fernandes, M.B.; Santos, K.T.; Schneider, L.A.; Da Silva, S.E.B.; Sant’Anna, L.S.; Paula, F.R. Effects of essential oil of Blepharocalyx salicifolius on cardiovascular function of rats. FASEB J. 2018, 32, 715–717. [Google Scholar] [CrossRef]
- Jamhiri, M.; Hafizibarjin, Z.; Ghobadi, M.; Moradi, A.; Safari, F. Effect of Thymol on Serum Antioxidant Capacity of Rats Following Myocardial Hypertrophy. J. Arak Uni. Med. Sci. 2017, 20, 10–19. [Google Scholar]
- Muzy, J.; Campos, M.R.; Emmerick, I.; Silva, R.S.D.; Schramm, J.M.A. Prevalência de diabetes mellitus e suas complicações e caracterização das lacunas na atenção à saúde a partir da triangulação de pesquisas [Prevalence of diabetes mellitus and its complications and characterization of healthcare gaps based on triangulation of studies]. Cad. Saude Publica 2021, 37, e00076120. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Diabetes; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 10 February 2024).
- Praveena, S.; Sujatha, P.; Sameera, K. Trace elements in diabetes mellitus. J. Clin. Diagn. Res. 2013, 7, 1863–1865. [Google Scholar] [CrossRef]
- IDF. International Diabetes Federation. Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- American Diabetes Association (ADA). Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care 2018, 41, 13–27. [Google Scholar] [CrossRef]
- Heghes, S.C.; Filip, L.; Vostinaru, O.; Mogosan, C.; Miere, D.; Iuga, C.A.; Moldovan, M. Essential oil-bearing plants from Balkan Peninsula: Promising sources for new drug candidates for the prevention and treatment of diabetes mellitus and dyslipidemia. Front. Pharmacol. 2020, 11, 989. [Google Scholar] [CrossRef]
- Oboh, G.; Olasehinde, T.A.; Ademosun, A.O. Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon. Int. J. Food Prop. 2017, 20, S586–S594. [Google Scholar] [CrossRef]
- Radünz, M.; Camargo, T.M.; dos Santos Hackbart, H.C.; Alves, P.I.C.; Radünz, A.L.; Gandra, E.A.; Zavareze, E.D.R. Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT 2021, 138, 110632. [Google Scholar] [CrossRef]
- Capetti, F.; Cagliero, C.; Marengo, A.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Bio-Guided Fractionation Driven by In Vitro α-Amylase Inhibition Assays of Essential Oils Bearing Specialized Metabolites with Potential Hypoglycemic Activity. Plants 2020, 9, 1242. [Google Scholar] [CrossRef]
- Nait-Irahal, I.; Darif, D.; Guenaou, I.; Hmimid, F.; Azzahra Lahlou, F.; Ez-Zahra Ousaid, F.; Abdou-Allah, F.; Aitsi, L.; Akarid, K.; Bourhim, N. Therapeutic Potential of Clove Essential Oil in Diabetes: Modulation of Pro-Inflammatory Mediators, Oxidative Stress and Metabolic Enzyme Activities. Chem. Biodivers. 2023, 20, e202201169. [Google Scholar] [CrossRef]
- Eid, A.M.; Jaradat, N.; Shraim, N.; Hawash, M.; Issa, L.; Shakhsher, M.; Nawahda, N.; Hanbali, A.; Barahmeh, N.; Taha, B.; et al. Assessment of anticancer, antimicrobial, antidiabetic, anti-obesity and antioxidant activity of Ocimum Basilicum seeds essential oil from Palestine. BMC Complement. Med. Ther. 2023, 23, 221. [Google Scholar] [CrossRef]
- Bui, A.V.; Pham, T.V.; Nguyen, K.N.; Nguyen, N.T.; Huynh, K.D.; Dang, V.S.; Ruml, T.; Truong, D.H. Chemical compositions and biological activities of Serevenia buxifolia essential oil leaves cultivated in Vietnam (Thua Thien Hue). Food Sci. Nutr. 2023, 11, 4060–4072. [Google Scholar] [CrossRef]
- Begum, C.T.; Gogoi, R.; Sarma, N.; Pandey, S.K.; Lal, M. Novel ethyl p-methoxy cinnamate rich Kaempferia galanga (L.) essential oil and its pharmacological applications: Special emphasis on anticholinesterase, anti-tyrosinase, α-amylase inhibitory, and genotoxic efficiencies. Peer J. 2023, 11, e14606. [Google Scholar] [CrossRef]
- Chander, R.; Maurya, A.K.; Kumar, K.; Kumari, S.; Kumar, R.; Agnihotri, V.K. In vitro antidiabetic and antimicrobial activity of Dracocephalum heterophyllum Benth. essential oil from different sites of North-western Himalayas India. Nat. Prod. Res. 2023, 37, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- El Hachlafi, N.; Benkhaira, N.; Al-Mijalli, S.H.; Mrabti, H.N.; Abdnim, R.; Abdallah, E.M.; Jeddi, M.; Bnouham, M.; Lee, L.H.; Ardianto, C.; et al. Phytochemical analysis and evaluation of antimicrobial, antioxidant, and antidiabetic activities of essential oils from Moroccan medicinal plants: Mentha suaveolens, Lavandula stoechas, and Ammi visnaga. Biomed. Pharmacother. 2023, 164, 114937. [Google Scholar] [CrossRef]
- Ibaokurgil, F.; Yildirim, B.A.; Yildirim, S. Effects of Hypericum scabrum L. essential oil on wound healing in streptozotocin-induced diabetic rats. Cutan. Ocul. Toxicol. 2022, 41, 137–144. [Google Scholar] [CrossRef]
- Bacanlı, M.; Anlar, H.G.; Aydın, S.; Çal, T.; Arı, N.; Ündeğer Bucurgat, Ü.; Başaran, A.A.; Başaran, N. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2017, 110, 434–442. [Google Scholar] [CrossRef]
- Lekshmi, P.C.; Arimboor, R.; Indulekha, P.S.; Menon, A.N. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. Int. J. Food Sci. Nutr. 2012, 63, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Lagrouh, F.; El Omari, N.; Bourais, I.; El Jemli, M.; Marmouzi, I.; Salhic, N.; Abbesc, F.M.E.; Belmehdid, O.; Dakkaa, N.; et al. Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. Biocatal. Agric. Biotechnol. 2020, 23, 101471. [Google Scholar] [CrossRef]
- Deepa, B.; Anuradha, C.V. Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol. Mech. Methods 2013, 23, 223–234. [Google Scholar] [CrossRef]
- Basha, R.H.; Sankaranarayanan, C. β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. Acta Histochem. 2014, 116, 1469–1479. [Google Scholar] [CrossRef]
- Kumawat, V.S.; Kaur, G. Insulinotropic and antidiabetic effects of β-caryophyllene with l-arginine in type 2 diabetic rats. J. Food Biochem. 2020, 44, e13156. [Google Scholar] [CrossRef]
- Srinivasan, S.; Muruganathan, U. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chem. Biol. Interact. 2016, 250, 38–46. [Google Scholar] [CrossRef]
- El Omari, N.; Balahbib, A.; Bakrim, S.; Benali, T.; Ullah, R.; Alotaibi, A.; Naceiri, E.l.; Mrabti, H.; Goh, B.H.; Ong, S.K.; et al. Fenchone and camphor: Main natural compounds from Lavandula stoechas L., expediting multiple in vitro biological activities. Heliyon 2023, 9, e21222. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, G.R.; Hillary, V.E.; Antony, P.J.; Zhong, L.L.D.; Yogesh, D.; Krishnakumar, N.M.; Ceasar, S.A.; Gan, R.Y. A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Crit. Rev. Food Sci. Nutr. 2023, 1–20. [Google Scholar] [CrossRef] [PubMed]
Plant Species (Family) | Major Compounds from Essential Oils | Pharmacological Action | References |
---|---|---|---|
Seseli pallasii Besser (Apiaceae) | α-Pinene (42.7–48.2%) | Vasorelaxant and ACE-inhibiting effects | [203] |
Aframomum melegueta (Roscoe) K. Schum. and Aframomum daniellii (Hook.f.) K. Schum. (Zingiberaceae) | Eugenol A. melegueta: 82.2% A. daniellii: 51.1% | EO inhibited angiotensin I-converting enzyme activity | [204] |
Pogostemon elsholtzioides Benth. (Lamiaceae) | Curzerene: 46.1% | Involvement of nitric oxide synthase and K+ channel activation | [205] |
Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. (Zingiberaceae) | 1,8-Cineole (24.2%), terpinen-4-ol (20.4%), and p-cymene (15.7%) | Vasodilator effect mediated by inhibition of Ca2+ influx and release from intracellular storage, as well as an activation of the NOS/sGC pathway | [206] |
Trachyspermum ammi Sprague (Apiaceae) | Thymol (38.1%), gamma-terpinene (33.3%), and p-cymene (23.1%) | Vasorelaxant effect by inhibition of extracellular Ca2+ influx via calcium channels | [207] |
Artemisia campestris L. (Asteraceae) | Spathulenol: 10.1% | Vasorelaxation induced by AcEO via L-type calcium channels | [208] |
Lippia alba (Mill.) N.E.Br. (Verbenaceae) | Citral | Vasorelaxant effect in isolated aorta, via three hypothesized mechanisms: blockade of Ca2+ influx or changes in calcium binding protein sensitization and/or intracellular calcium storage | [209] |
Chrysopogon zizanioides (L.) Roberty (Poaceae) | Khusimol (8.2%), β-vetivenene (8.2%), β-funebrene (5.1%), β-vetispirene (4.8%), β-vetivone (4.7%), δ-selinene (4%), (E)-isovalencenol (3.3%), α-vetivone (3.3%), β-calacorene (3%), vetivonic acid (2.9%), and vetiselinenol (2.8%). | The root essential oil of C. zizanioides possesses a vasorelaxant effect through the muscarinic pathway as well as acts as a calcium channel blocker | [210] |
Rosa damascena Mill. (Rosaceae) | 2-Phenyl-ethyl | Vasorelaxation by activation of large-conductance Ca2+-activated K+ (BKCa) channels | [211] |
Plant Species (Family) | Major Compounds from Essential Oils | Pharmacological Action | References |
---|---|---|---|
Citrus × sinensis (L.) Osbeck (Rutaceae) and Citrus limon (L.) Burm. f. (Rutaceae) | D-Limonene C. sinensis: 92.14% C. limon: 53.07% | The EO inhibited α-amylase and α-glucosidase activities | [220,221] |
62 species from the families: Lauraceae, Myristicaceae, Myrtaceae, Oleaceae, Pinaceae, Piperaceae, Poaceae, Rosaceae, Rutaceae, Santalaceae, Verbenaceae, and Zingiberaceae | - | In vitro α-amylase inhibitory potentials were obtained after the evaluation of Eucalyptus radiata, Laurus nobilis, and Myristica fragrans EOs. | [222] |
Syzygirum aromaticum L. (Myrtaceae) | Eugenol | There was a significant decline in blood glucose levels, total cholesterol, xanthine oxidase, antioxidant activities, and it was a potent α-amylase inhibitor | [223] |
Ocimum basilicum L. (Lamiaceae) | Linalool, methyl estragole, methyl cinnamate, and methyl chavicol | Ocimum basilicum essential oil had a strong α-amylase inhibitory activity | [224] |
Serevenia buxifolia (Poir.) Ten. (Rutaceae) | β-caryophyllene (32.5%) and elixene (9.8%) | Antidiabetic potential by inhibiting the enzymes α-amylase and α-glucosidase | [225] |
Kaempferia galanga (L.) (Zingiberaceae) | Ethyl p-methoxycinnamate: 66.39% | Antidiabetic activity using α-amylase inhibitory activity assay | [226] |
Dracocephalum heterophyllum Benth. (Lamiaceae) | - | Antidiabetic potential by inhibiting the enzymes α-amylase and α-glucosidase | [227] |
Mentha suaveolens “Variegata” (Labiatae) (MSEO); Lavandula stoechas L. (Lamiaceae) (LSEO); Ammi visnaga (L.) Lam. (Apiaceae) (AVEO) | MSEO: fenchone (29.77%) and camphor (24.90%) LSEO: piperitenone oxide (74.55%) AVEO: linalool (38.24%) | Antidiabetic action by inhibiting the enzymes α-amylase and α-glucosidase | [228] |
Hypericum scabrum L. (Clusiaceae) | - | The administration of Hypericum scabrum L. essential oil caused an increase in the level of GSH, GPx, SOD, and CAT activities and there was a decrease in the levels of MDA | [229] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sousa, D.P.; de Assis Oliveira, F.; Arcanjo, D.D.R.; da Fonsêca, D.V.; Duarte, A.B.S.; de Oliveira Barbosa, C.; Ong, T.P.; Brocksom, T.J. Essential Oils: Chemistry and Pharmacological Activities—Part II. Biomedicines 2024, 12, 1185. https://doi.org/10.3390/biomedicines12061185
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities—Part II. Biomedicines. 2024; 12(6):1185. https://doi.org/10.3390/biomedicines12061185
Chicago/Turabian Stylede Sousa, Damião Pergentino, Francisco de Assis Oliveira, Daniel Dias Rufino Arcanjo, Diogo Vilar da Fonsêca, Allana Brunna S. Duarte, Celma de Oliveira Barbosa, Thomas Prates Ong, and Timothy John Brocksom. 2024. "Essential Oils: Chemistry and Pharmacological Activities—Part II" Biomedicines 12, no. 6: 1185. https://doi.org/10.3390/biomedicines12061185
APA Stylede Sousa, D. P., de Assis Oliveira, F., Arcanjo, D. D. R., da Fonsêca, D. V., Duarte, A. B. S., de Oliveira Barbosa, C., Ong, T. P., & Brocksom, T. J. (2024). Essential Oils: Chemistry and Pharmacological Activities—Part II. Biomedicines, 12(6), 1185. https://doi.org/10.3390/biomedicines12061185