Unveiling Novel Structural Biomarkers for the Diagnosis of Glaucoma
Abstract
:1. Introduction
2. Traditional Diagnostic Methods
3. Emerging Structural Diagnostic Biomarkers
3.1. Anterior Segment
Scleral Spur Length
3.2. Optical Coherence Tomography (OCT)
3.2.1. Segmented Inner Retinal Layer Thickness
3.2.2. Vessel Density, Flow Index, and Foveal Avascular Zone Parameters
3.2.3. Bruch’s Membrane Opening–Minimum Rim Width (BMO-MRW) and Minimum Rim Area (MRA)
3.2.4. Lamina Cribrosa Morphology
3.3. Magnetic Resonance Imaging (MRI)
3.3.1. Morphometry
3.3.2. Fractional Anisotropy (FA) Values and Mean Diffusivity (MD) of DTI
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allison, K.; Patel, D.; Alabi, O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020, 12, e11686. [Google Scholar] [CrossRef] [PubMed]
- Al-Nosairy, K.O.; Hoffmann, M.B.; Bach, M. Non-invasive electrophysiology in glaucoma, structure and function-a review. Eye 2021, 35, 2374–2385. [Google Scholar] [CrossRef] [PubMed]
- Mwanza, J.C.; Lee, G.; Budenz, D.L.; Warren, J.L.; Wall, M.; Artes, P.H.; Callan, T.M.; Flanagan, J.G. Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma. Transl. Vis. Sci. Technol. 2018, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Park, H.L.; Park, C.K. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell. PLoS ONE 2017, 12, e0182404. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Vega Cueto, A.; Álvarez, L.; García, M.; Álvarez-Barrios, A.; Artime, E.; Fernández-Vega Cueto, L.; Coca-Prados, M.; González-Iglesias, H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. Biology 2021, 10, 763. [Google Scholar] [CrossRef]
- Beykin, G.; Norcia, A.M.; Srinivasan, V.J.; Dubra, A.; Goldberg, J.L. Discovery and clinical translation of novel glaucoma biomarkers. Prog. Retin. Eye Res. 2021, 80, 100875. [Google Scholar] [CrossRef] [PubMed]
- Von Thun Und Hohenstein-Blaul, N.; Kunst, S.; Pfeiffer, N.; Grus, F.H. Biomarkers for glaucoma: From the lab to the clinic. Eye 2017, 31, 225–231. [Google Scholar] [CrossRef]
- Stein, J.D.; Khawaja, A.P.; Weizer, J.S. Glaucoma in Adults-Screening, Diagnosis, and Management: A Review. JAMA 2021, 325, 164–174. [Google Scholar] [CrossRef]
- Goldmann, H.; Schmidt, T. Applanation tonometry. Ophthalmologica 1957, 134, 221–242. [Google Scholar] [CrossRef]
- Lu, S.H.; Chong, I.T.; Leung, S.Y.Y.; Lam, D.C.C. Characterization of Corneal Biomechanical Properties and Determination of Natural Intraocular Pressure Using CID-GAT. Transl. Vis. Sci. Technol. 2019, 8, 10. [Google Scholar] [CrossRef]
- Wagner, I.V.; Stewart, M.W.; Dorairaj, S.K. Updates on the Diagnosis and Management of Glaucoma. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 618–635. [Google Scholar] [CrossRef]
- Sathyan, P.; Shilpa, S.; Anitha, A. Optical Coherence Tomography in Glaucoma. J. Curr. Glaucoma Pract. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Broadway, D.C. Visual field testing for glaucoma—A practical guide. Community Eye Health 2012, 25, 66–70. [Google Scholar] [PubMed]
- Harasymowycz, P.; Birt, C.; Gooi, P.; Heckler, L.; Hutnik, C.; Jinapriya, D.; Shuba, L.; Yan, D.; Day, R. Medical Management of Glaucoma in the 21st Century from a Canadian Perspective. J. Ophthalmol. 2016, 2016, 6509809. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.M.; Crawley, L.; Pahlitzsch, M.; Javaid, F.; Cordeiro, M.F. Glaucoma: The retina and beyond. Acta Neuropathol. 2016, 132, 807–826. [Google Scholar] [CrossRef]
- Mäepea, O.; Bill, A. The pressures in the episcleral veins, Schlemm’s canal and the trabecular meshwork in monkeys: Effects of changes in intraocular pressure. Exp. Eye Res. 1989, 49, 645–663. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.A.; Grodzki, W.J., Jr. The scleral spur and scleral roll. Investig. Ophthalmol. Vis. Sci. 1977, 16, 925–931. [Google Scholar]
- Rohen, J.W.; Lütjen, E.; Bárány, E. The relation between the ciliary muscle and the trabecular meshwork and its importance for the effect of miotics on aqueous outflow resistance. Albrecht Graefes Arch. Klin. Exp. Ophthalmol. 1967, 172, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Swain, D.L.; Ho, J.; Lai, J.; Gong, H. Shorter Scleral Spur in Eyes with Primary Open-Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1638–1648. [Google Scholar] [CrossRef]
- Li, M.; Luo, Z.; Yan, X.; Zhang, H. Diagnostic power of scleral spur length in primary open-angle glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1253–1260. [Google Scholar] [CrossRef]
- Schuman, J.S.; Hee, M.R.; Arya, A.V.; Pedut-Kloizman, T.; Puliafito, C.A.; Fujimoto, J.G.; Swanson, E.A. Optical coherence tomography: A new tool for glaucoma diagnosis. Curr. Opin. Ophthalmol. 1995, 6, 89–95. [Google Scholar] [CrossRef]
- Jaffe, G.J.; Caprioli, J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am. J. Ophthalmol. 2004, 137, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Baskaran, M.; Werkmeister, R.M.; Chua, J.; Schmidl, D.; Aranha Dos Santos, V.; Garhöfer, G.; Mehta, J.S.; Schmetterer, L. Anterior segment optical coherence tomography. Prog. Retin. Eye Res. 2018, 66, 132–156. [Google Scholar] [CrossRef] [PubMed]
- Shiga, Y.; Nishida, T.; Jeoung, J.W.; Di Polo, A.; Fortune, B. Optical Coherence Tomography and Optical Coherence Tomography Angiography: Essential Tools for Detecting Glaucoma and Disease Progression. Front. Ophthalmol. 2023, 3, 1217125. [Google Scholar] [CrossRef]
- Kim, K.E.; Park, K.H. Update on the Prevalence, Etiology, Diagnosis, and Monitoring of Normal-Tension Glaucoma. Asia Pac. J. Ophthalmol. 2016, 5, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudinezhad, G.; Mohammadzadeh, V.; Martinyan, J.; Edalati, K.; Zhou, B.; Yalzadeh, D.; Amini, N.; Caprioli, J.; Nouri-Mahdavi, K. Comparison of Ganglion Cell Layer and Ganglion Cell/Inner Plexiform Layer Measures for Detection of Early Glaucoma. Ophthalmol. Glaucoma 2023, 6, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jia, Y.; Takusagawa, H.L.; Pechauer, A.D.; Edmunds, B.; Lombardi, L.; Davis, E.; Morrison, J.C.; Huang, D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol. 2015, 133, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Takusagawa, H.L.; Liu, L.; Ma, K.N.; Jia, Y.; Gao, S.S.; Zhang, M.; Edmunds, B.; Parikh, M.; Tehrani, S.; Morrison, J.C.; et al. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology 2017, 124, 1589–1599. [Google Scholar] [CrossRef]
- Bonomi, L.; Marchini, G.; Marraffa, M.; Bernardi, P.; Morbio, R.; Varotto, A. Vascular risk factors for primary open angle glaucoma: The Egna-Neumarkt Study. Ophthalmology 2000, 107, 1287–1293. [Google Scholar] [CrossRef]
- Leske, M.C.; Wu, S.-Y.; Nemesure, B.; Hennis, A.; Group, B.E.S. Incident Open-Angle Glaucoma and Blood Pressure. Arch. Ophthalmol. 2002, 120, 954–959. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Katz, J.; Sommer, A.; Quigley, H.A.; Javitt, J.C. Hypertension, Perfusion Pressure, and Primary Open-angle Glaucoma: A Population-Based Assessment. Arch. Ophthalmol. 1995, 113, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh, F.; Ying-Lai, M.; Chung, J.; Azen, S.P.; Varma, R.; Group, L.A.L.E.S. Blood Pressure, Perfusion Pressure, and Open-Angle Glaucoma: The Los Angeles Latino Eye Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2872–2877. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wong, T.Y.; Mitchell, P.; Friedman, D.S.; He, M.; Aung, T. Distribution of Ocular Perfusion Pressure and Its Relationship with Open-Angle Glaucoma: The Singapore Malay Eye Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3399–3404. [Google Scholar] [CrossRef] [PubMed]
- Leske, M.C.; Heijl, A.; Hyman, L.; Bengtsson, B.; Dong, L.; Yang, Z. Predictors of Long-term Progression in the Early Manifest Glaucoma Trial. Ophthalmology 2007, 114, 1965–1972. [Google Scholar] [CrossRef] [PubMed]
- Leske, M.C.; Wu, S.-Y.; Hennis, A.; Honkanen, R.; Nemesure, B. Risk Factors for Incident Open-angle Glaucoma: The Barbados Eye Studies. Ophthalmology 2008, 115, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kuang, T.M.; Zhang, C.; Zangwill, L.M.; Weinreb, R.N.; Medeiros, F.A. Estimating Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects. Ophthalmology 2015, 122, 2002–2009. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, M.; Deng, J.; Lv, M.; Jiang, W.; Xiong, S.; Sun, S.; Zhu, J.; Zou, H.; He, X.; et al. Macular Ganglion Cell-Inner Plexiform Layer, Ganglion Cell Complex, and Outer Retinal Layer Thicknesses in a Large Cohort of Chinese Children. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4792–4802. [Google Scholar] [CrossRef] [PubMed]
- Della Santina, L.; Inman, D.M.; Lupien, C.B.; Horner, P.J.; Wong, R.O. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 2013, 33, 17444–17457. [Google Scholar] [CrossRef]
- El-Danaf, R.N.; Huberman, A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: Evidence from genetically identified retinal ganglion cell types. J. Neurosci. 2015, 35, 2329–2343. [Google Scholar] [CrossRef]
- Nouri-Mahdavi, K.; Nowroozizadeh, S.; Nassiri, N.; Cirineo, N.; Knipping, S.; Giaconi, J.; Caprioli, J. Macular Ganglion Cell/Inner Plexiform Layer Measurements by Spectral Domain Optical Coherence Tomography for Detection of Early Glaucoma and Comparison to Retinal Nerve Fiber Layer Measurements. Am. J. Ophthalmol. 2013, 156, 1297–1307.e1292. [Google Scholar] [CrossRef]
- Kim, Y.K.; Yoo, B.W.; Kim, H.C.; Park, K.H. Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map. Ophthalmology 2015, 122, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Na, K.I.; Kim, Y.K.; Jeoung, J.W.; Park, K.H. Diagnostic Ability of Wide-field Retinal Nerve Fiber Layer Maps Using Swept-Source Optical Coherence Tomography for Detection of Preperimetric and Early Perimetric Glaucoma. J. Glaucoma 2017, 26, 577–585. [Google Scholar] [CrossRef] [PubMed]
- WuDunn, D.; Takusagawa, H.L.; Sit, A.J.; Rosdahl, J.A.; Radhakrishnan, S.; Hoguet, A.; Han, Y.; Chen, T.C. OCT Angiography for the Diagnosis of Glaucoma: A Report by the American Academy of Ophthalmology. Ophthalmology 2021, 128, 1222–1235. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Morrison, J.C.; Tokayer, J.; Tan, O.; Lombardi, L.; Baumann, B.; Lu, C.D.; Choi, W.; Fujimoto, J.G.; Huang, D. Quantitative OCT angiography of optic nerve head blood flow. Biomed. Opt. Express 2012, 3, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wei, E.; Wang, X.; Zhang, X.; Morrison, J.C.; Parikh, M.; Lombardi, L.H.; Gattey, D.M.; Armour, R.L.; Edmunds, B.; et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014, 121, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Lévêque, P.M.; Zéboulon, P.; Brasnu, E.; Baudouin, C.; Labbé, A. Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography. J. Ophthalmol. 2016, 2016, 6956717. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Lee, E.J.; Han, J.C.; Kee, C. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT-angiography. PLoS ONE 2017, 12, e0184297. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Xiao, H.; Liang, C.; Xu, Y.; Ye, D.; Huang, J. Quantitative Analysis of Microvasculature in Macular and Peripapillary Regions in Early Primary Open-Angle Glaucoma. Curr. Eye Res. 2020, 45, 629–635. [Google Scholar] [CrossRef]
- Mansoori, T.; Sivaswamy, J.; Gamalapati, J.S.; Balakrishna, N. Radial Peripapillary Capillary Density Measurement Using Optical Coherence Tomography Angiography in Early Glaucoma. J. Glaucoma 2017, 26, 438–443. [Google Scholar] [CrossRef]
- Akil, H.; Huang, A.S.; Francis, B.A.; Sadda, S.R.; Chopra, V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE 2017, 12, e0170476. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Anegondi, N.; Chandapura, R.S.; Sudhakaran, S.; Kadambi, S.V.; Rao, H.L.; Aung, T.; Sinha Roy, A. Discriminant Function of Optical Coherence Tomography Angiography to Determine Disease Severity in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6079–6088. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Moghimi, S.; Zangwill, L.M.; Shoji, T.; Ghahari, E.; Manalastas, P.I.C.; Penteado, R.C.; Weinreb, R.N. Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes. Am. J. Ophthalmol. 2018, 190, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Suh, M.H.; Zangwill, L.M.; Manalastas, P.I.; Belghith, A.; Yarmohammadi, A.; Medeiros, F.A.; Diniz-Filho, A.; Saunders, L.J.; Weinreb, R.N. Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. Ophthalmology 2016, 123, 2509–2518. [Google Scholar] [CrossRef] [PubMed]
- Penteado, R.C.; Bowd, C.; Proudfoot, J.A.; Moghimi, S.; Manalastas, P.I.C.; Ghahari, E.; Hou, H.; Shoji, T.; Zangwill, L.M.; Weinreb, R.N. Diagnostic Ability of Optical Coherence Tomography Angiography Macula Vessel Density for the Diagnosis of Glaucoma Using Difference Scan Sizes. J. Glaucoma 2020, 29, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Richter, G.M.; Madi, I.; Chu, Z.; Burkemper, B.; Chang, R.; Zaman, A.; Sylvester, B.; Reznik, A.; Kashani, A.; Wang, R.K.; et al. Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma Using Optical Coherence Tomography Angiography. J. Glaucoma 2018, 27, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Kurysheva, N.I.; Maslova, E.V.; Zolnikova, I.V.; Fomin, A.V.; Lagutin, M.B. A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. PLoS ONE 2018, 13, e0201599. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, T.; Gamalapati, J.; Sivaswamy, J.; Balakrishna, N. Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes. Saudi J. Ophthalmol. 2018, 32, 295–302. [Google Scholar] [CrossRef]
- Moghimi, S.; Zangwill, L.M.; Penteado, R.C.; Hasenstab, K.; Ghahari, E.; Hou, H.; Christopher, M.; Yarmohammadi, A.; Manalastas, P.I.C.; Shoji, T.; et al. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology 2018, 125, 1720–1728. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, J.; Shin, J.W.; Lee, J.; Lee, S.; Kook, M.S. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS ONE 2017, 12, e0184948. [Google Scholar] [CrossRef]
- Chao, S.C.; Yang, S.J.; Chen, H.C.; Sun, C.C.; Liu, C.H.; Lee, C.Y. Early Macular Angiography among Patients with Glaucoma, Ocular Hypertension, and Normal Subjects. J. Ophthalmol. 2019, 2019, 7419470. [Google Scholar] [CrossRef] [PubMed]
- Milani, P.; Urbini, L.E.; Bulone, E.; Nava, U.; Visintin, D.; Cremonesi, G.; Scotti, L.; Bergamini, F. The Macular Choriocapillaris Flow in Glaucoma and Within-Day Fluctuations: An Optical Coherence Tomography Angiography Study. Investig. Ophthalmol. Vis. Sci. 2021, 62, 22. [Google Scholar] [CrossRef] [PubMed]
- Lommatzsch, C.; Rothaus, K.; Koch, J.M.; Heinz, C.; Grisanti, S. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Kromer, R.; Glusa, P.; Framme, C.; Pielen, A.; Junker, B. Optical coherence tomography angiography analysis of macular flow density in glaucoma. Acta Ophthalmol. 2019, 97, e199–e206. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Kwon, J.M.; Park, S.H.; Seo, J.H.; Jung, J.H. Diagnostic Ability of Macular Vessel Density in the Ganglion Cell-Inner Plexiform Layer on Optical Coherence Tomographic Angiography for Glaucoma. Transl. Vis. Sci. Technol. 2019, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Moghimi, S.; Zangwill, L.M.; Shoji, T.; Ghahari, E.; Penteado, R.C.; Akagi, T.; Manalastas, P.I.C.; Weinreb, R.N. Macula Vessel Density and Thickness in Early Primary Open-Angle Glaucoma. Am. J. Ophthalmol. 2019, 199, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.K.; Hwang, Y.H.; Wi, J.M.; Kim, M.; Jung, J.J. Glaucoma Diagnostic Ability of the Optical Coherence Tomography Angiography Vessel Density Parameters. Curr. Eye Res. 2017, 42, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Choi, J.; Shin, J.W.; Lee, J.; Kook, M.S. Glaucoma Diagnostic Capabilities of Foveal Avascular Zone Parameters Using Optical Coherence Tomography Angiography According to Visual Field Defect Location. J. Glaucoma 2017, 26, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Triolo, G.; Rabiolo, A.; Shemonski, N.D.; Fard, A.; Di Matteo, F.; Sacconi, R.; Bettin, P.; Magazzeni, S.; Querques, G.; Vazquez, L.E.; et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5713–5722. [Google Scholar] [CrossRef]
- Reis, A.S.; O’Leary, N.; Yang, H.; Sharpe, G.P.; Nicolela, M.T.; Burgoyne, C.F.; Chauhan, B.C. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1852–1860. [Google Scholar] [CrossRef]
- Chauhan, B.C.; O’Leary, N.; AlMobarak, F.A.; Reis, A.S.C.; Yang, H.; Sharpe, G.P.; Hutchison, D.M.; Nicolela, M.T.; Burgoyne, C.F. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 2013, 120, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.S.S.; Matsubara, I.; Almeida, I.; Gracitelli, C.P.B.; Dorairaj, S.K.; Vessani, R.M.; Paranhos, A., Jr.; Prata, T.S. Using Enhanced Depth Imaging Optical Coherence Tomography-Derived Parameters to Discriminate between Eyes with and without Glaucoma: A Cross-Sectional Comparative Study. Ophthalmic Res. 2021, 64, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.L.; Frost, B.E.; Mortlock, K.E.; Fergusson, J.R.; White, N.; Morgan, J.E.; North, R.V.; Albon, J. Quantifying biomarkers of axonal degeneration in early glaucoma to find the disc at risk. Sci. Rep. 2022, 12, 9366. [Google Scholar] [CrossRef]
- Gmeiner, J.M.D.; Schrems, W.A.; Mardin, C.Y.; Laemmer, R.; Kruse, F.E.; Schrems-Hoesl, L.M. Comparison of Bruch’s Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT575–OCT584. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, S.K.; Ren, R.; Yang, H.; Fortune, B.; Burgoyne, C.F.; Demirel, S. A method to estimate the amount of neuroretinal rim tissue in glaucoma: Comparison with current methods for measuring rim area. Am. J. Ophthalmol. 2014, 157, 540–549.e2. [Google Scholar] [CrossRef]
- Enders, P.; Adler, W.; Kiessling, D.; Weber, V.; Schaub, F.; Hermann, M.M.; Dietlein, T.; Cursiefen, C.; Heindl, L.M. Evaluation of two-dimensional Bruch’s membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol. 2019, 97, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Enders, P.; Adler, W.; Schaub, F.; Hermann, M.M.; Dietlein, T.; Cursiefen, C.; Heindl, L.M. Novel Bruch’s Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6596–6603. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, X.; Wei, Y.; Fang, Y.; Tian, T.; Kang, L.; Li, M.; Cai, Y.; Pan, Y. Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population. BMC Ophthalmol. 2021, 21, 151. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Kim, T.W.; Weinreb, R.N.; Lee, E.J.; Girard, M.J.A.; Mari, J.M. Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss in Eyes with Suspected Glaucoma. Sci. Rep. 2018, 8, 738. [Google Scholar] [CrossRef]
- Abe, R.Y.; Gracitelli, C.P.; Diniz-Filho, A.; Tatham, A.J.; Medeiros, F.A. Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring. Curr. Ophthalmol. Rep. 2015, 3, 74–84. [Google Scholar] [CrossRef]
- Bellezza, A.J.; Rintalan, C.J.; Thompson, H.W.; Downs, J.C.; Hart, R.T.; Burgoyne, C.F. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2003, 44, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Strouthidis, N.G.; Fortune, B.; Yang, H.; Sigal, I.A.; Burgoyne, C.F. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Park, C.K. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology 2013, 120, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, T.W.; Lee, E.J.; Girard, M.J.; Mari, J.M. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2017, 58, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Muir, E.R.; Chalfin, S.; Nagi, K.S.; Duong, T.Q. MRI Study of the Posterior Visual Pathways in Primary Open Angle Glaucoma. J. Glaucoma 2017, 26, 173–181. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Knott, M.; Heidemann, R.; Michelson, G.; Kober, T.; Dörfler, A.; Engelhorn, T. Investigation of lateral geniculate nucleus volume and diffusion tensor imaging in patients with normal tension glaucoma using 7 tesla magnetic resonance imaging. PLoS ONE 2018, 13, e0198830. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Meng, X.; Liu, G. Application of diffusion tensor imaging technology in glaucoma diagnosis. Front. Neurosci. 2023, 17, 1125638. [Google Scholar] [CrossRef] [PubMed]
- Song, X.Y.; Puyang, Z.; Chen, A.H.; Zhao, J.; Li, X.J.; Chen, Y.Y.; Tang, W.J.; Zhang, Y.Y. Diffusion Tensor Imaging Detects Microstructural Differences of Visual Pathway in Patients with Primary Open-Angle Glaucoma and Ocular Hypertension. Front. Hum. Neurosci. 2018, 12, 426. [Google Scholar] [CrossRef] [PubMed]
- Crish, S.D.; Sappington, R.M.; Inman, D.M.; Horner, P.J.; Calkins, D.J. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 5196–5201. [Google Scholar] [CrossRef]
- Yücel, Y.H.; Zhang, Q.; Weinreb, R.N.; Kaufman, P.L.; Gupta, N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 2003, 22, 465–481. [Google Scholar] [CrossRef]
- Li, M.; Ke, M.; Song, Y.; Mu, K.; Zhang, H.; Chen, Z. Diagnostic utility of central damage determination in glaucoma by magnetic resonance imaging: An observational study. Exp. Ther. Med. 2019, 17, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Colbert, M.K.; Ho, L.C.; van der Merwe, Y.; Yang, X.; McLellan, G.J.; Hurley, S.A.; Field, A.S.; Yun, H.; Du, Y.; Conner, I.P.; et al. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Investig. Ophthalmol. Vis. Sci. 2021, 62, 21. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Gerber, A.J.; Peterson, B.S. Brain morphometry using anatomical magnetic resonance imaging. J. Am. Acad. Child. Adolesc. Psychiatry 2008, 47, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Bogorodzki, P.; Piątkowska-Janko, E.; Szaflik, J.; Szaflik, J.P.; Gacek, M.; Grieb, P. Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps. PLoS ONE 2014, 9, e93682. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.W.; Wang, N.; Cai, S.; Fang, Z.; Yu, M.; Wu, Q.; Tang, L.; Guo, B.; Feng, Y.; Jonas, J.B.; et al. Structural brain abnormalities in patients with primary open-angle glaucoma: A study with 3T MR imaging. Investig. Ophthalmol. Vis. Sci. 2013, 54, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, R.; Agnifili, L.; Mattei, P.A.; Caulo, M.; Fasanella, V.; Navarra, R.; Mastropasqua, L.; Marchini, G. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma. BioMed Res. Int. 2015, 2015, 160454. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.L.; Johnson, P.J.; Barry, E.F.; Pérez Orrico, M.; Soligo, D.J.; Lawlor, M.; White, A. Diffusion tensor imaging of the visual pathway in dogs with primary angle-closure glaucoma. Vet. Ophthalmol. 2021, 24 (Suppl. S1), 63–74. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W. Quantitative evaluation of diffusion tensor imaging for clinical management of glioma. Neurosurg. Rev. 2020, 43, 881–891. [Google Scholar] [CrossRef]
- Li, K.; Lu, C.; Huang, Y.; Yuan, L.; Zeng, D.; Wu, K. Alteration of fractional anisotropy and mean diffusivity in glaucoma: Novel results of a meta-analysis of diffusion tensor imaging studies. PLoS ONE 2014, 9, e97445. [Google Scholar] [CrossRef]
- Fiedorowicz, M.; Dyda, W.; Rejdak, R.; Grieb, P. Magnetic resonance in studies of glaucoma. Med. Sci. Monit. 2011, 17, Ra227–Ra232. [Google Scholar] [CrossRef]
- Michelson, G.; Wärntges, S.; Engelhorn, T.; El-Rafei, A.; Hornegger, J.; Dörfler, A. Integrity/demyelination of the optic radiation, morphology of the papilla, and contrast sensitivity in glaucoma patients. Klin. Monbl Augenheilkd. 2012, 229, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Nucci, C.; Mancino, R.; Martucci, A.; Bolacchi, F.; Manenti, G.; Cedrone, C.; Culasso, F.; Floris, R.; Cerulli, L.; Garaci, F.G. 3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: Correlation with GDx-VCC, HRT-III and Stratus optical coherence tomography findings. Br. J. Ophthalmol. 2012, 96, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Garaci, F.G.; Bolacchi, F.; Cerulli, A.; Melis, M.; Spanò, A.; Cedrone, C.; Floris, R.; Simonetti, G.; Nucci, C. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: In vivo analysis with 3-T diffusion-tensor MR imaging. Radiology 2009, 252, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Bolacchi, F.; Garaci, F.G.; Martucci, A.; Meschini, A.; Fornari, M.; Marziali, S.; Mancino, R.; Squillaci, E.; Floris, R.; Cerulli, L.; et al. Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4191–4196. [Google Scholar] [CrossRef] [PubMed]
Structural Biomarkers | Findings | Limitations | Utility for Glaucoma Detection |
---|---|---|---|
Scleral spur length | Shorter scleral spur length of POAG eyes than the healthy | The increase of IOP cannot be attributed only to the Schlemm’s canal and scleral spur | Low |
GCL/IPL thickness * | Decreased IPL and GCIPL thickness | Still may be affected by highly myopic eyes (GCIPL hemifield test provides a superior diagnostic ability) | High |
Less affected by the degree of myopia and myopia-related optic disc change than RNFL thickness | |||
Vessel density and flow index | Decrease of vessel density and flow density in deep retinal vascular plexus and the whole retina | Superficial layer of retinal vasculature to obscure the deeper vessels of the retina Artifacts Ocular vascular changes in specific conditions including smoking, cardiovascular disease, hypoxia, and hyperoxia | Moderate |
FAZ-related parameters * (perimeter and circularity index) | Higher FAZ perimeter Lower circularity index | Low | |
BMO-MRW * | Better determination of the borders of the neuroretinal rim Useful in myopic eyes | Affected by the diversity of disc size and retinal blood vessels | Moderate |
BMO-MRA * | Useful in different disc size | Might not reflect the actual minimum area | |
Lamina cribrosa morphology | Decreased laminar thickness Posterior displacement of the laminar insertion Greater lamina cribrosa curvature index | Need for prospective studies evaluating lamina cribrosa changes over time | Low–Moderate |
Cortical thickness of the visual cortex | Thinning cortex was majorly found in the primary visual cortex | High cost; time consuming | Low |
Fractional anisotropy (FA) values and mean diffusivity (MD) | Elevated MD and reduced FA in relation to the optic nerve and optic radiation | High cost; time consuming | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-C.; Lee, H.-P.; Tsung, T.-H.; Chen, Y.-H.; Lu, D.-W. Unveiling Novel Structural Biomarkers for the Diagnosis of Glaucoma. Biomedicines 2024, 12, 1211. https://doi.org/10.3390/biomedicines12061211
Tsai Y-C, Lee H-P, Tsung T-H, Chen Y-H, Lu D-W. Unveiling Novel Structural Biomarkers for the Diagnosis of Glaucoma. Biomedicines. 2024; 12(6):1211. https://doi.org/10.3390/biomedicines12061211
Chicago/Turabian StyleTsai, Yu-Chien, Hsin-Pei Lee, Ta-Hsin Tsung, Yi-Hao Chen, and Da-Wen Lu. 2024. "Unveiling Novel Structural Biomarkers for the Diagnosis of Glaucoma" Biomedicines 12, no. 6: 1211. https://doi.org/10.3390/biomedicines12061211
APA StyleTsai, Y. -C., Lee, H. -P., Tsung, T. -H., Chen, Y. -H., & Lu, D. -W. (2024). Unveiling Novel Structural Biomarkers for the Diagnosis of Glaucoma. Biomedicines, 12(6), 1211. https://doi.org/10.3390/biomedicines12061211