Adding Genetics to the Risk Factors Model Improved Accuracy for Detecting Visual Field Progression in Newly Diagnosed Exfoliation Glaucoma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Endpoints
2.2. Genetic Analysis
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Aström, S.; Stenlund, H.; Lindén, C. Incidence and prevalence of pseudoexfoliations and open-angle glaucoma in northern Sweden: II. Results after 21 years of follow-up. Acta Ophthalmol. Scand. 2007, 85, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Schlotzer-Schrehardt, U. Molecular pathology of pseudoexfoliation syndrome/glaucoma--new insights from LOXL1 gene associations. Exp. Eye Res. 2009, 88, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Aboobakar, I.F.; Johnson, W.M.; Stamer, W.D.; Hauser, M.A.; Allingham, R.R. Major review: Exfoliation syndrome; advances in disease genetics, molecular biology, and epidemiology. Exp. Eye Res. 2017, 154, 88–103. [Google Scholar] [CrossRef]
- Founti, P.; Haidich, A.B.; Chatzikyriakidou, A.; Salonikiou, A.; Anastasopoulos, E.; Pappas, T.; Lambropoulos, A.; Viswanathan, A.C.; Topouzis, F. Ethnicity-Based Differences in the Association of LOXL1 Polymorphisms with Pseudoexfoliation/Pseudoexfoliative Glaucoma: A Meta-Analysis. Ann. Hum. Genet. 2015, 79, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Greene, A.G.; Eivers, S.B.; Dervan, E.W.J.; O’Brien, C.J.; Wallace, D.M. Lysyl Oxidase Like 1: Biological roles and regulation. Exp. Eye Res. 2020, 193, 107975. [Google Scholar] [CrossRef]
- Ayala, M.; Zetterberg, M.; Skoog, I.; Zettergren, A. Association of Single Nucleotide Polymorphisms Located in LOXL1 with Exfoliation Glaucoma in Southwestern Sweden. Genes 2021, 12, 1384. [Google Scholar] [CrossRef] [PubMed]
- Ayala, M.; Zetterberg, M.; Zettergren, A. Single nucleotide polymorphisms in LOXL1 as biomarkers for progression of exfoliation glaucoma in Sweden. Acta Ophthalmol. 2023, 101, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E. Factors for glaucoma progression and the effect of treatment: The early manifest glaucoma trial. Arch. Ophthalmol. 2003, 121, 48–56. [Google Scholar] [CrossRef]
- Ernest, P.J.; Schouten, J.S.; Beckers, H.J.; Hendrikse, F.; Prins, M.H.; Webers, C.A. An evidence-based review of prognostic factors for glaucomatous visual field progression. Ophthalmology 2013, 120, 512–519. [Google Scholar] [CrossRef]
- Chan, T.C.W.; Bala, C.; Siu, A.; Wan, F.; White, A. Risk Factors for Rapid Glaucoma Disease Progression. Am. J. Ophthalmol. 2017, 180, 151–157. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Ayala, M. Risk Factors and Frequency of Examinations for Detecting Visual Field Deterioration in Patients Newly Diagnosed Exfoliation Glaucoma in Sweden. J. Glaucoma 2024, 33, 168–175. [Google Scholar] [CrossRef]
- Ayala, M. Estimating functions for visual field progression in newly diagnosed exfoliation glaucoma patients in Sweden. Sci. Rep. 2023, 13, 20979. [Google Scholar] [CrossRef]
- Heijl, A.; Alm, A.; Bengtsson, B.; Bergstrom, A.; Calissendorff, B.; Lindblom, B.; Linden, C.; Swedish Ophthalmological Society. The Glaucoma Guidelines of the Swedish Ophthalmological Society. Acta Ophthalmol. Suppl. 2012, 90, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Greenfield, D.S.; Bhakta, A.S.; Lee, J.; Feuer, W.J. Detecting Glaucoma Progression Using Guided Progression Analysis with OCT and Visual Field Assessment in Eyes Classified by International Classification of Disease Severity Codes. Ophthalmol. Glaucoma 2019, 2, 36–46. [Google Scholar] [CrossRef]
- Thorleifsson, G.; Magnusson, K.P.; Sulem, P.; Walters, G.B.; Gudbjartsson, D.F.; Stefansson, H.; Jonsson, T.; Jonasdottir, A.; Jonasdottir, A.; Stefansdottir, G.; et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007, 317, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Lemmelä, S.; Forsman, E.; Onkamo, P.; Nurmi, H.; Laivuori, H.; Kivelä, T.; Puska, P.; Heger, M.; Eriksson, A.; Forsius, H.; et al. Association of LOXL1 gene with Finnish exfoliation syndrome patients. J. Hum. Genet. 2009, 54, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudinezhad, G.; Nishida, T.; Weinreb, R.N.; Baxter, S.L.; Eslani, M.; Micheletti, E.; Liebmann, J.M.; Fazio, M.A.; Girkin, C.A.; Zangwill, L.M.; et al. Impact of Smoking on Visual Field Progression in a Long-term Clinical Follow-up. Ophthalmology 2022, 129, 1235–1244. [Google Scholar] [CrossRef]
- Asano, S.; Murata, H.; Matsuura, M.; Fujino, Y.; Miki, A.; Tanito, M.; Mizoue, S.; Mori, K.; Suzuki, K.; Yamashita, T.; et al. Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database. Br. J. Ophthalmol. 2020, 104, 569–574. [Google Scholar] [CrossRef]
- De Moraes, C.G.; Ghobraiel, S.R.; Ritch, R.; Liebmann, J.M. Comparison of PROGRESSOR and Glaucoma Progression Analysis 2 to Detect Visual Field Progression in Treated Glaucoma Patients. Asia Pac. J. Ophthalmol. 2012, 1, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, B.; Heijl, A. A visual field index for calculation of glaucoma rate of progression. Am. J. Ophthalmol. 2008, 145, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Hodapp, E.; Parrish, R.K.; Anderson, D.R. Clinical Decisions in Glaucoma; Mosby: St. Louis, MO, USA; London, UK, 1993. [Google Scholar]
Outcomes | MD | VFI | |||||
---|---|---|---|---|---|---|---|
Predictors | |||||||
B Coeff. [95% CI] | R2 (1) | p | B Coeff. [95% CI] | R2 (1) | p | ||
IOP at diagnosis 1 | −0.49 [−0.67, −0.31] | 0.34 | 2 × 10−3 * | −1.19 [−1.74, −0.64] | 0.37 | 4 × 10−4 * | |
MD at diagnosis 1 | 1.08 [0.98–1.19] | 0.55 | 3 × 10−3 * | N.A. | N.A. | N.A. | |
VFI at diagnosis 1 | N.A. | N.A. | N.A. | 1.09 [1.01–1.17] | 0.58 | 2 × 10−4 * | |
LOXL1_rs2165241 1 | 0.78 [0.01–1.55] | 0.41 | 0.01 * | 1.04 [0.44–1.64] | 0.43 | 6 × 10−4 * | |
LOXL1_rs1048661 1 | 1.05 [0.25–1.85] | 0.42 | 8 × 10−3 * | 1.13 [0.52–1.75] | 0.44 | 2 × 10−4 * | |
IOP * MD at diagnosis 2 | N.A. | N.A. | 0.89 | N.A. | N.A. | N.A. | |
IOP * VFI at diagnosis 2 | N.A. | N.A. | N.A. | N.A. | N.A. | 0.55 | |
LOXL1_rs2165241 * IOP at diagnosis 2 | 0.26 [0.12–0.34] | 0.78 | 3 × 10−6 * | 0.12 [0.08–0.14] | 0.82 | 4 × 10−7 * | |
LOXL1_rs1048661 * IOP at diagnosis 2 | 0.31 [0.25–0.36] | 0.79 | 2 × 10−7 * | 0.22 [0.12–0.28] | 0.83 | 5 × 10−8 * | |
LOXL1_rs2165241 * MD at diagnosis 2 | 0.82 [0.75–0.89] | 0.85 | 6 × 10−5 * | N.A. | N.A. | N.A. | |
LOXL1_rs1048661 * MD at diagnosis 2 | 0.94 [0.88–0.99] | 0.86 | 4 × 10−6 * | N.A. | N.A. | N.A. | |
LOXL1_rs2165241 * VFI at diagnosis 2 | N.A. | N.A. | N.A. | 1.06 [0.99–1.13] | 0.88 | 3 × 10−8 * | |
LOXL1_rs1048661 * VFI at diagnosis 2 | N.A. | N.A. | N.A. | 1.08 [1.01–1.15] | 0.89 | 4 × 10−9 * |
Outcomes | GPA | ||||
---|---|---|---|---|---|
Predictors | |||||
Exp(B) Coeff. [95% CI] | R2 (2) | PA (%) | p | ||
IOP at diagnosis 1 | 1.10 [1.09–1.12] | 0.09 | 62 | 0.01 * | |
MD at diagnosis 1 | 0.77 [0.67–0.9] | 0.24 | 71 | 5 × 10−4 * | |
VFI at diagnosis 1 | 0.93 [0.89–0.98] | 0.25 | 70 | 3 × 10−3 * | |
LOXL1_ rs2165241 1 | 6.2 [3.06–12.56] | 0.43 | 76 | 4 × 10−7 * | |
LOXL1_ rs1048661 1 | 2.6 [1.54–4.57] | 0.19 | 65 | 3 × 10−4 * | |
IOP * MD at diagnosis 1 | 0.99 [0.98–1] | 0.32 | 72 | 0.04 * | |
IOP * VFI at diagnosis 1 | N.A. | N.A. | N.A. | 0.24 | |
LOXL1_ rs2165241 * IOP at diagnosis 1 | 1.05 [1.03–1.08] | 0.45 | 77 | 3 × 10−8 * | |
LOXL1_ rs1048661 * IOP at diagnosis 1 | 1.03 [1.01–1.05] | 0.24 | 65 | 5 × 10−5 * | |
LOXL1_ rs2165241 * MD at diagnosis 1 | 0.69 [0.59–0.81] | 0.54 | 80 | 7 × 10−6 * | |
LOXL1_ rs1048661 * MD at diagnosis 1 | 0.82 [0.74–0.9] | 0.36 | 74 | 1 × 10−4 * | |
LOXL1_ rs2165241 * VFI at diagnosis 1 | 1.02 [1.01–1.03] | 0.34 | 78 | 5 × 10−6 * | |
LOXL1_ rs1048661 * VFI at diagnosis 1 | 1.01 [1–1.02] | 0.26 | 72 | 4 × 10−3 * |
AUC [95% CI] | p | Sensitivity | Specificity | |
---|---|---|---|---|
IOP at diagnosis | 0.70 [0.59–0.82] | 3 × 10−4 | 0.70 | 0.67 |
LOXL1_ rs2165241 | 0.80 [0.72–0.90] | 1.6 × 10−8 | 0.92 | 0.58 |
IOP at diagnosis * LOXL1_rs2165241 | 0.85 [0.77–0.92] | 2.3 × 10−12 | 0.80 | 0.73 |
LOXL1_ rs1048661 | 0.71 [0.60–0.81] | 1.8 × 10−4 | 0.78 | 0.55 |
IOP at diagnosis * LOXL1_rs1048661 | 0.77 [0.67–0.86] | 4 × 10−8 | 0.75 | 0.71 |
MD at diagnosis | 0.8 [0.7–0.89] | 1.5 × 10−8 | 0.78 | 0.76 |
MD at diagnosis * LOXL1_rs2165241 | 0.90 [0.84–0.96] | 2.2 × 10−14 | 0.82 | 0.64 |
MD at diagnosis * LOXL1_rs1048661 | 0.82 [0.73–0.90] | 5.4 × 10−13 | 0.78 | 0.76 |
VFI at diagnosis | 0.79 [0.69–0.88] | 8.5 × 10−9 | 0.75 | 0.70 |
VFI at diagnosis * LOXL1_rs2165241 | 0.91 [0.85–0.97] | 3.2 × 10−15 | 0.82 | 0.65 |
VFI at diagnosis * LOXL1_rs1048661 | 0.81 [0.70–0.88] | 3.7 × 10−10 | 0.78 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala, M. Adding Genetics to the Risk Factors Model Improved Accuracy for Detecting Visual Field Progression in Newly Diagnosed Exfoliation Glaucoma Patients. Biomedicines 2024, 12, 1225. https://doi.org/10.3390/biomedicines12061225
Ayala M. Adding Genetics to the Risk Factors Model Improved Accuracy for Detecting Visual Field Progression in Newly Diagnosed Exfoliation Glaucoma Patients. Biomedicines. 2024; 12(6):1225. https://doi.org/10.3390/biomedicines12061225
Chicago/Turabian StyleAyala, Marcelo. 2024. "Adding Genetics to the Risk Factors Model Improved Accuracy for Detecting Visual Field Progression in Newly Diagnosed Exfoliation Glaucoma Patients" Biomedicines 12, no. 6: 1225. https://doi.org/10.3390/biomedicines12061225
APA StyleAyala, M. (2024). Adding Genetics to the Risk Factors Model Improved Accuracy for Detecting Visual Field Progression in Newly Diagnosed Exfoliation Glaucoma Patients. Biomedicines, 12(6), 1225. https://doi.org/10.3390/biomedicines12061225