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Abstract: Background: Accurate diagnosis of Alzheimer’s disease (AD) and frontotemporal dementia
(FTD) represents a health issue due to the absence of disease traits. We assessed the performance of a
SIMOA panel in cerebrospinal fluid (CSF) from 43 AD and 33 FTD patients with 60 matching Control
subjects in combination with demographic–clinical characteristics. Methods: 136 subjects (AD: n = 43,
FTD: n = 33, Controls: n = 60) participated. Single-molecule array (SIMOA), glial fibrillary acidic
protein (GFAP), neurofilament light (NfL), TAU, and ubiquitin carboxy-terminal hydrolase L1 (UCH-
L1) in CSF were analyzed with a multiplex neuro 4plex kit. Receiver operating characteristic (ROC)
curve analysis compared area under the curve (AUC), while the principal of the sparse partial least
squares discriminant analysis (sPLS-DA) was used with the intent to strengthen the identification of
confident disease clusters. Results: CSF exhibited increased levels of all SIMOA biomarkers in AD
compared to Controls (AUCs: 0.71, 0.86, 0.92, and 0.94, respectively). Similar patterns were observed
in FTD with NfL, TAU, and UCH-L1 (AUCs: 0.85, 0.72, and 0.91). sPLS-DA revealed two components
explaining 19% and 9% of dataset variation. Conclusions: CSF data provide high diagnostic accuracy
among AD, FTD, and Control discrimination. Subgroups of demographic–clinical characteristics and
biomarker concentration highlighted the potential of combining different kinds of data for successful
and more efficient cohort clustering.

Keywords: SIMOA platform; cerebrospinal fluid; neurodegenerative diseases; biomarkers; multiplex;
AD; FTD; sPLS-DA; dementias

1. Introduction

The two most common causes of dementia in elderly people are Alzheimer’s disease
(AD) and frontotemporal dementia (FTD). Memory and cognitive decline are among the
main features of AD, while FTD is a highly heterogeneous disorder. The manifestations of
FTD include behavioral alterations, difficulty with language, motor symptoms, and other
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mental health conditions, such as personality and behavioral changes [1,2]. AD’s patholog-
ical hallmarks include the deposition of amyloid beta (Ab) plaques in the brain’s neocortex
with neurofibrillary tangle compositions, while in FTD, most patients show a degeneration
of the frontal and temporal lobes, including paralimbic areas [2–4]. The biochemical profile
of AD in cerebrospinal fluid (CSF) has been established for over 20 years, following the
seminal works of Vandermeeren et al. regarding total-TAU protein [5], Motter et al. regard-
ing Ab with 42 amino acids [6], and Ishiguro et al. regarding phosphorylated TAU protein
(ph-TAU) [7].

Diagnosis of dementia represents a challenging public health issue as it can be par-
ticularly difficult in cases where disease-specific traits are absent. Incorrect or delayed
diagnosis between AD and FTD may result in serious consequences in a patient’s treatment
efficacy, pharmacologic accuracy, therapeutic interventions, and disease management [1].
Since these disorders are challenging to diagnose clinically, various biomarkers of un-
derlying pathophysiology have been used to increase diagnostic precision and play a
crucial role in research and clinical trials [8,9]. For clinical trials of disease-modifying
treatments in particular, biomarkers which accurately reflect the underlying pathology
in pre- or oligosymptomatic stages of different dementias are pivotal for correct patient
stratification. A promising biomarker must reflect not only disease development and/or
progression but also disease severity and treatment efficiency [10,11]. An optimal discrimi-
natory biomarker for neurodegenerative disorders (NDs) would exhibit high sensitivity
and specificity, should be reproducible, preferentially non-invasive, and easy to measure,
utilizing a cost-effective platform set-up [12].

Well-studied biomarkers such as Ab40-42 [13–15], TAU, or ph-TAU [16] are established
clinical diagnostic markers for AD; however, they are not highly predictive of memory and
cognitive impairments. Ongoing efforts focus on standardizing protocols and establishing
criteria for the proper use of biomarkers in the diagnosis of the disease, intending to
distinguish one neurodegenerative disease from another [2]. Other non-disease-specific
biomarkers, reflecting neurodegeneration in general, could be utilized in combination with
Ab and TAU, with the potential to enhance differential diagnosis in dementias [17]. Thus,
apart from already-established biomarkers, recent studies have identified new candidates
for NDs discrimination, such as the neurofilament light (NfL) protein, glial fibrillary acidic
protein (GFAP), and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) [3,18–21].

The selection of an appropriate biomarker panel is of paramount importance in differen-
tial diagnosis of AD and FTD. Recent studies have focused on the use of UCH-L1, NfL, and
TAU, which localize in different areas of a neuron, as potential biomarkers [22]. In addition,
the potential of GFAP in clinical diagnosis has been highlighted after a GFAP–UCH-L1 blood
test was authorized by the Food and Drug Administration (FDA) for use in mild traumatic
brain injury (TBI) [10]. GFAP, an astrocyte-specific marker, is a filament of mature astrocytes,
distributed in the white and gray matter, the cerebellum, and the subventricular and subgranu-
lar zones [23]. GFAP seems to be essential for the activation of astroglial cells (astrogliosis) that
occurs after central nervous system (CNS) trauma, as well as during neurodegeneration [24].
In line with this, in AD brains, GFAP levels are higher in regions around Ab plaques with
elevated TAU accumulation [12]. Recently, preliminary evidence categorized GFAP as a
potential plasma biomarker for AD, rather than CSF, as it showed better performance when
detected in plasma samples [25]. It has also been suggested that GFAP and UCH-L1 form
a biomarker duplex representing the two most dominant cell types in the brain, astrocytes,
and neurons [26]. UCH-L1, a highly abundant neuron-specific cytoplasmic enzyme, modifies
the activity of the ubiquitin proteasome system (UPS) by functioning as a deubiquitinating
hydrolase, ubiquitin ligase, and a monoubiquitin stabilizer. The presence of UCH-L1, along
with ubiquitin, in Ab plaques and neurofibrillary tangles in AD brains is an additional proof
that UPS is dysfunctional in AD pathology. Increased levels of CSF ubiquitin and UCH-L1
have been reported in several previous studies in AD patients, suggesting that CSF UCH-
L1 may distinguish AD patients from Control subjects with high diagnostic accuracy [27].
However, even though UCH-L1 is one of the few TBI biomarker candidates identified, based
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on recent proteomic studies, the diagnostic accuracy of CSF UCH-L1 in discriminating AD
from other NDs should be further investigated [26]. Another biomarker of great importance
is NfL. Neurofilaments are cytoskeletal neuronal proteins composed of three subunits: light,
medium, and heavy chains. They are essential for the structural stability of neurons and
are highly expressed in myelinated axons [1]. NfL is released after neuronal damage both
in the CSF and bloodstream, and its elevated concentration in CSF has been described in
many NDs [23]. Although NfL has not been categorized as a diagnostic biomarker for a
specific ND, it has the potential to become a useful tool; in combination with other mark-
ers, it could contribute to monitoring ND progression [1]. In comparison, TAU protein, an
already-established biomarker for AD, is expressed in a variety of mammalian tissues but
predominantly in CNS neurons. TAU, as a microtubule-associated protein, is important to
neuronal structure, function, and axonal processes, as it is primarily found within axons [28].
TAU is a naturally unfolded, highly soluble protein that interacts with tubulin, promoting its
assembly into microtubules, thus contributing to the stabilization of their structure [29].

The clinical implementation of these biomarkers (either as individual markers or
in combination) requires a detailed assessment of their diagnostic value. Additionally,
considering the prevalence of mixed brain pathologies in the dementia spectrum, the
impact of coexisting and overlapping comorbidities should be taken into consideration
when evaluating potential biomarker’s accuracy [25].

To date, the clinical diagnosis of ND patients, including AD and FTD, has mostly been
based on imaging and biomarker measurements in CSF or blood (serum or plasma). Methods
already used are the enzyme-linked immunosorbent assay (ELISA) [30] and the real-time
quaking-induced conversion assay (RT-QuIC) [31]. This combinatory diagnostic protocol
currently in use could be improved by novel detection methods like electrochemiluminescence
immunoassays (ECLIA) and immunomagnetic reduction (IMR) [30], or by the utilization of
biomarker panels like Luminex xMAP [32], NeuroToolKit [17], and single-molecule array
(SIMOA) [33]. Limitations associated with current and widely used analytical methods refer
to difficult maintenance in large cohort studies, relatively high detection limits, and the
requirement of high sample volumes. These restrictions hamper the study of potential novel
biomarkers, especially in plasma, where levels are usually lower compared to CSF.

SIMOA, a state-of-the-art technology, identifies and quantifies immunocomplexes
bound to dye-encoding magnetic beads (using different capture and detector antibodies)
sealed in arrays of femtoliter-volume microwells. SIMOA requires low sample volumes
and allows for multiplexing analysis, which has been used for blood and CSF biomarker
detection [33–35]. This advanced and highly sensitive technique represents a valid tool for
new biomarkers detection, giving new perspectives with promising future to a whole new
research field [25,36].

In this study, we aimed to assess the diagnostic performance (sensitivity, specificity
and optimal cut-off values) of a multiplex panel of four biomarkers—GFAP, NfL, TAU,
and UCH-L1—in CSF samples across a clinical cohort of 43 AD and 33 FTD patients and
60 Control subjects using the SIMOA platform. Our subsequent goal was to further stratify
the samples through the identification of different cohort clusters based on combinations of
biomarkers (new and already established) and demographic–clinical characteristics. More
specifically, we applied the classification performance of the principal of the sparse partial
least squares discriminant analysis (sPLS-DA) model in our dimensional dataset to identify
the most relevant variables to succeed in meaningful cohort clustering.

2. Materials and Methods
2.1. Ethical Considerations

All patients or their next of kin (in cases of compromised mental capacity) provided
written informed consent for participation in this study. The study was approved by the
Scientific and Ethics Committee of Eginition Hospital, by the Local Ethics Committee of
the University of Medicine, Göttingen, No. 19/11/09, “Liquormarker als Prädiktoren
für die Entwicklung einer Demenz bei Patienten mit Morbus Parkinson, Demenz mit
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Lewy Körperchen und Morbus Alzheimer”, and by the Ethics Committee of the University
Medicine Göttingen, No. 13/11/12 “LIX—Liquormarker zur Frühdiagnose und Krankheit-
sprogression bei Patienten mit Parkinson-syndromen und Motoneuronerkrankungen” and
performed in accordance with the guidelines of the 1964 Declaration of Helsinki.

2.2. Patients

The medical files of all patients with available data on CSF biomarkers (such as Ab42,
Ab40, total-TAU, and ph-TAU-181), admitted from 2011 to 2021 to the “Neurodegenerative
Disorders and Epilepsy” Ward of Eginition Hospital, Athens, Greece, were retrospectively
reviewed. All patients included were consecutively admitted to our clinic. All patients un-
derwent a thorough diagnostic work-up, including a detailed medical history, neurological
examination, neuropsychological assessment, including the mini mental state examination
(MMSE—a test of global cognitive status) [37], frontal assessment battery (FAB—a test of
frontal executive function) [38], 5 word recall test (a test of memory) [39], and CLOX test (a test
of visuospatial–visuoconstructive function) [40]. Based on clinical data, a final diagnosis was
established by three neurologists with extensive experience in cognitive disorders (E.K., G.P.P.,
V.C.C.), blinded to the CSF biomarker profile. Only subjects with a consensus among the three
neurologists regarding the clinical diagnosis were included. Subjects were included if they
fulfilled the established diagnostic criteria for AD [39] and FTD [40] (AD: n = 43; FTD: n = 33).
The Control group consisted of otherwise healthy subjects, with no comorbidities, undergoing
knee or hip joint surgery or hernia repair under spinal anesthesia. These subjects had a
negative history of cognitive or behavioral/psychiatric disorders and no clinical evidence of
any major disease (healthy Controls: n = 12) or of diagnosis of non-primary neurodegenerative
neurological and psychiatric conditions according to the acknowledged standard of neurologi-
cal, clinical, and para-clinical findings based on the Internation classification of diseases, tenth
revision (ICD-10) definition cases; they were without cognitive impairment or dementia at the
time of sampling (non-neurodegenerative neurological Controls: n = 48). All Control subjects
had normal scores on neuropsychological testing (MMSE and FAB). Blood-contaminated CSF
samples were excluded from the study [37,38].

2.3. CSF Sampling and Biomarker Measurements

All patients underwent lumbar puncture at 10–11 a.m. after overnight fasting based
on standard operating procedures in accordance with recommendations to standardize
preanalytical confounding factors in AD CSF biomarkers [41].

GFAP, UCH-L1, NfL, and TAU concentrations in the CSF were determined using
a commercial assay kit [Neuro 4 plex, Quanterix, Billerica, MA, USA (Product number:
103345)] that had already been optimized for certain marker proteins and measured in
the SIMOA-SR-X instrument (Quanterix, Billerica, MA, USA). Analysis was performed
according to the manufacturer instructions. CSF samples were diluted 40× to a total volume
of 100 µL. Two internal Controls with a defined protein concentration were included in the
assay, and data were subjected to further analysis only when both internal assay Controls
were within the expected range (less than 10% variation).

CSF samples were vortexed for 10–20 s and centrifuged for 5 min at 10,000 rpm
to remove any impurities before use. Initially, each sample was analyzed in duplicates,
displaying statistically insignificant intra-assay variation, allowing us to proceed with
single measurements due to low sample volumes. All samples were anonymized and
analyzed blindly and randomly by the experimenter.

2.4. Statistical Analysis

The normality of distribution was assessed via Shapiro–Wilk’s test. Comparison of
demographic/clinical data was performed via χ2 test, ordinary one-way ANOVA, or t-test
(Mann–Whitney test or unpaired t-test) as appropriate. The spread of value comparisons of
CSF biomarkers in the study groups was performed via unpaired ANOVA (Kruskal–Wallis
test and Dunn’s multiple comparison test) as appropriate.
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Receiver operating characteristic (ROC) curve analysis [calculating the area under
the curve (AUC) ± standard error (SE) and its 95% confidence interval (CI), alongside the
cut-off points and specificity, sensitivity, and 95% CI and Youden Index (YI) of the optimal
cut-off points] was performed to compare the diagnostic accuracy of all four CSF biomarkers
among patients with AD and FTD and the Control group. All correlation studies were
computed using the non-parametric Spearman’s correlation test (two-tailed) with a CI of
95%. For statistical analysis, the GraphPad Prism 8.0.2 (263) software (GraphPad, San Diego,
CA, USA) was used. p-values below 0.05 were considered statistically significant [41,42].

The principal of sPLS-DA was used to create possible cohort clusters based on different
types of data. R software (R foundation for statistical computing 4.2.0.1 Rtools, Vienna,
Austria) and R studio were used for sPLS-DA analysis. We used the MixOmics package,
which is an R toolkit dedicated to the exploration and integration of biological datasets,
with a specific focus on variable selection. sPLS-DA is a supervised, multivariate analysis
approach to identify a set of variables (in this case, biomarkers and demographic–clinical
data) accounting for the greatest variation present in the dataset. The usage of this super-
vised exploratory approach enables the assessment of the generalization properties of the
model and allows for the selection of suitable variables for the outcome status prediction of
the patients. In our analysis, it allows the use of additional patients’ data from different
clinical tests (i.e., CSF ELISA, CSF SIMOA, and plasma SIMOA) without direct comparisons
with matching Controls. The inclusion of such data increases the strength of the analysis
and of the discriminatory potential of our CSF SIMOA markers in AD and FTD [43].

In this context only, we analyzed 12 biomarkers in total, the SIMOA-measured biomark-
ers (GFAP, NfL, TAU, and UCH-L1) in CSF of 43 AD, 33 FTD, and 60 Control patients, as
described earlier, as well as additional data (Supplementary File, Table S1) of the same
panel of four biomarkers in plasma and data from ELISA-measured biomarkers (Ab42,
Ab40, total-TAU, ph-TAU) in CSF of the same patient cohort [AD (n = 43) and FTD (n = 33)
patients]. Moreover, we used 9 demographic–clinical characteristics (gender, age, disease
duration, MMSE, FAB, 5 word recall, CLOX2, Sheltens L, Sheltens R). sPLS-DA facilitated
the ability to combine different types of data to strengthen our original hypothesis regard-
ing the increased discriminatory potential of our four CSF SIMOA biomarkers in AD and
FTD. Loading plots were generated to visualize the variables responsible for clustering.

3. Results
3.1. Clinical and Demographic Data

In total, 136 subjects were included in this study (AD: 43 patients; FTD: 33 patients;
Control: 60 subjects). Study groups did not differ in sex (p = 0.4102); however, they differed
in age (p < 0.0001). Demographic, clinical data, and SIMOA-measured biomarkers (GFAP,
NfL, TAU, and UCH-L1) in CSF of AD, FTD, and Controls are summarized in Table 1.

Table 1. Patient demographics, clinical data, and CSF biomarker concentrations as determined by SIMOA
platforms. AD: Alzheimer’s disease dementia; FTD: Frontotemporal dementia; MMSE: mini mental state
examination; FAB: frontal assessment battery. All data are presented as median (25th–75th percentile).

AD
n = 43

FTD
n = 33

Controls
n = 60 p-Value

Demographic/clinical data

Gender (female/male) 20/23 19/14 35/24 * 0.4102 **
Age (year) 65.5 (57.75–76) 62 (56.5–70) 52.9 (31.85–61.7) <0.0001 ‡

Disease duration (month) 36 (24–48) 36 (24–60) NA 0.5782 #
MMSE 18 (14–22.25) 25 (16–27.25) NA 0.0019 #

FAB 7.5 (6–12) 9 (5–13) NA 0.4078 §
5 word recall 2 (0–3) 4 (2–5) NA 0.0012 #

CLOX2 8.5 (4–11) 12 (9.5–13.25 NA 0.0040 #
Sheltens L 2 (1–2) 1 (1–2.25) NA 0.1881 #
Sheltens R 2 (1–2) 1 (0–2.25) NA 0.7019 #



Biomedicines 2024, 12, 1253 6 of 15

Table 1. Cont.

AD
n = 43

FTD
n = 33

Controls
n = 60 p-Value

CSF biomarkers (pg/mL)

GFAP 9057.82 (5984.45–14,245.77) 5835.62 (2444.36–9526.47) 5353.97 (2976.33–8650.07) 0.0007 †
NfL 1223.64 (965.47–1612.96) 1630.37 (744.51–3261.61) 355.35 (193.43–598.02) <0.0001 †
TAU 255.5 (180.71–351.01) 124.46 (101.29–194.91) 94.6 (65.05–115.15) <0.0001 †

UCH-L1 2078.54 (1440.75–4154.26) 2390.84 (1161.55–4037.36) 818.55 (671.92–1003.48) <0.0001 †

* The rest is unknown; ** χ2 test; ‡ ordinary one-way ANOVA; NA: data not available; # Mann–Whitney test;
§ unpaired t-test; † Kruskal–Wallis test.

3.2. Assessement of CSF GFAP, NfL, TAU, and UCH-L1 Diagnostic Accuracy

CSF GFAP, NfL, TAU, and UCH-L1 levels were determined by SIMOA in AD, FTD,
and Control samples. Our ANOVA/non-parametric Kruskal–Wallis test analysis identified
increased levels of all tested biomarkers in AD and FTD cases compared to Controls.
Specifically, clear differences in the levels of all four biomarkers were detected in AD cases
relative to Controls. A similar pattern was evident in the FTD samples, where the levels of
the three biomarkers (NfL, TAU, and UCH-L1) were statistically significantly different from
those of the Controls. Interestingly, differences in GFAP and TAU levels were statistically
significant between AD and FTD, suggesting their potential use in differential diagnosis
(Figure 1).

ROC curve and AUC analysis (GraphPad Prism 8.0.2 (263)) were used to assess the
diagnostic accuracy of the tested biomarkers. UCH-L1 and TAU showed excellent discrim-
ination efficiency between AD cases and Controls (AUC: 0.94 ± 0.02 SE, 95% CI 0.90–1,
p < 0.0001; AUC: 0.92 ± 0.03 SE, 95% CI 0.87–0.97, p < 0.0001, respectively). A good differen-
tiation between AD and Controls was also achieved by NfL (AUC: 0.86 ± 0.04 SE, 95% CI
0.79–0.94, p < 0.0001), while GFAP performed fairly (AUC: 0.71 ± 0.05 SE, 0.60–0.82 95% CI,
p = 0.0003). UCH-L1 showed excellent performance in the differentiation between FTD
cases and Controls (AUC: 0.91 ± 0.03 SE, 95% CI 0.85–0.97, p < 0.0001), followed by NfL
(AUC: 0.85 ± 0.04 SE, 95% CI 0.77–0.93, p < 0.0001), in contrast to TAU, which displayed
reduced discrimination ability (AUC: 0.72 ± 0.06 SE, 95% CI 0.60–0.83, p = 0.0006). Consid-
ering the differential diagnosis between AD and FTD, a good discrimination performance
was detected for TAU (AUC: 0.80 ± 0.05 SE, 95% CI 0.70–0.90, p < 0.0001) in contrast to
GFAP, which did not perform as well (AUC: 0.7 ± 0.06 SE, 95% CI 0.58–0.82, p = 0.0036)
(Figure 2).

Aiming to calculate an optimal diagnostic cut off for AD and FTD diagnosis from the
ROC curve analysis of Figure 2, we calculated the YI. We propose for CSF UCH-L1 a cut off
>1260 pg/mL; for CSF NfL, a cut off >688.8 pg/mL; for CSF TAU, a cut off >137.0 pg/mL;
and finally, for CSF GFAP, a cut off >5942 pg/mL as sufficient to distinguish between AD
and Controls. Moreover, we propose for CSF UCH-L1 a cut off >1052 pg/mL; for CSF NfL,
a cut off >463.9 pg/mL; and finally, for CSF TAU, a cut off >111.3 pg/mL as sufficient to
distinguish between FTD and Controls (Table 2).

Table 2. Receiver operating characteristic (ROC) curve analysis of CSF GFAP, NfL, TAU, and UCH-L1
to distinguish between clinical patients and Controls by calculating the optimal cut-off points, as well
as specificity %, sensitivity %, and its 95% CI and Youden Index (YI).

Controls vs. Disease Cut Off Sensitivity % 95% CI Specificity % 95% CI YI

UCH-L1: AD vs. Controls >1260 86.05 72.74% to 93.44% 87.93 77.12% to 94.03% 0.74
UCH-L1: FTD vs. Controls >1052 84.38 68.25% to 93.14% 79.31 67.23% to 87.75% 0.64

NfL: AD vs. Controls >688.8 86.05 72.74% to 93.44% 80.70 68.66% to 88.87% 0.67
NfL: FTD vs. Controls >463.9 87.50 71.93% to 95.03% 73.68 61.02% to 83.35% 0.61
TAU: AD vs. Controls >137.0 90.70 78.40% to 96.32% 85.96 74.68% to 92.71% 0.77
TAU: FTD vs. Controls >111.3 69.70 52.66% to 82.62% 70.18 57.34% to 80.47% 0.4
GFAP: AD vs. Controls >5942 76.74 62.26% to 86.85% 64.29 51.19% to 75.54% 0.41
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CSF GFAP, NfL, TAU, and UCH-L1 levels were determined by SIMOA in AD, FTD, 

and Control samples. Our ANOVA/non-parametric Kruskal–Wallis test analysis identi-
fied increased levels of all tested biomarkers in AD and FTD cases compared to Controls. 
Specifically, clear differences in the levels of all four biomarkers were detected in AD cases 
relative to Controls. A similar pattern was evident in the FTD samples, where the levels of 
the three biomarkers (NfL, TAU, and UCH-L1) were statistically significantly different 
from those of the Controls. Interestingly, differences in GFAP and TAU levels were statis-
tically significant between AD and FTD, suggesting their potential use in differential di-
agnosis (Figure 1). 
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< 0.0001) or FTD (Dunn’s multiple comparison test p = 0.0003). In addition, TAU levels were signifi-
cantly increased when the FTD–Control comparison was considered (Dunn’s multiple comparison 
test p = 0.0097). (d) UCH-L1 levels were increased in AD patients relative to Controls (Dunn’s mul-
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Figure 1. Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), TAU, and ubiq-
uitin carboxy-terminal hydrolase L1 (UCH-L1) levels in cerebrospinal fluid (CSF) of Alzheimer’s
disease (AD), Frontotemporal dementia (FTD), and Control subjects. (a) A statistically significant
increase in GFAP levels was observed in AD compared to Controls (Dunn’s multiple comparison
test p = 0.0012) and FTD cases (Dunn’s multiple comparison test p = 0.0078). (b) NfL levels were
significantly increased in AD compared to Controls (Dunn’s multiple comparison test p < 0.0001) and
similarly in FTD cases compared to Controls (Dunn’s multiple comparison test p < 0.0001). (c) TAU
levels were significantly increased in AD patients relative to Controls (Dunn’s multiple comparison
test p < 0.0001) or FTD (Dunn’s multiple comparison test p = 0.0003). In addition, TAU levels were
significantly increased when the FTD–Control comparison was considered (Dunn’s multiple compar-
ison test p = 0.0097). (d) UCH-L1 levels were increased in AD patients relative to Controls (Dunn’s
multiple comparison test p < 0.0001), as well as in FTD cases compared to Controls (Dunn’s multiple
comparison test p < 0.0001). Scatter plots display individual values, means, and Standard Deviations
(SDs). Statistical significance is denoted as follows: **** p-value < 0.0001; *** p-value < 0.001; and
** p-value < 0.01.
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patients from FTD. The AUC value of 0.7 ± 0.06 SE indicated a fair diagnostic accuracy. 

Figure 2. Receiver operating characteristic (ROC) curve analysis of CSF GFAP, NfL, TAU, and UCH-
L1 levels from patients with AD, FTD, and Controls (CTL). (a,b) The diagnostic accuracy of CSF
UCH-L1 was assessed for the discrimination of patients with AD and FTD from CTL. AUC values of
0.94 ± 0.02 SE and 0.91 ± 0.03 SE, respectively, indicated excellent diagnostic accuracy. (c,d) For the
discrimination of AD and FTD patients from CTL, the diagnostic accuracy of CSF NfL was assessed
with AUC values of 0.86 ± 0.04 SE and 0.85 ± 0.04 SE, respectively, indicating a good diagnostic
accuracy. (e,f) The diagnostic accuracy of CSF TAU was assessed for the discrimination of AD and
FTD patients from CTL, with AUC values of 0.92 ± 0.03 SE and 0.72 ± 0.06 SE, respectively, indicating
a very good diagnostic accuracy. (g) The diagnostic accuracy of CSF GFAP in the discrimination
of AD patients from CTL with an AUC value of 0.71 ± 0.05 SE indicated a fair diagnostic accuracy.
(h) The diagnostic accuracy of CSF TAU in the discrimination of AD patients from FTD patients was
assessed, with an AUC value of 0.8 ± 0.05 SE indicating a good diagnostic accuracy. (i) The diagnostic
accuracy of CSF GFAP was assessed with AUC values for the discrimination of AD patients from
FTD. The AUC value of 0.7 ± 0.06 SE indicated a fair diagnostic accuracy.
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3.3. Sample Stratification Based on Biomarkers and Demographic–Clinical Data

For the identification of potential patient subgroups, sPLS-DA was applied, a statistical
supervised classification method creating its own components based on the independent
variable given, performing variable selection and classification to create distinct clusters.
For this purpose, we included 12 biomarkers (supplementary date also used, Table S1) and
9 demographic–clinical characteristics, using the R MixOmics package in R studio (Figure 3).
Every point in the variable plot (a) is used to visualize and assess the correlation of each
variable to a selected set of two latent components. Positively correlated variables are grouped
together, while negatively correlated variables are positioned on opposite sides on the plot
(opposed quadrants). The distance between the different variables and the origin (0, 0)
is a quality indicator on the factor map; i.e., variables that are away from the origin are
the most well represented on the factor map. In our case (UCH-L1_CSF, UCH-L1_plasma,
TAU_CSF, age, total-TAU, ph-TAU, GFAP_CSF and NfL_CSF), variables indicate strong
negative correlation with Component 1, while only Ab42 variable showed strong positive
correlation with Component 1. All the variables are located in the external circle. Regarding
Component 2 variables (ph-TAU, Ab40, TAU_CSF, GFAP_CSF, GFAP_plasma and total-TAU),
a strong negative correlation is indicated. UCH-L1_plasma, NfL_CSF, UCH-L1_CSF, 5 word
recall, NfL_plasma, CLOX2, MMSE, TAU_plasma, disease duration, and age variables showed
a strong positive correlation. In agreement with these results, an additional table (Table S2) for
the correlation matrix of each variable with the latent Components 1 and 2 and a depicted
heat map (Figure S1) of this correlation matrix are included in the Supplementary Files.
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Figure 3. Identification of sample subgroups within the studied cohort by sPLS-DA using biomarkers
and demographic–clinical characteristics. (a) Projection of the sPLS-DA variables (biomarkers and
demographic–clinical data) on correlation circles, assessing the correlation of each variable in the
space spanned by Component 1 and Component 2. Positively correlated variables group together,
while negatively correlated variables are positioned on opposed quadrants. (b) The final individual
plot with X-variates 1 and 2 in axes, indicating the amount of variation explained per component,
i.e., 19% and 9% of variation, respectively, stratifying the samples in different cohort clusters.

On the other hand, individual plot (b) statistical analysis revealed two components
(referred as X-variate 1 and X-variate 2), explaining 19% and 9% of data variation, respec-
tively. More specifically, plot (b) allows for the clustering and evaluation of the samples.
In addition, the three sample groups (AD, FTD, and Controls) are presented in different
colors. Samples classified on the right corner of plot (b) have relatively higher values
for variables also classified on the right corner of plot (a), and samples classified on the
left corner of the plot (b) have relatively higher values for variables also classified on the
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left of the plot (a). The subgroups of demographic–clinical characteristics and biomarker
concentration data strengthen the performance of the analytic tool used, highlighting the
advantage of combining different kinds of available data for efficient cohort clustering,
without the direct comparison with matching Controls for every data point.

4. Discussion

Clinical diagnosis in the majority of NDs is based on clinical evaluation and imaging
techniques like magnetic resonance imaging (MRI) and positron emission tomography
(PET) scans. However, considering that (i) more than one ND may co-occur in the same
patient; (ii) different NDs share common clinical characteristics; and (iii) neurodegenerative
processes within the CNS present with a high degree of complexity and interindividual
heterogeneity, there is a clear and unmet need of establishing appropriate biomarker
panels that enable differential diagnosis [36,44,45]. The recent literature indicates that
fluid and blood biomarker levels are detectable before symptom onset, highlighting the
importance and utility of biomarkers in the diagnosis, progression, prognostication, and
treatment efficiency of NDs [45,46]. CSF, as the organic liquid surrounding the brain and
spinal cord, is expected to reflect neurodegenerative processes in the brain and is thus
considered a valuable biological fluid for NDs biomarker studies [44,47]. The applied
technology, SIMOA, allows for ultra-sensitive digital biomarker detection with the ability
to quantify proteins in the lowest detectable levels (fg/mL) under the threshold of detection
by traditional methods. Given its remarkable sensitivity in detecting molecules of very low
concentration, SIMOA is preferably utilized for the identification of novel CSF molecules
with potential use as biomarkers [33].

The primary goal of our study was to assess the differential diagnostic performance
(sensitivity, specificity, and optimal cut-off values) of a panel of four biomarkers—GFAP,
NfL, TAU, and UCH-L1—in CSF samples across a clinical cohort of 43 AD and 33 FTD
patients and 60 Control subjects using the SIMOA platform.

Regarding the distinction of AD patients from the Control group, our study provided
comparable diagnostic accuracy in our cohort. We identified increased levels of all tested CSF
biomarkers (GFAP, NfL, TAU, and UCH-L1) in AD cases compared to Controls. In agreement
with our data, most relevant studies in the literature showed a similar detection range for
NfL and GFAP. According to neuropathological data, a close spatial association between Ab
plaques and reactive astrocytes has been demonstrated. Together with microglia, these cells
may initiate a pro-inflammatory cascade that ultimately leads to neurodegeneration. GFAP, a
cytoskeletal component of astrocytes, has the potential to serve as a valuable biomarker of
astrocytic activation and proliferation during neurodegenerative processes in AD pathology.
Regarding NfL, it serves as a relatively non-specific biomarker for neurodegeneration as it is
released due to axonal damage across various neurological disorders [48,49]. However, our
ROC curve analyses highlighted an excellent diagnostic performance for TAU and UCH-L1
(AUC values of 0.92 and 0.94, respectively). In line with a previous study, UCH-L1 has
been reported in AD pathology, with the capacity to distinguish AD patients form Control
subjects with high diagnostic accuracy. Moreover, there has been considerable interest in the
combination of UCH-L1 and phosphorylated forms of TAU [27].

Regarding the distinction of FTD patients from the Control group, our study detected
increased levels of the three tested biomarkers—NfL, TAU, and UCH-L1—in the CSF of
FTD patients compared to Controls. These findings are in agreement with previous studies
reporting increased CSF NfL levels in FTD relative to Controls [49], and the CSF TAU
levels of FTD patients are intermediate between Control and AD subjects [3]. Given the
heterogeneity of underlying FTD pathologies, a panel of multiple biomarkers specific to
different pathologies could be beneficial for distinguishing FTD from other neurological
diseases. According to Bolsewig et al., the combination of neuronal pentraxin-2 (NPTX2)
(synaptic plasticity), NfL (overall neurodegeneration), and GFAP (astrogliosis) may indicate
the complexity of the pathological mechanisms involved in NDs, especially in FTD [49].
Contrary to our study, which did not find any statistical difference between CSF GFAP
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concentration in FTD patients compared to Control subjects, in the literature, GFAP has
been linked with the events of apoptosis and the dystrophy of the astrocytes that have
occurred in early stages of the FTD pathology [24]. Despite this fact, our ROC curve
analyses highlighted an excellent diagnostic performance of CSF UCH-L1 and NfL in
differentiating FTD from Controls (AUC: 0.91 and 0.85, respectively).

Importantly, our data highlight the potential of CSF TAU and, to a lesser extent, CSF
GFAP in the differential diagnosis of AD and FTD. In both cases, a statistically significant
increase in CSF TAU and GFAP was observed in AD cases compared to FTD in accordance
with similar published research [3]. Our data highlight a strong discrimination power of CSF
TAU, as well as its potential exploitation for the differential diagnosis of AD and FTD, as
inferred from the ROC curve analyses with AUC: 0.8. On the other hand, CSF NfL did not
show significantly altered levels between AD and FTD, in contrast to other studies reporting
increased CSF NfL levels in FTD compared to AD; however, low discriminatory efficiency of
CSF NfL was suggested by the ROC curve analyses in these studies, with the exception of
one reporting fair discrimination power (AUC: 0.736). It is worth mentioning that all these
studies have utilized ELISA kits in order to measure the NfL biomarker in CSF samples. On
the other hand, in our research, all the biomarker measurements were facilitated with the
SIMOA technique, which has a 126-fold-higher sensitivity than ELISA [3,50].

Although CSF markers have greater diagnostic accuracy, CSF collection is a highly
invasive procedure for the patient and has a number of side-effects in contrast to blood
sample collection. Thus, increasing efforts have been made to identify biomarkers in
more accessible biological matrices, including urine, saliva, and blood [51,52]. The SIMOA
platform is a novel method to study biomarkers of neurodegeneration in plasma, which
makes the biomarker search much more feasible than a lumbar puncture [53].

Previously published studies have highlighted the potential use of blood GFAP as an
auxiliary marker in the differential diagnosis of AD and FTD patients, reporting increased
serum GFAP levels in AD compared to FTD, and discriminatory power characterized by AUC
values in the range of 0.65–0.85 [25,54–58]. Regarding NfL or TAU in AD and FTD cases,
previous studies have already reported statistically significantly increased levels of plasma
NfL in FTD patients compared to AD, with AUC values in the range of 0.61–0.79 [25,54–59].
Potential differences between studies may depend on the composition of the patient cohort,
the detection method, or the type of analyses performed. Thus, a future differential diagnosis
via the SIMOA multiplex panel using plasma AD, FTD, and Control samples would have
interesting data to reveal.

Our subsequent goal was to further stratify the samples through the identification of
different cohort clusters based on combinations of biomarkers (new and already established)
and demographic–clinical characteristics wherever possible. More specifically, we applied the
classification performance of the sPLS-DA model in our dimensional dataset to identify the
most relevant variables for efficient cohort clustering. We aimed to analyze our data using the
sPLS-DA integrative algorithm, combining different types of assay data (CSF, plasma tests),
including clinical characteristic data (MMSE, FAB, 5 word recall, CLOX2, Sheltens L, Sheltens
R) and demographic data (age, gender, disease duration), to strengthen our clustering of
CSF AD and FTD patients. This approach permitted the use of all available data towards
the identification of confident disease clusters, strengthening the discriminatory properties
of our studied CSF SIMOA markers. It is concluded that positively correlated variables are
gender, disease duration, FAB, CLOX2, MMSE, and 5 word recall, while negatively correlated
variables are SIMOA GFAP in plasma, SIMOA GFAP in CSF, SIMOA TAU in CSF, ELISA
total-TAU in CSF, and ELISA ph-TAU in CSF. The final sample plot of sPLS-DA showed that
the subgroup of Controls has a relatively higher correlation with Ab40, Ab42, gender, disease
duration, FAB, CLOX2, MMSE, and 5 word recall variables. The AD subgroup preserves
a higher correlation with all SIMOA biomarkers (GFAP, NfL, TAU, and UCH-L1), ELISA
biomarkers, total-TAU and ph-TAU, Sheltens L&R, and age. Finally, the FTD group has higher
correlation with some variables belonging to the other two groups, indicating the need for
more-representative samples and measurements.
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This is a report on the detection of a multiplex biomarker in a CSF cohort of clinically
well-defined AD, FTD, and Control subjects, combining a state-of-the-art, ultrasensitive
techniques such as SIMOA. Our study additionally presents the value of new analytical
tools, such as sPLS-DA, to facilitate the integration of different sets of variables (in this
case, biomarkers and demographic–clinical characteristics), accounting for the maximum
variation present in the dataset. This approach has certain limitations regarding the use of
mainly non-neurodegenerative neurological cases, the small number of healthy Controls,
and the limited clinical characteristics of the Control group. Preferably, a Control group
should involve cognitively normal subjects without neurological comorbidities. Regarding
the non-neurodegenerative neurological cases, they have received a general CSF diagnostic
setup from the physicians. These samples have no inflammation, no blood brain distur-
bance, no cognitive impairment, or dementia, and have been diagnosed with non-primary
neurodegenerative neurological and psychiatric conditions according to the acknowledged
standard for neurological, clinical, and para-clinical tests at the time of sampling. However,
it is possible, although highly unlikely, that we may have included asymptomatic subjects
with underlying AD or FTD pathology in the preclinical stage.

Future research directions will integrate new CSF and/or blood biomarkers into
clinical practice, providing a more personalized approach. Even though the performed CSF
assay is commercially available and well-validated, large longitudinal studies are needed in
order to better determine the cut-off for the positivity, sensitivity, and specificity of a panel
of SIMOA biomarkers for efficient early preclinical diagnosis, progression, and response
to therapy. The implementation of novel analytical tools such as sPLS-DA will facilitate
efficient utilization of all collected data, giving new interpretations and approaches to the
diagnosis of neurodegenerative disorders.

5. Conclusions

In this study, the primary goal was to assess the diagnostic performance of a panel of
four biomarkers—GFAP, NfL, TAU, and UCH-L1—in CSF samples across a clinical cohort
of AD and FTD patients and Control subjects using the SIMOA platform. Moreover, we
further stratified the samples through the identification of different cohort clusters, based
on combinations of biomarkers (new and already established) and demographic–clinical
characteristics. Specifically, we applied the classification performance of the sPLS-DA model
in our dimensional dataset to identify the most relevant variables to succeed cohort clustering.
Our results indicated GFAP and TAU as the most valuable markers for the discrimination
of AD from FTD patients; NfL, TAU and UCH-L1 were most valuable in the differentiation
of FTD patients from Controls; and lastly, the four of them were statistically significant in
terms of the discrimination of AD patients from the Control group. Regarding the sPLS-DA
results, the analysis showed that the subgroup of Controls has relatively higher correlation
for demographic–clinical characteristics, while the AD subgroup preserves higher correlation
for the biomarkers. Finally, the FTD group has a higher correlation with some variables
belonging to the other two groups. The results indicate the need for more representative
samples, variables, and measurements to train this sPLS-DA model that will be used to classify
the dimensional dataset into confidently predefined disease clusters.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biomedicines12061253/s1, Additional biomarkers data:
Table S1: Patient CSF and plasma biomarker concentrations, determined by ELISA and SIMOA
platforms, respectively. AD: Alzheimer’s disease dementia; FTD: Frontotemporal dementia. All data
are presented as median (25th–75th percentile); Table S2: The correlation of each variable with the
latent components 1 and 2; Figure S1: Heat Map of the correlation matrix of each variable with the
two latent components 1 and 2, where the positive relationship is shown with blue color, the negative
with orange, and no relationship with white.

https://www.mdpi.com/article/10.3390/biomedicines12061253/s1
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