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Abstract: Anaplastic thyroid cancer (ATC) is a rare but highly aggressive malignancy characterized by
advanced disease at diagnosis and a poor prognosis. Despite multimodal therapeutic approaches that
include surgery, radiotherapy, and chemotherapy, an optimal treatment strategy remains elusive. Cur-
rent developments in targeted therapies and immunotherapy offer promising avenues for improved
outcomes, particularly for BRAF-mutant patients. However, challenges remain regarding overcoming
drug resistance and developing effective treatments for BRAF-wild-type tumors. This comprehensive
review examines the clinical and biological features of ATC, outlines the current standards of care,
and discusses recent developments with a focus on the evolving role of radiotherapy. Moreover, it
emphasizes the necessity of a multidisciplinary approach and highlights the urgent need for further
research to better understand ATC pathogenesis and identify new therapeutic targets. Collaborative
efforts, including large-scale clinical trials, are essential for translating these findings into improved
patient outcomes.

Keywords: anaplastic thyroid cancer (ATC); BRAF; MAPK signaling; PAM signaling; multimodality
therapy; radiotherapy; molecular targeted therapy; immune checkpoint inhibitor

1. Introduction

Although anaplastic thyroid cancer (ATC) occurs rarely [1–4], it exhibits an extremely
poor prognosis [5–7] and is characterized by the presence of unresectable local extension or
distant metastasis at initial diagnosis [8,9]. A radical cure for this malignancy is extremely
difficult. To maintain and prolong quality of life (QOL), a multidisciplinary approach
combining surgery, radiotherapy, and chemotherapy is currently used, but this approach
yields poor results. Recently, clinical trials with kinase inhibitors have been conducted
in cases in which specific genetic mutations, such as BRAF V600E, have been identified,
with the hope of improving the prognosis of ATC. One example of a successful study was
the combination of the BRAF inhibitor dabrafenib and the MEK inhibitor trametinib in
ATC patients harboring the BRAF V600E mutation [10]. Certain reports have suggested
the possible beneficial role of immune checkpoint inhibitors [7–9]. However, molecular
targeted agents can lead to the emergence of drug resistance during administration, and
this is a significant factor that complicates cancer treatment. Additionally, patients who

Biomedicines 2024, 12, 1286. https://doi.org/10.3390/biomedicines12061286 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12061286
https://doi.org/10.3390/biomedicines12061286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-2977-4419
https://orcid.org/0000-0001-5962-2216
https://doi.org/10.3390/biomedicines12061286
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12061286?type=check_update&version=2


Biomedicines 2024, 12, 1286 2 of 21

do not possess the target gene mutation are not eligible for these agents. Immunotherapy
can cause serious side effects, such as interstitial pneumonia, due to an excessive immune
response when T cells in the body are activated.

Here, we summarize the clinical and biological features of ATC and the current
standard of care and its problems, and we discuss future prospects for the management
of ATC. Several useful review articles exist regarding ATC management [11–15], with
emphasis on molecular targeted agents. We would like to distinguish our review from
these other manuscripts by highlighting the potential for ATC management in the context
of radiotherapy based on the remarkable technological development that has occurred in
recent years.

2. The Characteristics of ATC
2.1. Epidemiology and Clinical Presentation

Most thyroid cancers are differentiated thyroid cancers (DTC) originating from fol-
licular cells, such as papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC),
generally exhibit a good prognosis [16]. In contrast, ATCs are extremely aggressive and
exhibit a poor prognosis. They are considered to be one of the most malignant of all
cancer types [17,18] and account for 10–35% of thyroid cancer deaths, despite their low
incidence (approximately 1–2% of all thyroid cancers) [2,4,19]. The majority of patients
with this disease are older than 60 years of age, and the sex ratio is the lowest compared
to other types of thyroid cancer that are more common in women. Patients present with
rapidly growing cervical mass and neck pain that develops within weeks, skin erythema,
hoarseness, dysphagia, dyspnea, rapid swelling of the cervical lymph nodes, fever, fatigue,
and weight loss. Invasion of the gastrointestinal tract is frequently observed. Patients may
occasionally develop urgent airway narrowing, such as invasion or compression of the
trachea, requires airway clearance to prevent death due to asphyxia. According to the
eighth edition of the American Joint Committee on Cancer (AJCC)/Tumor-Node-Metastasis
(TMN) cancer staging system [20], the disease is always in an advanced stage (stage IV) and
is divided into IVA (localized stage) when the cancer is only within the thyroid gland, IVB
(locally advanced stage) when there is gross extra-thyroidal extension or cervical lymph
node metastasis, and IVC (metastatic stage) when there is distant metastasis [7,21] (Table 1).

Table 1. Staging and TMN classification of ATC according to the AJCC eighth edition.

Stage T Category N Category M Category

IVA
T1:

Tumor ≤ 2 cm in greatest
dimension limited to the
thyroid N0:

No metastasis to
regional nodes M0: No distant metastasis

T2:
Tumor > 2 cm but ≤4 cm in
greatest dimension limited
to the thyroid

T3a: Tumor > 4 cm limited to
the thyroid

IVB

T1
N1: Metastasis to regional

nodes M0T2
T3a

T3b:

Gross extrathyroidal
extension invading only
strap muscles (sternohyoid,
sternothyroid, thyrohyoid,
or omohyoid muscles) from
a tumor of any size

N0–
N1 M0

T4a:

Gross extrathyroidal
extension invading
subcutaneous soft tissues,
larynx, trachea, esophagus,
or recurrent laryngeal nerve
from a tumor of any size
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Table 1. Cont.

Stage T Category N Category M Category

T4b:

Gross extrathyroidal
extension invading
prevertebral fascia or
encasing a carotid artery or
mediastinal vessels from a
tumor of any size

IVC T1–T4 N0–
N1 M1: Distant metastasis

Onoda et al. [22] evaluated overall survival (OS) using this system in the national
database of the Thyroid Cancer Research Consortium for Japan (ATCCJ) [23], which con-
sisted of 757 patients with ATC. The percentages and median OS for each stage included
stage IVA (5.9%, 15.8 months), stage IVB (55.7%, 6.1 months), and stage IVC (38.3%,
2.8 months). Consequently, approximately 90% of patients with ATC exhibited disease
progression to surrounding organs or distant metastases at initial diagnosis, and treatment
may not have been initiated due to extremely rapid disease progression. Moreover, it
is common for patients with ATC to die early after diagnosis if no effective treatment is
available. Older patients may not tolerate aggressive radiotherapy or chemotherapy due to
impaired immune and/or organ function or complications. Thus, age is a significant prog-
nostic factor for ATC [24]. Additionally, leukocytosis (white blood cell count >10,000/mL),
extrathyroidal extension, and distant metastases have been reported as prognostic fac-
tors [23,25].

2.2. Genomic Changes

Recently, several analytical studies using next-generation sequencing have been con-
ducted to investigate the genetic alterations in ATC [6,26–33]. According to their findings,
the most commonly identified mutations in ATC were TP53 and telomerase reverse tran-
scriptase (TERT) promoter mutations. Although these mutations are observed in DTC
and poorly differentiated DTC (PDTC), they are more frequent in ATC than they are in
others [6,30]. TP53 is a well-known tumor suppressor gene involved in a variety of cellular
functions, including cell survival, DNA repair, apoptosis, cell cycle checkpoints, and senes-
cence. TP53 mutations promote cell proliferation and tumor progression through the loss
of these functions [34]. This was strongly correlated with the malignant potential of ATC.
Landa et al. [30] reported that TP53 mutations were observed in 8% of PDTC; however, it
increased to 73% in ATC. The analyses by Pozdeyev et al. [28] and Xu et al. [6] revealed
high frequencies of TP53 mutations (65% and 63%, respectively). TERT promoter mutations
(C228T and C250T) are common in ATC. TERT is the catalytic subunit of telomerase and is
essential for telomerase activity [35]. TERT is not expressed in most human somatic cells;
however, its expression and transcription are upregulated in many cancers through various
mechanisms, including mutations in the core promoter region of the TERT gene. More-
over, it elongates telomeres, confers unlimited proliferative capacity to tumor cells, and
contributes to tumor progression and aggressiveness [36,37]. Recently, it has been reported
that TERT interacts with various signaling molecules such as NF-κ B, c-MYC, β-catenin,
and TCF-4 to increase cancer malignancy and promote cancer progression [38–41]. Landa
et al. reported that TERT promoter mutations were observed at a high frequency of 73% in
ATCs, compared to 9% in PTCs and 40% in PDTCs [30]. Xu et al. observed this mutation at
a high frequency (75%) in ATCs [6].

Two major cascades are responsible for tumorigenesis in ATCs, including the mitogen-
activated protein kinase (MAPK) signaling pathway (RAS-RAF-MEK-ERK) and the PI3K-
Akt-mTOR (PAM) signaling pathway. As described in Figure 1, both pathways are involved
in cell proliferation and survival and essentially start with receptor tyrosine kinase (RTK),
which is activated by the binding of ligands such as growth factors such as fibroblast
growth factor (FGF) or epidermal growth factor (EGF) to specific receptors. When one of
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these molecules is continuously activated by a genetic mutation, it consistently activates
downstream molecules without signals from the upstream molecules.

Biomedicines 2024, 12, x FOR PEER REVIEW 4 of 23 
 

frequency of 73% in ATCs, compared to 9% in PTCs and 40% in PDTCs [30]. Xu et al. 
observed this mutation at a high frequency (75%) in ATCs [6].  

Two major cascades are responsible for tumorigenesis in ATCs, including the mito-
gen-activated protein kinase (MAPK) signaling pathway (RAS-RAF-MEK-ERK) and the 
PI3K-Akt-mTOR (PAM) signaling pathway. As described in Figure 1, both pathways are 
involved in cell proliferation and survival and essentially start with receptor tyrosine ki-
nase (RTK), which is activated by the binding of ligands such as growth factors such as 
fibroblast growth factor (FGF) or epidermal growth factor (EGF) to specific receptors. 
When one of these molecules is continuously activated by a genetic mutation, it consist-
ently activates downstream molecules without signals from the upstream molecules. 

 
Figure 1. Schematic illustration of the MAPK signaling and PAM signaling pathways in the ATC. 
Sharp arrows (→) and blunt arrows (┤) indicate promotion and inhibition, respectively. 

The MAPK signaling pathway is involved in various cellular processes such as 
growth, proliferation, survival (avoidance of apoptosis [42] and induction of autophagy 
[43]), migration [44], and angiogenesis. The intracellular signaling of the MAPK pathway 
has been described in detail by Schubert et al. [45] and Cook et al. [46]. Common altera-
tions in the MAPK pathway in ATC include mutations in BRAF and RAS. BRAF mutations 
are the primary therapeutic targets for this disease. The majority of BRAF mutations in 
ATC are BRAF V600E point mutations [29] that play an essential role in the development 
and progression of tumors [47,48]. This mutation activates BRAF kinase, which phosphor-
ylates multiple targets, including MEK and ERK [49]. The BRAF V600E mutation is ob-
served in approximately 20–40% of ATCs [50], and Jannin et al. [12]. reported that the 
frequency of BRAF mutations in ATCs appears to vary in each region. According to recent 
reports, BRAF mutations have been observed in 40–45% of ATC cases in the United States 
[6,30], 14–37% of cases in Europe [31,33], and 41–48% of cases in East Asia (Japan and 
Korea) [26,51]. Although the details are unclear, they suggest an association between eth-
nicity and iodine intake. BRAF mutations, the most common mutations originally ob-
served in PTCs, strongly activate the MAPK pathway, ultimately leading to thyroid cell 
dedifferentiation [52]. Oishi et al. summarized the mutation profiles of PTCs and ATCs 
and observed that BRAF status and BRAF genotype matched between PTCs and ATCs in 
18 of 21 cases [53]. Yoo et al. [26] and Xu et al. [6] reported similar results. Genomic asso-
ciations have been demonstrated between PTCs and ATCs, thus suggesting that ATCs are 
derived from PTCs. RAS genes such as HRAS, KRAS, and NRAS have been described. RAS 
mutations are observed at a frequency of 10–50% in ATC, according to next generation 
sequencer (NGS) analysis data [27,28,54]. Among them, NRAS mutations are significantly 

Figure 1. Schematic illustration of the MAPK signaling and PAM signaling pathways in the ATC.
Sharp arrows (→) and blunt arrows (|) indicate promotion and inhibition, respectively.

The MAPK signaling pathway is involved in various cellular processes such as growth,
proliferation, survival (avoidance of apoptosis [42] and induction of autophagy [43]),
migration [44], and angiogenesis. The intracellular signaling of the MAPK pathway has
been described in detail by Schubert et al. [45] and Cook et al. [46]. Common alterations
in the MAPK pathway in ATC include mutations in BRAF and RAS. BRAF mutations are
the primary therapeutic targets for this disease. The majority of BRAF mutations in ATC
are BRAF V600E point mutations [29] that play an essential role in the development and
progression of tumors [47,48]. This mutation activates BRAF kinase, which phosphorylates
multiple targets, including MEK and ERK [49]. The BRAF V600E mutation is observed in
approximately 20–40% of ATCs [50], and Jannin et al. [12]. reported that the frequency of
BRAF mutations in ATCs appears to vary in each region. According to recent reports, BRAF
mutations have been observed in 40–45% of ATC cases in the United States [6,30], 14–37%
of cases in Europe [31,33], and 41–48% of cases in East Asia (Japan and Korea) [26,51].
Although the details are unclear, they suggest an association between ethnicity and iodine
intake. BRAF mutations, the most common mutations originally observed in PTCs, strongly
activate the MAPK pathway, ultimately leading to thyroid cell dedifferentiation [52]. Oishi
et al. summarized the mutation profiles of PTCs and ATCs and observed that BRAF status
and BRAF genotype matched between PTCs and ATCs in 18 of 21 cases [53]. Yoo et al. [26]
and Xu et al. [6] reported similar results. Genomic associations have been demonstrated
between PTCs and ATCs, thus suggesting that ATCs are derived from PTCs. RAS genes
such as HRAS, KRAS, and NRAS have been described. RAS mutations are observed at
a frequency of 10–50% in ATC, according to next generation sequencer (NGS) analysis
data [27,28,54]. Among them, NRAS mutations are significantly more common in thyroid
cancer [55]. Oishi et al. [53] reported HRAS and KRAS mutations at 5%, while NRAS
mutations were detected at 18%. Lai et al. [56] confirmed a high frequency of NRAS (30%)
compared to that of HRAS (0%) and KRAS (11%). RAS mutations promote the activation
of the MAPK and PAM signaling pathways. KRAS mutants are major activators of the
MAPK pathway, whereas NRAS mutants are activators of the PAM pathway [57]. These
mutations were frequently detected in FTC [26], thus suggesting that a few ATC may
have originated from FTC. Furthermore, certain studies have demonstrated that eukaryotic
translation initiation factor 1A X-linked (EIF1AX) mutations often occur together with RAS
mutations in ATCs and that a positive correlation between RAS and EIF1AX proteins results
in increased expression of the oncogene c-MYC [30,58,59].
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The PAM signaling pathway regulates various cellular processes, including metabolism,
motility, proliferation, growth, and survival [60]. Intracellular signaling in the PAM path-
way has been described in detail by Glaviano et al. [61] and Yang et al. [62]. Hyperactivation
of the PAM pathway is observed in many cancers and contributes to accelerated cancer initi-
ation and progression and the development of therapeutic resistance [63,64]. PAM promotes
epithelial-mesenchymal transition (EMT) and metastasis [65,66]. Mutations in PIK3CA,
PTEN, and AKT1 have been identified in the PAM pathway of ATC. PIK3CA, which encodes
the p110α catalytic subunit, is frequently mutated in various cancers and is known to be
associated with cell signaling, proliferation, invasion, and cancer development [67–69].
PIK3CA mutations were detected in less than 20% of ATC [29,31]; however, they were
more frequent than they were in DTC or PDTC [28,30]. PTEN is a representative tumor
suppressor gene similar to TP53 and is frequently mutated in various cancers. PTEN plays
a critical role in regulating cell growth, proliferation, survival, migration, and invasion [70].
PTEN mutations have been demonstrated to activate the PAM pathway with a loss of
function [71,72]. Additionally, loss of PTEN function in combination with alterations in
TP53 has been reported to accelerate tumor progression [73]. PTEN mutations in ATCs were
less than 20%. Their frequency was higher than that of PTCs and PDTCs and similar to
that of FTCs [28,30]. AKT1 regulates key processes such as glucose metabolism, apoptosis,
cell proliferation, transcription, and cell migration. However, the AKT1 gene mutation is
rarer than that of PI3KCA and PTEN in ATC and accounts for less than 10% of mutations in
most reports [28,31]. Although genetic mutations in AKT are rare, overactivation has been
observed in many cancers, including ATC, resulting in tumorigenesis, growth, invasion,
and drug resistance [74].

Other mutations were observed in Wnt-β-catenin pathway-related genes (CTNNB1,
AXIN1, and APC) [75] and epigenetic-related genes such as SWI/SNF chromatin remodel-
ing complex (ARID1A, SMARCB1, and PBRM1) and histone methyltransferases (KMT2A,
KMT2C, KMT2D, and SETD2). Moreover, mutations in the cyclin-dependent kinase inhibitor
2A (CDKN2A) gene that encodes p16 have been observed in a few ATC cases [28,29]. Fur-
thermore, anaplastic lymphoma kinase (ALK) mutations and fusions that activate both
MAPK and PAM pathways have been detected at low rates [28,29]. Similarly, receptor
tyrosine kinase (RET) fusions have been observed [76].

Although the details are discussed in Section 3.4, “Targeted Therapy,” many drugs
specific to these targets are currently under development and in clinical trials. Among these,
combination therapy with a BRAF inhibitor and MEK inhibition has exhibited favorable
antitumor effects in patients with ATC and the BRAF V600E mutation [10].

3. Treatment of ATC

ATC is difficult to treat as it is aggressive, spreads rapidly within the neck, and pos-
sesses the potential to metastasize to distant body sites. After considering the available
therapies, comorbidities, and patient wishes, physicians decide whether to provide ag-
gressive treatment or palliative care based on staging and prognosis. In general, radical
treatment is difficult to achieve, and multidisciplinary treatment combining surgery, ra-
diotherapy, and chemotherapy is used to prolong life and maintain QOL, except for a few
cases (Figure 2). In retrospective studies, patients who received this multimodal therapy
exhibited better prognoses than those who did not [17,23,77–79]. Radioactive iodine (RAI)
therapy and thyroid-stimulating hormone (TSH) suppression that are commonly used to
treat DTC are not effective for ATC [7]. In recent years, targeted therapy has been used with
a few successes in cases with specific genetic mutations. Additionally, immune checkpoint
inhibitors have been used successfully in a few cases.

In this section, we describe each treatment modality’s current status and future per-
spectives, considering the results of representative recent studies (Table 2) and ongoing
clinical trials (Table 3) of multimodal treatments.
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Table 2. Recent studies with multimodal treatment in ATC.

Treatment Study Number of
Patients

Number of Patients Median OS
(Months) ORR (%) ReferenceSurgery RT CTx MTT IMM

RT (66 Gy)
+ Doxorubicin

(10–20 mg/m2 weekly)
or Paclitaxel

(80 mg/m2 weekly)

Retrospective

104
IVA:5
IVB:76
IVC:23

52 101 99 0 0 7 N.D. Fan et al. (2020)
[80]

Doxorubicin + Docetaxel
(20 mg/m2 weekly, each)Carboplatin +

Paclitaxel
(50 mg/m2 weekly, each)Doxorubicin only

(20 mg/m2 weekly) Cisplatin only

(30 mg/m2 weekly)

Retrospective

30
IVA:2
IVB:22
IVC:6
ND:5

27 30 30 0 0 21 63 Prasongsook
et al. (2017) [81]

Dabrafenib
(150 mg twice daily)

+ Trametinib (2 mg once daily)
Phase 2

36
IV:1

IVC:35
30 30 15 36 4 14.5 56 Subbiah et al.

(2022) [10]

Dabrafenib
(150 mg twice daily)

+ Trametinib (2 mg once daily)
Retrospective

16
IVB:4

IVC:12
8 7 9 16 0 9.3 50 Iyer et al. (2018)

[82]

Everolimus (10 mg daily) Phase 2 7
IVC:7 5 4 3 7 0 4.6 14 Hanna et al.

(2018) [83]

Lenvatinib (24 mg daily) Phase 2 17
IV:17 14 9 7 17 0 10.6 24 Takahashi

et al.(2019) [84]
Spartalizumab

(400 mg every 4 weeks) Phase 1/2 42
IV:42 28 30 25 4 42 5.9 19 Capdevila et al.

(2020) [85]

RT: radiotherapy, CTx: chemotherapy, MTT: molecular targeted therapy, IMM: immunotherapy, OS: overall
survival, ORR: overall response rate.

Table 3. Ongoing clinical trials in patients with ATC.

ClinicalTrials.gov
Identifier Intervention/Treatment Phase Status

NCT04552769 Abemaciclib Phase 2 Active, not recruiting
NCT05453799 Vudalimab Phase 2 Recruiting
NCT04171622 Lenvatinib + Pembrolizumab Phase 2 Recruiting
NCT03975231 Dabrafenib + Trametinib + IMRT Phase 1 Recruiting
NCT05119296 Pembrolizumab (Keytruda) Phase 2 Recruiting
NCT04420754 AIC100 CAR T Cells Phase 1 Recruiting

NCT03449108
Aldesleukin (IL2) + Autologous
Tumor Infiltrating Lymphocytes

LN-145 or LN-145-S1
Phase 2 Active, not recruiting

NCT03246958 Nivolumab + Ipilimumab Phase 2 Active, not recruiting

NCT04675710 Pembrolizumab + Dabrafenib +
Trametinib + Surgery + IMRT Phase 2 Recruiting

NCT03181100
Atezolizumab + Chemotherapy

(Cobimetinib, Nab-paclitaxel,
Paclitaxel, Vemurafenib)

Phase 2 Active, not recruiting

NCT03085056 Trametinib + Paclitaxel Early Phase 1 Active, not recruiting
NCT04238624 Dabrafenib + Trametinib Phase 2 Recruiting
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Table 3. Cont.

ClinicalTrials.gov
Identifier Intervention/Treatment Phase Status

NCT04759911 Selpercatinib + Surgery Phase 2 Recruiting
NCT06007924 Avutometinib + Defactinib Phase 2 Recruiting
NCT02041260 Cabozantinib Phase 2 Unknown
NCT04579757 Surufatinib + Tislelizumab Phase 1/2 Active, not recruiting
NCT05059470 Pembrolizumab + IMRT Phase 2 Recruiting

3.1. Surgery

A complete surgical excision followed by adjuvant therapy is the best approach
to curing ATC [15]. However, curative resection is currently beneficial in early stage
cases (IVA and part of IVB), as it may lead to long-term survival [86], whereas surgery
must be carefully approved to maintain QOL in cases where the long-term prognosis
is not expected [87]. Specifically, R0/R1 resection can be expected if the tumor does
not extend beyond the common carotid artery, whereas tumors that extend beyond the
common carotid artery are often inoperable. R0 resection, also known as curative resection,
indicates a microscopically margin-negative resection with no residual tumor grossly or
microscopically in the primary tumor. R1 resection indicates that all macroscopic lesions
are removed, but the microscopic margins are tumor-positive [88,89]. Debulking surgery
that minimizes postoperative QOL is considered valuable [90,91]; however, the extent to
which it affects prognosis remains unclear. The National Comprehensive Cancer Network
recommends total thyroidectomy with therapeutic lymph node dissection (R0/R1) and
local radiotherapy if resectable, and tracheostomy with steroids only if more strongly
indicated [9,92]; However, as recommended by the American Thyroid Association, it may
be practical to perform surgery for local control while taking care not to interfere with
other available palliative approaches, including radiation and systemic therapy, and not to
compromise QOL [7].

The role of surgery in the treatment of locally advanced and metastatic ATC is currently
the subject of considerable debate, with successful cases reported in patients with ATC
harboring BRAF V600E mutations who received preoperative dabrafenib plus trametinib
and ultimately underwent surgery. Looking to the future, this suggests that the use of
surgery may be re-evaluated, even in advanced stages.

3.2. Radiotherapy

Rapid local progression and recurrence of ATC are associated with the aggressive na-
ture of the disease, and local control using surgery or external beam radiotherapy (EBRT) is
important. EBRT is a treatment in which X-rays are delivered to the tumor from high-energy
radiotherapy equipment located outside of the body. Radiotherapy is recommended, as
EBRT is used as a preoperative or postoperative adjuvant therapy and has been demon-
strated to improve the median OS in retrospective studies [18,54,93,94]. For example, in a
retrospective analysis of 496 patients with ATC, Saeed et al. reported that the survival of
375 patients who received adjuvant EBRT was significantly longer than that of 121 patients
who did not receive adjuvant EBRT (12.3 vs. 9.1 months) [95]. The total dose was an
important factor in EBRT. Most studies have indicated that OS and local control can be
predicted by the total dose [96] that is better managed with irradiation greater than 45 Gy.
For example, in a National Cancer Database analysis of 1,288 patients with unresected stage
IVB and IVC ATC, Pezzi et al. reported that 1-year OS rates were improved in patients
treated with 60–75 Gy compared to those treated with less than 60 Gy (31% vs. 16%) [97]. In
a retrospective analysis by Fan et al., delivering 60 Gy or more was significantly associated
with a lower risk of local progression and longer OS (10.6 vs. 3.6 months) [80]. Although
the conventional irradiation regimen of 2 Gy once daily, as recommended by the American
Thyroid Association and National Comprehensive Cancer Network guidelines, has been
used as the standard option, hyperfractionated, accelerated, and fractionated irradiation
have been studied. Hyperfractionated and accelerated irradiation have been considered
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to overcome the rapid progression and radioresistance of ATC. While certain reports sug-
gest improved local control [98–100], others conclude that it neither reduces toxicity nor
improves outcomes [101,102], ultimately leading to controversy. In contrast, hypofrac-
tionated irradiation, which delivers a higher dose in a shorter time, is used to improve
quality of life and local control. Several clinical trials have exhibited promising results
using hypofractionated RT for the treatment of ATC [103,104]. However, as discussed by
Oliinyk et al. [102], limited data are evaluating hypofractionated regimens, and their use in
the actual treatment of ATC remains conclusive. Irradiation techniques play an important
role. The thyroid gland is located near the spinal cord, and this makes it difficult to avoid
the spinal cord and deliver high doses to localized areas of cancer. One technology that
makes this possible is intensity-modulated radiation therapy (IMRT). IMRT is a technique
that delivers a high dose to the tumor while minimizing the dose to organs at risk (OAR)
by varying the intensity of the radiation in the field during treatment, thus allowing precise
dose delivery even to tumors with complex shapes. IMRT can precisely deliver radiation
to thyroid cancer cells while reducing the radiation dose to the spinal cord [105]. IMRT is
recommended as the standard of care for radiation therapy in ATC due to its advantages in
reducing local recurrence, toxicity, and treatment complications [7,8]. Recently, volumetric
modulated arc therapy has been developed, in which the device is rotated at different
speeds and dose rates to modulate intensity, ultimately resulting in shorter treatment
times and improved treatment accuracy [106]. Altogether, it is currently accepted that the
appropriate treatment is to utilize IMRT to achieve a total dose of 60 Gy or more at 2 Gy per
dose. Radiotherapy is often used in combination with chemotherapy, molecular targeted
therapy, and immunotherapy to treat ATC. The clinical trials of combination therapies,
including radiotherapy, are shown in Table 4.

Table 4. Clinical trials related to radiotherapy in patients with ATC.

ClinicalTrials.gov
Identifier Intervention/Treatment Phase Status Reference

NCT03565536 Sorafenib + Surgery + EBRT Phase 2 Completed

NCT05659186 Tislelizumab +
Anlotinib + RT Phase 2 Recruiting

NCT01236547 IMRT + Paclitaxel +
Pazopanib Phase 2 Completed Sherman et al.

(2023) [107]

NCT03122496 Durvalumab + Tremelimumab
+SBRT Phase 1 Completed Lee et al. (2022)

[108]

NCT03211117
Docetaxel + Doxorubicin +
IMRT + Pembrolizumab +

Surgery
Phase 2 Completed

NCT04675710
Pembrolizumab +

Dabrafenib + Trametinib +
Surgery + IMRT

Phase 2 Recruiting

NCT03975231 Dabrafenib + Trametinib +
IMRT Phase 1 Recruiting

NCT00004089

Chemotherapy
(Fluorouracil,

Hydroxyurea, Paclitaxel) +
Surgery + RT

Phase 2 Completed

NCT00077103
Chemotherapy (Cisplatin,

Doxorubicin) + Fosbretabulin +
RT

Phase 1/2 Terminated

NCT05059470 Pembrolizumab + IMRT Phase 2 Recruiting
RT: radiotherapy, SBRT: stereotactic body radiotherapy.

However, photon beam radiotherapy exhibits limitations regarding delivering a radical
dose to the tumor site while accounting for damage to the OAR. From a future perspective,
one way to overcome this problem is to use particle beam radiotherapy such as proton
beam radiotherapy (PBRT) and carbon ion radiotherapy (CIRT). Particle beams enter the
body with low energy when they enter the surface, transfer most of their energy to a certain
depth that is called the Bragg peak, and then decay rapidly. These physical characteristics
allow particle beams to deliver higher doses to cancers while protecting the OAR compared
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to radiation therapy using photon beams. The relative biological effectiveness (RBE) of
a proton beam is 1.1- to 1.2-fold higher than that of X-rays [109], whereas that of carbon
ion beams is 2- to 3-fold higher than that of X-rays [110]. As higher RBE values indicate
greater cell-killing capacity, particle beams are more effective for cancer treatment than
X-rays [111]. The only actual application of particle therapy for ATC was reported by
Youssef et al. [112]. Patients with ATC with recurrence after thyroidectomy and radioiodine
therapy were treated with two cycles of intensity-modulated PBRT (IMPT) with QUAD shot
radiation (3.7 Gy delivered in four fractions twice daily at least 6 h apart for 2 consecutive
days, repeated every 4 weeks, and with concurrent chemotherapy with doxorubicin and
dacarbazine). At the last follow-up at 12 months, the disease had not progressed locally or
systemically, thus indicating that PBRT was effective for treating ATC. Carbon ion beams
are even more biologically effective than proton beams and thus exert more promising
therapeutic effects. Recently, intensity-modulated CIRT (IMCT) was developed using
pencil beam scanning technology, in which the total dose is made uniform by the sum
of the individual beams, but the intensity of each beam is different as in IMRT [113].
IMCT can further reduce the dose of irradiation to neighboring OARs compared to that of
conventional CIRT. Although not included in ATC, there have been several reports detailing
the results of IMCT in head and neck cancer that indicate a favorable therapeutic effect
and a low incidence of acute and late toxicity [114,115]. Multi-ion radiotherapy (MIRT)
is currently under development. Moreover, it combines ion beams with different linear
energy transfers (LETs) of noncarbon ions with carbon ion beams, such as higher LET
beams (e.g., oxygen and neon ions) targeting areas of resistance and lower LET beams (e.g.,
helium ions) for the boundary with normal tissue near the tumor. This approach offers
a promising new treatment option for patients with complex cancers [116]. Additionally,
the higher LET beams used in MIRT are more effective against radioresistant hypoxic cells
than are carbon ions, thus potentially leading to earlier tumor reoxygenation [117–119].

3.3. Chemotherapy

Anthracyclines such as doxorubicin, platinum-based drugs such as cisplatin and
carboplatin, and taxanes such as paclitaxel and docetaxel are the main chemotherapeutic
drugs used for ATC [81]. However, the effects of these agents on ATCs are moderate
and transient and are often disappointing. These guidelines recommend the rapid use of
paclitaxel + carboplatin, docetaxel + doxorubicin, paclitaxel alone, or docetaxel alone when
there are no therapeutic targets without molecular abnormalities or when targeted therapies
are not available [7,8]. They can be used as bridging chemotherapeutic agents before the
use of molecularly targeted agents [82]. Among these, taxanes have been reported to be
effective for the treatment of ATC. For example, Higashiyama et al. treated stage IVB and
IVC patients with ATC and weekly PTX induction chemotherapy and observed complete
(CR) and partial response (PR) in 8% and 23% of patients, respectively [120]. They reported
that the OS rate of paclitaxel-treated patients with stage IVB disease was better than that
of patients who did not receive chemotherapy or those who received drugs other than
paclitaxel. However, it is challenging to treat ATC with anticancer drugs alone.

Therefore, a future strategy is to use them in combination with other modalities. For
example, taxanes increase the percentage of radiosensitive G2/M phase cells; as a result,
their combination with radiotherapy may be effective. A report evaluated the use of
docetaxel in combination with radiotherapy in patients with ATC and observed that 67% of
patients achieved CR and the remaining 33% achieved PR, although the number of patients
was small [121]. They reported that 83% of patients were alive at a median follow-up of
21.5 months. These findings suggest that a combination of taxane-based chemotherapy and
radiotherapy may be effective for patients with ATC.

3.4. Targeted Therapy

Recently, genome sequencing analysis revealed molecules that are frequently mutated
in ATCs and are involved in tumor progression and malignant transformation. Therapeutic
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agents targeting these molecules have been investigated. These agents target receptor tyro-
sine kinases (RTK) and downstream molecules of the MAPK and PAM signaling pathways.

3.4.1. Inhibitors of MAPK Pathway

Inhibitors of the MAPK pathway are potential agents for cancer therapy, and many
compounds have been identified in clinical and preclinical trials. Several RAF and MEK
inhibitors have been approved; however, no ERK inhibitors have yet been approved.

Dabrafenib is a BRAFV600E kinase inhibitor, and trametinib is an MEK inhibitor. Their
combination therapy has been approved by the U.S. Food and Drug Administration (FDA)
for the treatment of patients with ATC and BRAF V600E mutations. This is due to resistance
to BRAF inhibitors that develops within months of BRAF blockade alone [122]. Several
mechanisms have been proposed to induce this resistance, including the expression of
splicing variants of the BRAF gene [123], inhibition of the negative feedback mechanism in
the MAPK pathway [124], and activation of integrin/FAK signaling [125]. In vitro studies
revealed that dabrafenib and trametinib inhibit ATC cell proliferation [126]. Subbiah et al.
reported that in a phase II study evaluating the efficacy of dabrafenib plus trametinib in
36 patients with ATC, the CR and PR were 8% and 47%, respectively, and the median OS
was 14.5 months [10]. In a recently reported UK clinical trial, CR and PR were achieved in
12% and 71% of patients with ATC, respectively, with a median OS of 6.9 months [127].

Another combination of BRAF and MEK inhibitors includes encorafenib (BRAF in-
hibitor) and binimetinib (MEK inhibitor). In a phase II study of 22 patients with thyroid
cancer, including five patients with ATC and BRAF mutation-positive ATC with local inva-
sion or distant metastasis, that evaluated the efficacy of the combination of encorafenib and
binimetinib, the overall response rate (ORR) was 80% (CR, one case; PR, three cases) [128].

Vemurafenib is a selective BRAF inhibitor approved by the FDA for the treatment of
patients with metastatic melanoma harboring the BRAF V600E mutation [129]. Zhang et al.
reported that vemurafenib inhibits tumor growth in an in vivo xenograft mouse model
using an ATC cell line [130]. A clinical trial evaluating the efficacy of vemurafenib in
patients with cancer due to the BRAF V600E mutation, including seven patients with
ATC, indicated that the percentages of patients with cancer achieving CR and PR were
14% and 14%, respectively [131]. Clinical trials are currently evaluating the efficacy of
combining vemurafenib with cobimetinib, a MEK inhibitor, in BRAF-positive thyroid
cancers, including ATC.

Other drugs, such as PLX8394 (BRAF inhibitor) and selumetinib (MEK inhibitor), have
been investigated for the treatment of thyroid cancer [132]. Additionally, the ERK inhibitor
DEL-22379 has been reported to decrease cell viability and inhibit the metastasis of ATC
cells with BRAF mutations in vitro and in vivo [133].

3.4.2. Inhibitors of PAM Pathway

Molecules involved in this signaling pathway have received considerable attention in
recent years, and many drugs targeting them have been studied and evaluated in animals
and humans.

Everolimus inhibits the mTOR complex 1 (mTORC1). Owonikoko et al. reported
that everolimus is effective against ATC cells both in vitro and in vivo [134]. However,
the results of clinical trials investigating the efficacy of everolimus have been disappoint-
ing [83,135,136]. mTOR exists in two functionally and structurally distinct complexes,
mTOR complex 1 (mTORC1) and mTORC2. Inhibition of mTORC1 inhibits ribosome bio-
genesis and suppresses cell proliferation, whereas inhibition of mTORC2 activates AKT and
promotes cell growth [137]. This may have been due to the limited efficacy of everolimus.

In contrast, ATP-competitive dual mTORC1/2 inhibitors such as MLN0128 [138],
AZD2014 [139,140], and AZD8055 [141] have been developed that can efficiently block
the PAM pathway without causing negative feedback induction of mTORC2. Among
these compounds, a phase II clinical trial is currently underway to evaluate the efficacy of
MLN0128 for the treatment of metastatic ATC.
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Other compounds, including CUDC-907 (PI3K and HDAC inhibitor) [142], copanlisib
(PI3K inhibitor) [143], and buparlisib (PI3K inhibitor) [144], have been studied in the context
of thyroid cancer.

3.4.3. RTK Inhibitors

RTKs are transmembrane glycoproteins on the cell surface that regulate cell prolifera-
tion, differentiation, and survival by activating several important intracellular signaling
pathways, such as the MAPK and PAM pathways. RTKs include vascular endothelial
growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), fibroblast
growth factor receptor (FGFR), cluster of differentiation 117 (c-KIT), rearranged during
transfection (RET), and platelet-derived growth factor receptor (PDGFR). Overexpression
and activation of mutations in cancer cells have been reported, and drugs targeting them
have been developed.

Lenvatinib is an inhibitor of VEGFR, FGFR, c-kit, RET, and PDGFR, and it is approved
by the FDA and the European Medicines Agency for the treatment of iodine-131 (I-131)
refractory DTC [145]. Ferrari et al. reported that lenvatinib suppresses the proliferative
capacity of ATC cells in vitro and in vivo [146]. In a clinical trial of patients with ATC,
Takahashi et al. reported a median OS of 10.4 months and an ORR of 24% in the lenvatinib
group [84]. Reports have suggested that lenvatinib provides clinical benefits to patients
with advanced ATC [147,148]. Although a high response rate can be expected, there is a
risk of a shortened prognosis in patients with tracheal or carotid artery invasion due to
fistula formation. Furthermore, lenvatinib alone is not an effective treatment for ATC [149]
and has been disappointing in terms of prolonging the survival of unresectable ATC [150].

Similar to lenvatinib, single-agent multi-kinase inhibitors (MKIs), including sorafenib,
gefitinib, imatinib, sunitinib, and pazopanib, have exhibited efficacy in vitro and
in vivo [151–157] but have not exhibited promising results in clinical trials [107,158–163].
These MKIs are not effective when prescribed alone for the treatment of ATC but may be
potentially useful in combination with other targeted therapies. Furthermore, the therapeu-
tic effects of TRK or RET inhibitors are expected to be effective when mutations or fusions
of TRK or RET are observed.

Targeted drugs have been developed against various target molecules, and a few of
them, such as dabrafenib plus trametinib and encorafenib plus binimetinib, have demon-
strated therapeutic efficacy. However, the emergence of drug resistance within a few
months after a successful response has become a problem. Overcoming drug-resistant
cancer is a major challenge in the development of molecularly targeted cancer therapies.
Currently, there are no concrete, effective means to solve this problem.

Future prospects include elucidating the mechanisms of drug resistance at the basic
research level and, in clinical practice, identifying effective therapeutic agents by studying
the mutations that occur when drug resistance develops through genetic testing.

3.5. Immunotherapy

Tumor cells grow and metastasize through various mechanisms to escape recognition
and attack by the immune system. Tumor-induced immunosuppression occurs in two ways.
The first occurs through the induction of immunosuppressive cells that accumulate around
the tumor and secrete immunosuppressive factors. Another mechanism involves the ex-
pression of immunosuppressive molecules and their receptors, such as programmed death
ligand/programmed death-1 (PD-L1/PD-1), galectin-9/TIM-3, LAG-3, and CTLA-4. These
are known as immune checkpoints that inhibit the activation of effector T lymphocytes,
ultimately leading to the immune escape of the tumor. A recent trend in immunotherapy is
the inhibition of these immune checkpoints and the restoration of immune function.

PD-L1 expressed on tumor cells binds to PD-1 on T cells and suppresses the prolif-
eration and function of T cells, thereby weakening their immune response to tumor cells.
PD-L1 expression in cancer cells may be primarily expressed or induced in the cancer
microenvironment by the stimulation of inflammatory cytokines produced by tumor-
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infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) surrounding
tumor cells [164]. PD-L1 is highly expressed in ATC [85,165,166], and Cantara et al. re-
ported that immunohistochemistry using two PD-L1 antibodies exhibited high positivity
rates of 65% and 90%, respectively [167]. Therefore, anti-PD-L1 and anti-PD-1 antibodies
may be effective therapies for ATC. In contrast, CTLA-4 expressed on T cells binds to
B7 molecules (CD80 and CD86) on antigen-presenting cells and inhibits T cell activation.
CTLA-4 is expressed in regulatory T cells (Tregs). When Tregs bind to antigen-presenting
cells, T cells cannot bind to antigen-presenting cells and cannot be activated. Therefore,
anti-CTLA-4 antibodies are expected to be used for cancer therapy.

There are reports of the use of the anti-PD-1 antibodies spartalizumab and pem-
brolizumab and the anti-PD-L1 antibody atezolizumab in the treatment of ATC. In a phase
II study by Capdevila et al. involving 42 patients with ATC treated with spartalizumab
intravenously at a dose of 400 mg every 4 weeks, the ORR was 19% (CR, 7%; PR, 12%),
and it was 29% in patients with PD-L1 expression and even higher in patients with high
PD-L1 expression. The median OS was 5.9 months, with 40% of patients surviving for
1 year [85]. In a retrospective study, Iyer et al. demonstrated the efficacy of pembrolizumab
in combination with lenvatinib, trametinib, or a combination of dabrafenib and trametinib
in patients with ATC [168]. Moreover, there were no CRs, but 42% of patients achieved OR.
The median OS after the addition of pembrolizumab was 6.93 months. Wang et al. investi-
gated six patients with ATC and BRAF V600E mutation who underwent complete surgical
resection and received dabrafenib plus trametinib with or without pembrolizumab [169].
No local recurrence was detected in any patient. Four patients with pembrolizumab
achieved CR within the observation period (7.8–26.0 months), while two patients without
pembrolizumab died due to distant metastasis. These results suggest that the combination
of dabrafenib and trametinib with ICI would be more effective for patients with ATC and
the BRAF V600E mutation. A phase 2 pilot study is ongoing to evaluate the efficacy of
dabrafenib and trametinib in combination with cemiplimab, an anti-PD-1 antibody, in the
context of ATC treatment. Moreover, reports suggest that a combination of lenvatinib and
pembrolizumab may be effective for treating ATC [170]. A study evaluating the efficacy
of lenvatinib in combination with nivolumab is ongoing in Japan (jRCT2080224758), and
results are expected in the near future. While immunotherapy is successful in a few cases,
it can cause side effects. Immune checkpoint inhibitors reactivate immune cells that have
been suppressed by cancer cells. These side effects are known as immune-related adverse
events (irAEs) and have been reported to include interstitial pneumonia, colitis, type 1
diabetes, endocrine disorders such as thyroid dysfunction, liver and kidney dysfunction,
skin disorders, myasthenia gravis, myositis, and uveitis [171,172]. Chronic side effects
have been reported, such as those that persist for more than three months after the end of
treatment with immune checkpoint inhibitors [173].

The irAEs are becoming very complicated due to the combination of immunotherapy
and other therapies. In the future, it is necessary to move toward establishing and managing
a safety management system across medical departments and professions in collaboration
with multiple professions to address these issues.

3.6. Others

Recently, it has been increasingly recognized that microbiota, including those in the gut
and oral cavity, influence the pathogenesis, prognosis, and treatment response of various
diseases, including cancer [174]. Several studies have reported a relationship between
thyroid cancer and the microbiota. Research on the relationship between oral bacteria
has reported that an increase in the genera Alloprevotella, Anaeroglobus, and Acinetobacter,
unclassified Bacteroidales, and unclassified Cyanobacteriales was observed in the saliva of
patients with thyroid cancer [175,176]. Moreover, studies exist on the relationship between
gut microbiota and thyroid cancer. The relative abundances of Neisseria and Streptococcus
were significantly higher in the gut flora of patients with thyroid cancer than those in
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healthy controls [177]. A study examining patients with PTC revealed that the abundance
of Firmicutes was higher in the fecal flora than it was in healthy participants [178].

Previously, the thyroid gland was believed to be a sterile organ; however, recent
technological advances have revealed that it is colonized by microorganisms. Microorgan-
isms exist in thyroid cancer tissues, and a relationship between bacterial flora and disease
status has been reported. One study has demonstrated a correlation between Sphingomonas
abundance within the tumor microenvironment and lymph node metastasis [179]. A study
examining patients with PTC revealed a high abundance of Proteobacteria in the tumors.
Additionally, tumor bacterial diversity increased in patients with a higher T stage [178].
Regarding the therapeutic response to postoperative I-131 treatment for PTC, low levels
of the genera Dorea and Bifidobacterium were associated with a poor prognosis [180].
However, there have been no reports investigating the relationship between ATC and the
bacterial flora. Treatment methods for ATC, such as radiotherapy, chemotherapy, and im-
munotherapy, are associated with bacterial flora [181]. Therefore, in the future, microflora
will attract attention as a target for new treatment strategies for ATC, and further research
and development are expected [182].

3.7. Best Supportive Care

Although promising therapies have been developed for the treatment of ATC in recent
years, it remains a difficult-to-cure cancer with a high mortality rate. The patient wishes
to be fully considered when deciding whether to pursue aggressive treatment, including
palliative care for pain and dyspnea and hospice care [183].

4. Conclusions

Although the treatment of ATC is evolving and diversifying, the optimal treatment
has not yet been identified, ultimately resulting in a poor prognosis. The rapid progression
of ATC necessitates immediate diagnosis and treatment. A multidisciplinary care team,
including endocrinologists, oncologic surgeons, medical oncologists, radiation oncologists,
radiologists, and palliative care staff, must be formed to determine the treatment plan and
provide appropriate care as soon as possible while considering patient wishes. Recent stud-
ies have demonstrated that BRAF-mutant ATCs exhibit dramatically improved prognosis.
However, the problem of drug resistance and treatment strategies for wild-type BRAF re-
main underexplored. A better understanding of the molecular biology of ATCs is expected
to lead to the development of novel targeted therapies. Although radiotherapy remains the
mainstay of ATC treatment, recent technological developments such as intensity-modulated
irradiation and particle therapy are remarkable. The successful use of combinations of
these novel drugs and therapies may lead to the development of treatment strategies to
improve the ATC prognosis. Further clinical trials using many patients are required.
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