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Abstract: It is generally assumed that all estrogen-receptor-positive (ER+) breast cancers proliferate
in response to estrogen and, therefore, examples of the estrogen-induced regression of ER+ cancers
are paradoxical. This review re-examines the estrogen regression paradox for the Luminal A subtype
of ER+ breast cancers. The proliferative response to estrogen is shown to depend on the level of ER.
Mechanistically, a window of opportunity study of pre-operative estradiol suggested that with higher
levels of ER, estradiol could activate the DREAM-MMB (Dimerization partner, Retinoblastoma-like
proteins, E2F4, and MuvB–MYB-MuvB) pathway to decrease proliferation. The response of breast
epithelium and the incidence of breast cancers during hormonal variations that occur during the
menstrual cycle and at the menopausal transition, respectively, suggest that a single hormone, either
estrogen, progesterone or androgen, could activate the DREAM pathway, leading to reversible cell
cycle arrest. Conversely, the presence of two hormones could switch the DREAM-MMB complex to a
pro-proliferative pathway. Using publicly available data, we examine the gene expression changes
after aromatase inhibitors and ICI 182,780 to provide support for the hypothesis. This review suggests
that it might be possible to integrate all current hormonal therapies for Luminal A tumors within a
single theoretical schema.
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1. Introduction

Since Haddow first demonstrated the estrogen-induced regression of breast cancer [1],
numerous other publications have reported similar findings (reviewed in [2]). In 1960,
Kautz and The Council on Drugs reported on 944 post-menopausal patients with breast
cancer treated with estrogens or androgens, finding that the percentage of women showing
estrogen-induced regression increased from 12 to 30% if treatment began five years or more
after menopause [3]. More recently, the Women’s Health Initiative (WHI) trial investigated
estrogen or estrogen plus progesterone hormone replacement therapy (HRT) in women
with a median age at enrollment of 63.2 years (range 50–79 years), thirteen years after
the average age of menopause. While estrogen combined with progesterone HRT was
associated with an increase in breast cancer, estrogen-only HRT was associated with a
statistically significant decreased incidence of ER+ breast cancer [4].

The estrogen-induced regression of post-menopausal ER+ breast cancer is a para-
doxical finding since ER+ breast cancers also respond to estrogen deprivation whether
induced through oophorectomy, selective estrogen modulators, aromatase inhibitors or ER
downregulation [5]. Two specific questions encapsulate this paradox: 1. How can estrogen
both promote and restrict the growth of post-menopausal ER+ breast cancers? 2. Why does
the growth-inhibiting effect of estrogen require a five-year gap of estrogen exposure? In this
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review, we explore the current explanation of the estrogen paradox, specifically one that
is applicable to the Luminal A subtype that accounts for the majority of post-menopausal
ER+ breast cancers. Based on our own work and the literature on the response of the breast
to hormones, we propose a hypothesis that the cellular response to estrogen is dependent
on the level of ER expression and the hormonal microenvironment.

2. Estrogen-Induced Regression in ER+ Cancers
2.1. Estrogen-Induced Apoptosis in Luminal B Cancers

The two questions regarding the estrogen paradox were investigated in a series of
elegant in vitro experiments by Dr. V.C. Jordan and others in his laboratory who have
used ER+ breast cancer cell lines conditioned by long-term estrogen depletion to simulate
the five-year post-menopausal gap (reviewed in [6]). They showed that the response to
estrogen alternates between growth induction and suppression. Contrary to the usual
growth-promoting effect of estrogen on ER+ cell lines in vitro, after long-term estrogen
depletion, subsequent estrogen exposure became growth-inhibitory with anti-tumor effects
in these cells. However, continuous estrogen exposure was then followed by resistance
and eventual regrowth during estrogen treatment. The initial growth-inhibitory effect of
estrogen was found to involve at least three apoptotic pathways including the unfolded
protein response, the activation of the extrinsic death receptor pathway and the intrinsic
mitochondrial pathway. Estrogen-induced growth inhibition was recently shown to be
dependent on increased ER expression which occurs during periods of estrogen depletion.
Similar findings occur in primary tumors with ESR1 amplification [7]. Continuous estrogen
exposure decreases ER levels, and this correlates with resistance to the growth-inhibitory
effects of estrogen. This cycling of the response to estrogen between growth induction
and suppression mediated by intermittent estrogen exposure and the resulting change in
the level of ER has led to the suggestion that “pre-emptively switching between estrogen
and estrogen deprivation therapies before resistant tumors emerge is an effective strategy
for long-term control of tumor burden” [7]. This laboratory advancement is driving the
development of therapeutics that can condition or assist in estrogen-induced apoptosis [6]
and has served as the basis for at least one large clinical trial, The Study Of Letrozole
Extension (SOLE), a phase III randomized clinical trial of continuous vs. intermittent
letrozole in post-menopausal women.

These findings are, however, complicated by the fact that there are two variants of
ER+ breast cancer, Luminal A and Luminal B [8]. Subsequent studies have shown that
Luminal A tumors have higher ER expression; are low-grade, low-proliferative tumors with
minimal genetic abnormalities; respond well to current therapeutic regimens and occur
almost exclusively in post-menopausal women [5]. The WHI trial showing a reduction
in breast cancer was large enough to reveal the characteristics of the cancers that were in
deficit with estrogen-only HRT. These were low-grade (grade 1 or 2), ductal, localized,
ER+, HER2 negative with or without progesterone receptor positivity [4]. In general, this
description is typical of Luminal A breast cancers.

ER+ breast cancers are difficult to establish in vitro, particularly Luminal A tumors.
Four in-depth surveys of existing breast cancer cell lines concluded that none of the
available ER+ breast cancer cell lines were Luminal A and were most likely Luminal
B [9–12]. These include the cell lines used in the long-term estrogen deprivation studies. In
addition, the only two estrogen-suppressed patient-derived xenograft models reported to
date, WHIM16 [13] and GS3 [14], are both luminal B cell lines [15,16], suggesting that the
apoptotic pathway triggered by estrogen has been elucidated exclusively in luminal B cells.
The story might therefore be different in Luminal A cells.

2.2. Evidence for a Non-Apoptotic Pathway of Estrogen-Induced Regression

Clinically, Luminal A breast cancers respond well to hormonal treatment with a
response pattern that does not fit with an apoptotic or cytotoxic model. Current endocrine
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therapies promote a cytostatic effect with a reduction in tumor size, requiring months of
treatment and an optimal duration of therapy of 5 to 10 years [17].

There are numerous reports showing that transfection of the ER gene (ESR1) into
previously ER-naïve cells, including human mammary epithelial cells, breast and cervical
cancer cells, Chinese Hamster ovary cells, rodent fibroblasts and a human osteosarcoma
cell line, show an immediate estrogen-induced regression that is associated with a slower
time course than is typical for an apoptotic agent [18] (Zajchowski et al., and references
therein). Two other reports [19,20] found that ESR1, when transfected into MCF-7 cells, was
associated with estrogen-induced cell cycle block. Accordingly, we transfected MCF-7 cells
with an inducible ESR1 gene under a doxycycline promoter [21] and titrated the doxycycline
dose to achieve a 20-fold increase in ER protein expression by densitometry, equivalent to an
Allred score of 8/8 by standard diagnostic immunohistochemistry [22]. Mock transfected
MCF-7 cells retained their characteristic Luminal B low level of endogenous ER expression,
previously quantitated at 63 fmol/mg protein [23], equivalent to an Allred score of 3/8.

With the increased levels of ER, the response to estrogen became anti-proliferative
with G1/S and G2/M cell cycle block and no evidence of apoptosis. Like Zhao et al. before
us [19], we found that the cell cycle block was associated with an increase in p21. Chromatin
immunoprecipitation using an anti-ER Ab, followed by whole-genome sequencing, showed
the increase in p21 was most likely mediated through direct ER binding to the p21 gene
(CDKN1A) in a novel intragenic region composed of two half estrogen response elements
(EREs) and an AP1 site. ChIP-String analysis confirmed that ER binding in this region only
occurs in cells with high ESR1 in the presence of estrogen.

This work demonstrated that a given hormone is not strictly paired to a single prolif-
eration outcome and that estrogen could elicit diametrically opposite cell cycle responses
(proliferation or cell block) depending on the amount of ER present. This conclusion is
identical to that recently published by Traphagen et al. [7]. Those authors were able to
show that high levels of endogenous ER and transcriptional activity were necessary for
the growth-inhibitory effects of estrogen. With prolonged estrogen exposure, the ER levels
declined, and this decrease in ER was associated with resistance to the growth-inhibitory
effects of estrogen [7]. It raised the possibility that Luminal A breast cancers, which have
higher amounts of ER, might have a p21-mediated, non-proliferative response to estrogen.
In the following sections, we present our investigation of this hypothesis with supporting
literature to answer the two key questions regarding the estrogen paradox when applied to
Luminal A tumors.

2.3. How Can Estrogen Promote and Restrict the Growth of Luminal A Cancers? DREAM

Luminal A tumors are thought to closely resemble normal breast epithelial cells, with
few, if any, genetic abnormalities [5]. This is significant because the response to estrogen
in normal breast epithelium is opposite to that in uterine epithelium [24–26]. Histologic
studies of samples taken concurrently from the breast and the endometrial lining of the
uterus during the menstrual cycle have shown that during the pre-ovulatory or follicular
phase when estrogen alone is present, the endometrial epithelial cells proliferate but the
breast epithelium does not. In the post-ovulatory or luteal phase of the cycle when estrogen
and progesterone are both present, the endometrial epithelial cells stop proliferating, while
the breast epithelia start proliferating. This is consistent with the WHI trials of HRT in
which combined estrogen and progesterone protected against endometrial cancer but was
associated with an increase in breast cancer [4]. We decided to test the hypothesis that
Luminal A tumors may arise after menopause because of the lack of estrogen and regress
when the estrogen is supplied either as HRT or as a therapeutic.

We used a Window of Opportunity Study (PRESTO–PRe-operative ESTradiOl Window
of Opportunity Study in Post-Menopausal Women with Newly Diagnosed ER Positive
Breast Cancer) to test the hypothesis that estrogen could induce a decrease in Ki67 or Risk
of Recurrence Score (ROR) (BC360™, NanoString Technologies Inc., Seattle, WA, USA) [27].
Nineteen women with newly diagnosed ER+, low-grade breast cancer who were post-
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menopausal with at least 5 years from their last estrogen exposure were given 6mg/day of
estradiol [28] for 7 to 14 days in the interval between diagnosis and surgery.

In total, 13 of 19 (68%, p = 0.025) patients showed a decrease in Ki67, while 8/13
(62%, p = 0.07) patients showed a decrease in ROR score with no histologic or gene ex-
pression evidence [29] of apoptosis. Using ROR scores instead of Ki67 to define estrogen
response [30–34], we defined the three patients with the greatest reduction in ROR as
“responders” and compared their gene expression profiles (GEPs) to three “non-responder”
patients who had the least change in ROR between biopsy and surgical specimens.

We derived a GEP signature using a non-parametric random forest approach [35] that
separated the responders from non-responders on the post-estrogen treatment surgical
specimens (PRESTO-45surg, [25]). The algorithm selected genes based on their ability to
predict the response status of the sample independently of their level of significance in
classical parametric statistical analysis. Surprisingly, even though p21 was significantly dif-
ferent between responders and non-responders, it was not part of the predictive signature.
The regulatory elements of two-thirds of the PRESTO-45surg genes were most consistent
with FOXM1 and E2F4, crucial components of the DREAM-MMB (Dimerization partner,
Retinoblastoma-like proteins, E2F4, and MuvB–MYB-MuvB) system of cell cycle control
that is responsible for reversible cell cycle arrest or quiescence [36]. In 2019, ref. [37], a rigor-
ous global analysis using knockout cells, DREAM-ChIP verification and consistency across
cell types and species, defined 268 genes that were repressed through the p53-DREAM
pathway. Greater than 85% of these genes were involved in cell cycle regulation. In total,
30 of these 268 genes are contained within the PRESTO-45surg and were downregulated
with estrogen. A total of 12 of the 268 genes were not annotated in our database. Of the
remaining 226 DREAM genes, 200 (89%) were also downregulated in the responders. This
near uniform suppression of the DREAM genes [37] is consistent with estrogen-induced
activation of the DREAM complex to mediate cell cycle block.

Notably, DREAM acts in concert and is partially redundant with the RB/E2F pathway,
both of which are essential for the repression of many G1/S and G2/M cell cycle genes [37].
In addition, RB protein is positive immunohistochemically in over 90% of ER+ tumors [38],
and RB mutants are resistant to the DREAM agonist effect of cyclin-dependent kinase
inhibitors [39]. Therefore, we initially investigated whether 10 genes which are known to
be RB repressed in a DREAM-independent manner [37] were also downregulated in our
responders. We found no significant changes in these 10 genes in the responders or non-
responders (see Appendix A). When we analyzed all 415 RB-E2F candidate genes [37], only
15 (3.7%) were significantly downregulated by estrogen in responders, with no genes show-
ing significant changes in the non-responders. This suggests that the RB-E2F pathway is
not a major element in the estrogen response and that the estrogen-induced gene-repression
effects were mediated primarily through the DREAM pathway.

The DREAM complex induces cell cycle arrest through binding and inhibiting E2F
elements in the promoters of G1/S genes and the cell cycle genes homology region (CHR)
promoter sites of G2/M genes [36]. Although the DREAM-MMB pathway is typically
activated by p53 and p21 following DNA double-strand breaks due to genotoxic stress,
oncogene activation or mitochondrial dysfunction, the PRESTO responders showed no
evidence of changes in p53 protein (Figure 1a) or mRNA (Figure 1b). However, the
responders had significantly increased mRNA of CDKN1A (p21) and decreased mRNA of
FOXM1 and MYBL2, which are the competing partners for MuvB (Figure 1b) which would
shift the DREAM-MMB pathway to the DREAM-mediated repression of cell cycle proteins
leading to a cell cycle block. Since both FOXM1 and MYBL2/B-MYB are known MuvB
target genes, the p21-dependent formation of the DREAM complex would repress those
genes, further enhancing DREAM complex formation.

This suggests that estrogen therapy may be inducing quiescence, a stereotyped form
of reversible cell cycle arrest that is generally mediated by the DREAM complex, possibly
a throw-back to the normal function of estrogen in the induction of temporary cell cycle
arrest during the follicular (estrogen-only) phase of the menstrual cycle.
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surgical specimens of responders and non-responders is similar (p = ns, t-test). (b) Log2 fold change
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p. 6. Creative Commons License.

The DREAM pathway was recently shown to be activated by progesterone in an ovar-
ian cancer model [40] and by supra-physiological androgens [41] in a prostate cancer model.
Given the well-described pro-tumorigenic activities of estrogen and the acquisition of an
invasive and migratory phenotype in the ovarian cancer model’s progesterone activation
of DREAM, we examined our estrogen-treated cell lines and patients to determine if the
induction of quiescence was similarly linked to pro-tumorigenic consequences. We carried
out a bioinformatic analysis identical to that in Mauro [42], investigating the top regulated
genes and enriched pathways after estrogen treatment. Out of the 200 genes listed in the
PR-A/B inventory [42], only 4 genes overlapped between the PR-A ovarian model and
either our estrogen-treated cell lines or PRESTO patients, suggesting different mechanisms
are involved. While this represents unvalidated RNA-seq data, the presence of two upregu-
lated cytokines, CXCL1 and CXCL2, in the PRESTO responders (Appendix B Figure A1a)
is interesting, especially in light of the pathway analysis which showed that the PRESTO
responders showed activation of the innate immune system with the upregulation of the
cytokine signaling pathway, neutrophil degranulation and associated interleukin and G
protein-coupled receptor signaling (Appendix B Figure A1b). The significance of this is
unknown. Breast cancer cells are known to secrete cytokines that can promote invasion [43],
and in particular, IL-11 has been shown to be associated with bone metastases in low-grade
tumors [44]. Thus, it is possible that DREAM-mediated quiescence could be associated
with the tumor dissemination of dormant cells. However, in other models, inflammatory
cytokines inhibit tumor growth [45]. Notably, estrogen-only HRT in the WHI study was
associated with a decreased incidence of and decreased mortality associated with breast
cancer [4]. Further work is necessary to determine if DREAM-mediated quiescence is
accompanied by tumor dissemination or anti-tumor effects.

2.4. Why Does Estrogen Inhibition Require a 5-Year Gap? Estrogen in Context

HRT trials that initiate estrogen-only therapy close to the menopause such as the
Million Women Study in the UK [46] have not found an estrogen-induced decrease in breast
cancer, raising the question for the above hypothesis—if estrogen is functioning to activate
the DREAM pathway, then why is there a need for the five-year gap? For Luminal B cancers,
the work by Jordan’s lab has suggested that this period of estrogen depletion leads to an
increase in endogenous ER, which is a prerequisite for the apoptotic or growth-inhibitory
response to estrogen [6,7]. For Luminal A cancers which have consistently higher levels
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of ER and we presume are always growth inhibited by estrogen, the question becomes
more perplexing.

The first real mention of the 5-year gap was the 1960 Council on Drugs publication [3]
which showed that the efficacy of hormone treatment in breast cancer increases dramatically
five years after the menopause, which is generally defined as 50 years old. Thus, the gap
may not specifically revolve around exposure to estrogen but rather to events in the
menopausal transition—the five years before and after the final menstrual period (FMP) or
45 to 55 years of age.

Interestingly, the incidence of breast cancers also shows an unusual discontinuity
around the menopausal transition (Figure 2). This was first described by Clemmesen in
1948 [47], (Figure 2a) and was also noted in the 2012 surveys of age and breast cancer in
both the Lancet Oncology review [48] (Figure 2b) and the SEER data review [49] (Figure 2c).
In Clemmesen’s review of the incidence of breast cancer in the Danish Cancer Registry,
he noted a statistically significant but “peculiar feature..is the fall in incidence for the
age classes between 45 and 55”, which later became known as Clemmesen’s Hook. The
2012 Lancet Oncology review [48] showed that Clemmesen’s Hook occurred in ER+ breast
cancers, while the SEER publication [49] pin-pointed Clemmesen’s Hook as affecting ER+
PR+ breast cancers (Figure 2c). If one compares the trajectory of the two ER+ breast cancers
in the SEER data, the incidence of ER+PR+ breast cancers begins to increase in the mid-40s
(Figure 2d, indicated by “a”), approximately 5 years before the precipitous drop in estrogen
levels at 50 years and the rise in ER+PR- cancers. The incidence of ER+PR+ cancers then
levels off for the five years (Figure 2d, indicated by “b”) following the final menstrual
period (FMP), before resuming the steady linear increase with age exhibited by ER+PR-
breast cancers. This suggests the possibility that the five-year gap may be reflecting the
physiological events of the menopausal transition.

The human female menopausal transition is unique to female primates [50]. The Study
of Women’s Health Across the Nation (SWAN) was a longitudinal study of women going
through the menopausal transition in which 15,930 observations from 2886 women were
aligned with ovarian status as defined by the World Health Organization. SWAN described
a novel surge in adrenal androgens in 80% of women between the ages of 45 to 55 years [50].
A similar increase in four androgens, including total testosterone, dehydroepiandrosterone
(DHEA), dehydroepiandrosterone-sulfate (DHEAS) and androstenedione, in women from
45 to 55 years was recently described in a population-based cohort study of 3291 participants
in the Rotterdam Study [51]. Lasley, a principal investigator of the SWAN study, noted that
this androgen surge also occurred following ovariectomy [52] and theorized that “changes
in ovarian function... (perhaps a loss of inhibin B and a slight rise in FSH)... could trigger
a transient increase in adrenal δ-5 steroid production that continues to and past the final
menstrual period (FMP)”.

Clinically, the menopausal transition is associated with signs and symptoms similar to
estrogen deficiency and is alleviated by estrogen therapy even though the early transition
period predates the major decrease in E2. Lasley suggested that these symptoms are
potentially related to levels of androstene-3β, 17β-diol (Adiol), an adrenal androgen and
metabolite of DHEAS, with the ability to bind both estrogen and androgen receptors
(ARs) [50]. During the menopausal transition, levels of Adiol are elevated from less
than 1 nM in premenopausal women to 3–4 nM, about one hundred times the average
concentration of estradiol [50].

We suggest that the hormonal milieu at the beginning of the menopausal transition
with the combination of high levels of Adiol in a woman with normal levels of estrogen
promotes the proliferation of normal breast epithelial cell and their derivative luminal A
breast cancers, leading to the early rise in ER+PR+ breast cancers. With the abrupt loss of
estrogen at the time of the FMP and the persistence of Adiol for the five years beyond the
FMP (late menopausal transition), there is a drop in ER+PR+ breast cancers (Clemmesen’s
Hook). Until Adiol levels have decreased sufficiently, five years after the FMP, estrogen
supplementation is associated with an increase in breast cancer. Once the Adiol surge has
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subsided, five years after the FMP, estrogen as a single hormone is associated with the
suppression of proliferation in high-ER-expressing luminal A breast cancers. This explains
the need for a five-year gap before estrogen therapy begins to suppress ER+ breast cancers.
This phenomenon is restricted to ER+PR+ cancers because of the role of liganded and
unliganded PR in regulating DREAM expression [40].
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3. A Hypothesis for the Estrogen Paradox in Luminal A Cancers
3.1. DREAM ON, DREAM OFF

The previous section suggests that Clemmesen’s Hook around the menopausal tran-
sition exemplifies the rule that while two hormones (estrogen and Adiol) in the early
menopausal transition cause proliferation and an increase in breast cancer, one hormone
(Adiol in the last 5 years of the menopausal transition) causes cell cycle block and a decrease
in breast cancer. Notably, a similar finding holds for progesterone. In a large survey of
post-menopausal women, Trabert et al. [53] found that in women with higher levels of
estrogen, increasing serum progesterone was associated with an increase in breast cancer.
However, for women in the lowest quartile of circulating estrogen, increasing serum proges-
terone was associated with a decrease in breast cancer. This is reminiscent of the effect on
breast epithelium of the menstrual cycle in pre-menopausal women. In the estrogen-only
follicular phase, the cells are non-proliferative, but this switches to proliferation in the
luteal phase in the presence of both progesterone and estrogen. This suggests that the
specific hormone itself (whether estrogen, an androgen or progesterone) is not important
but rather the presence of another steroid hormone that determines whether the response
will be cell block (one hormone) or proliferation (two hormones).

The switch between proliferation and cell cycle blockade could be mediated by the
DREAM-MMB pathway, which is designed to alternate between a pro-proliferative and anti-
proliferative gateway. The system revolves around the ability of the LIN54 member protein
of MuvB to stabilize different mutually exclusive complexes on the CHR promoter element
of late cell cycle genes [36]. When MuvB is associated with the DREAM components
(Dimerization partner, hypophosphorylated p130 Retinoblastoma-like proteins, and E2F4),
the complex suppresses gene transcription and induces quiescence, e.g., “DREAM ON”.
When MuvB is associated with B-Myb and/or FOXM1, these replace the inhibitory DREAM
complex, the “DREAM OFF” situation, and facilitate the activation of the same cell cycle
genes [36].

The DREAM-MMB pathway is usually activated by p21 downstream of p53 [37].
However, binding sites for ER [21,54], AR [55] and PR [56] have been described upstream
of the p21 transcription start site and in intragenic regions, accounting for the observation
that p21 can be activated by estrogen, androgens or progesterone. Thus, the activation
of p21 by any one of these hormones could engender cell cycle blockade via the DREAM
complex. The addition of a second steroid hormone could oppose the action or formation
of the DREAM complex in favor of the pro-proliferative MMB complexes.

3.2. One Hormone vs. Two Hormones

Progesterone is a known antagonist of the estrogen transcriptome [57]. Similarly, the
opposition of the estrogen response by Adiol has been well documented in the literature.
Initially, it was suggested that Adiol’s reversal of an estrogen effect was due to competi-
tion for the ER [58,59]. Subsequently, it was suggested that the higher-affinity estrogen
would displace Adiol from the ER and promote Adiol–AR binding, which would oppose
estrogenic effects [60–62]. Using 5α-dihydrotestosterone (DHT), others have suggested that
liganded AR could compete for estrogen response elements, thereby preventing the acti-
vation of estrogen–ER target genes at a genome-wide level [63,64]. Most recently, Hickey
et al. [65] have added competition for transcription factors or squelching as a mechanism
for the androgen reversal of estrogen signaling.

Thus, the concurrent presence of any two steroid hormones could reverse the pro-
DREAM effect of a single hormone by competing for the cognate receptor or response
element on the chromatin, or essential transcription factors. Alternatively, or in addition,
the second hormone with its receptor could stimulate the transcription of DREAM complex
antagonists, e.g., the pro-proliferative transcription factor partners for MuvB such as
FOXM1 and/or MYBL2 (see Figure 3).
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response element (HRE) activating the DREAM pathway. (b–d) show possible mechanisms by which
two hormones could prevent DREAM activation (modified from Hickey et al. [65]).

3.3. Estrogen and Anti-Estrogens

The foregoing discussion raises a third question for the estrogen paradox. The PRESTO
and the WHI data suggest that it is the Luminal A patients who respond to estrogen—the
same patients who currently have the best response to existing anti-estrogen treatment pro-
tocols such as tamoxifen, aromatase inhibitors (AIs) and ICI 182,780 (Fulvestrant, Faslodex).
So, how does the estrogen induction of DREAM apply to anti-estrogen therapies? It is a
question that dates back to the original head-to-head trial of an estrogen (diethystilbestrol,
DES) vs. an anti-estrogen (tamoxifen) that validated the use of tamoxifen, showing it was
equally as effective as DES with fewer side effects [66]. The 20-year follow-up showed that
the estrogen was better [67], so it is possible that it is tamoxifen’s known weak estrogen ag-
onist properties that are therapeutic. But the same could not be said of aromatase inhibitors
or ICI 182,780, which decrease the amount of estrogen or the estrogen receptor, respectively.
However, the hypothesis presented above is not hormone specific and instead would argue
that if there was evidence of estrogen stimulation in the post-menopausal period when
adrenal-derived androgens are the dominant hormone, then the removal of estrogen (or
less practically, the androgen) could activate the DREAM pathway, leading to cell cycle
block and quiescence.

Circulating estrogen is increased in post-menopausal women with breast cancer com-
pared to those without [68]. Also, intra-tumoral estrogen is 8-fold higher than serum levels
in post-menopausal ER+ tumors [69], especially in ER+PR+ tumors that have immuno-
histochemically detected aromatase enzyme [70]. Systemic AI therapy by inhibiting the
aromatase enzyme from converting androgens to estrogen is able to decrease both circu-
lating and intra-tumoral estrogen [71]. Dr. Angela Brodie, the pioneering scientist behind
AIs, and her co-authors proposed [72] that there is an ongoing balance between estrogenic
and androgenic signaling at the cellular level. They suggested that the therapeutic effect
of AI is to decrease the influence of estrogen, thereby “unmasking the inhibitory effect of
androgens acting via the AR”.

Using data from Hickey et al. [65], we looked at the effect of androgen–AR signaling
on DREAM genes by comparing significant fold changes (p < 0.05) after DHT treatment
of ER+ patient-derived xenografts (PDX) HCI-005, GAR15-13 and the luminal B cell line
ZR-75-1 ([65], Supplementary Table S3). Unlike the DHT-treated ZR-75-1 cell line, both
the DHT-stimulated PDX models downregulated DREAM-regulated genes, similar to
estrogen-induced changes in PRESTO responders and the ER-transfected MCF-7 cells
(ER10) (Figure 4), confirming that single hormonal stimulation with estrogen in vitro and
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in vivo and the androgen DHT in vitro can activate the DREAM complex (DREAM “ON”)
and downregulate proliferation genes.

We then analyzed responders from a window of opportunity study that included
mRNA data pre- and post-2-week AI treatment on 121 patients from the PeriOperative
Endocrine-Therapy for Individualized Care (POETIC) trial [73]. Using data from the
public repository (GSE105777), we determined ROR scores for the pre- and post-treatment
samples. Similar to the PRESTO study, we categorized 89 (74%) as responders who showed
a decrease in ROR, whereas 32 (26%) were non-responders who showed no decrease or an
increase in ROR after treatment. The non-responders showed no change in the expression
of the DREAM genes and clustered with the PRESTO non-responders (Figure 4). In contrast,
the AI responders had a decrease in expression of DREAM genes that clustered with the
DHT-treated PDX GAR15-13 and the estrogen responders in the PRESTO trial (Figure 4),
supporting the hypothesis that unopposed androgen after AI and estrogen in the PRESTO
trial can activate the DREAM anti-proliferative pathway.

This could also explain the reduction in breast cancer incidence in post-menopausal
women at high risk for breast cancer given AIs [74–76]. The removal of estrogen resulting
in an unopposed endogenous androgen milieu could decrease the ER+PR+ Luminal A
breast cancers in much the same way as the five years of the late menopause transition
(Clemmesen’s Hook).

By selectively degrading ER, ICI 182,780 could similarly unmask an androgen-derived
anti-proliferative effect. In addition, ICI 182,780 may have some non-overlapping ef-
fects with AI [77]. Fulvestrant, particularly the 500 mg dose, may have superior activity
in ER+PR+ tumors [78] and has been shown to prolong overall survival when added
to Anastrazole in post-menopausal hormone-receptor-positive metastatic breast cancer
patients [79]. Early work by Carroll et al. [80] found that ICI 182,780 directly induced
quiescence in MCF-7 cells by reducing cyclin D1 mRNA. The effective increase in “free” p21
resulted in a switch to p21-cyclin E-Cdk4 complexes and an increase in quiescent cells. Thus
ICI 182,780 could activate DREAM through both the diminution of an estrogen influence
with unmasking of an androgen anti-proliferative effect as well as by directly inducing a
cyclin E/p21-mediated quiescence.

Accordingly, we compared the change in the expression of DREAM genes in patients
treated pre-operatively with 500 mg of Fulvestrant in the Neo-adjuvant Endocrine therapy
for Women with Estrogen-Sensitive Tumors (NEWEST) trial [77]. As with the PRESTO
and POETIC data, we calculated ROR scores and divided the patients into seven (70%)
responders (post-treatment decrease in ROR) and three (30%) non-responders (no change or
increase in ROR score post-treatment). Again, the Fulvestrant-treated responders clustered
with the in vitro single-hormone responses to androgen (e.g., DHT-treated PDX lines
HCI-005 and GAR15-13), and estrogen in high-ER-expressing cells (ER10), as well as the
responders to estrogen in the PRESTO trial and AI responders from the POETIC trial,
supporting a common pathway for the anti-proliferative response to hormone therapy.
Notably, although there was comparable downregulation of assessable DREAM genes in
both the AI (217/227, 95.6%) and ICI 182,780 (185/195, 94.9%)-treated responders, the
NEWEST responders showed more effective downregulation of these genes (Figure 4).

As to how estrogen treatment in the androgen-rich milieu of post-menopause activates
the DREAM pathway, there is in vitro evidence ([72] (p. 7778) and [59] (p. 1852)) that
higher levels of estrogen can overcome or reverse a concomitant androgenic signal. This
may be analogous to DREAM activation by supra-physiological levels of androgens in
a prostate cancer model [41]. This primacy of estrogen stimulation would explain the
role of added (supra-physiological) estrogen in situations such as the PRESTO trial, the
WHI estrogen-only arm and the relief of estrogen insufficiency symptoms during early
peri-menopause when there are endogenous levels of both estrogen and androgen present.
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Figure 4. Heat map of gene expression changes in the 268 DREAM genes [37]. There is activation
of the DREAM pathway with the downregulation (green) of DREAM-regulated genes with single-
hormone administration in vitro of DHT in ER+ PDX HCI-005 and GAR15-13 [65] or estrogens (ER10,
ER-transfected MCF-7 cells [21]), as well as ER+ breast cancers in post-menopausal patients who
respond with a post-treatment decrease in ROR to estrogen (PRESTO-R [27]), aromatase inhibitors
(POETIC-R [73]) or ICI 182,780 (NEWEST-R [77]). Patients who have not responded with a decrease
in ROR score to either ICI 182,780 (NEWEST non-R [77]), aromatase inhibitors (POETIC non-R [73])
or estrogen (PRESTO non-R [27]) show minimal change in these genes. Even though the ZR-75-1 cell
line expresses the AR and is growth-inhibited by DHT, there are no changes in DREAM genes with
DHT [65]. In contrast, estrogen treatments of mock-transfected MCF-7 cells (EM10 [21]) show the
upregulation of virtually all the DREAM genes. V—in vitro, A—treated with DHT (dihydrotestos-
terone), E—treated with estrogen, P—post-menopausal ER+ breast cancer patients, F—treated with
Fulvestrant (ICI 182,780), AI—treated with aromatase inhibitors.

We also investigated the contribution of the RB-E2F pathway in these data using
Principal Component Analysis (see Figure 5). The gene changes within the DREAM
pathway account for the majority of variability (PC1 = 75.7%), with a comfortable separation
of responders from non-responders. Conversely, even though the 415 genes in the RB-
E2F pathway accounted for 39.8% variability in PC1, they grouped responders and non-
responders together, with MCF-7 high-ER- and low-ER-expressing transfectants flanking
this group (see Figure 5). This suggests that the estrogen response differences based on
the level of ER in the luminal B MCF-7 cells are associated with greater use of the RB-E2F
pathway than seen in previously untreated (presumably Luminal A) patient samples.
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Finally, the use of the DREAM pathway by current endocrine therapies would explain
the clinical synergy between cyclin-dependent kinases inhibitors (CDKis) and hormone
therapy [81] because of their convergence at the G1-S transition. The third-generation
CDKis, palbociclib, ribociclib and abemaciclib, and p21 both function to block/inhibit the
function of cyclin D-CDK4/6. This heightened inhibition of kinase function would prevent
phosphorylation of the retinoblastoma family proteins (RBL1 (p107) and RBL2 (p130))
and the subsequent dissociation and activity of the E2F transcription factor. Thus, both
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therapeutics would accentuate DREAM-complex formation and quiescence (see Figure 6a).
In a recent real world analysis, the synergy between AI and palbociclib was particularly
marked in Luminal A (low-grade, PR-positive) breast cancers [82].
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Figure 6. (a) DREAM “ON”. A hypothetical model proposing that single-hormone stimulation, either
estrogen (E), progesterone (P) or androgens (A), is associated with increases in p21. The increase in
p21 and its inhibition of cyclin-dependent kinase activity will lead to hypophosphorylation of the
retinoblastoma family proteins, allowing them to preferentially compete for the LIN52 member of
MuvB core proteins. The resulting stable DREAM repressor complex binds to the CHR element of
cell cycle genes through another MuvB core protein (LIN54) and E2F binding sites via E2F4/5-DP
to suppress cell cycle genes, causing reversible cell cycle arrest (quiescence) and suppression of
the MuvB target genes FOXM1 and MYBL2/B-MYB. Formation of the DREAM complex would be
facilitated by cyclin-dependent kinase inhibitor (CDKi) therapy. (b) DREAM “OFF”. A hypothetical
model proposing that dual hormone stimulation (e.g., estrogen plus progesterone or estrogen plus
an androgen) could (dashed line) inhibit p21 (see Figure 3). The inhibition of p21 would allow
cyclin-dependent kinases to phosphorylate the retinoblastoma-like protein p130 releasing the E2F
transcription factor, which would increase the pro-proliferative MuvB co-factor MYBL2. This would
competitively bind the MuvB core proteins, removing them from the dimerization partner (DP/E2F4,
p130) complex and activating the same cell cycle genes and increasing both FOXM1 and MYBL2/B-
MYB, resulting in proliferation. Both figures reprinted and modified from [25] (p. 6, Figure 5C).
Creative Commons License. Modified by shading and substitution of hormone combinations instead
of estrogen as the initiating stimulus for influencing cell cycle gene expression.

4. Conclusions

We propose that Luminal A breast cancers with higher levels of ER respond to single-
hormone stimulation by estrogens, androgens or progesterone by activating the DREAM
complex, inhibiting the expression of cell cycle genes and inducing quiescence (Figure 6a).
Furthermore, when a physiological level of estrogen is combined with progesterone (e.g.,
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combined HRT) or an androgen (e.g., estrogen plus Adiol in the early menopausal tran-
sition), the combination of those hormones would result in replacement of the DREAM
complex by pro-proliferative MuvB-FOXM1 and MuvB-MYBL2 complexes (Figure 6b),
leading to an increase in ER+ breast cancer. Thus, in this schema, each of these three
hormones can be considered as pro- or anti-proliferative, depending on the presence or
absence of the other hormones. Finally, we suggest that the effect of anti-estrogens is to
reduce the hormonal stimulation to a single hormone through the removal of estrogen (AI
and ICI 182,780) and/or the direct initiation of DREAM complexes (ICI 182,780).

5. Future Directions

This review is primarily hypothesis-generating, and there is considerable work needed
to prove the involvement of the DREAM pathway in hormone therapy of post-menopausal
ER+ breast cancer. However, DREAM is only one possible mechanism among others to
explain endocrine therapy response. Ideally, this review illustrates that the way forward
can and should include a unified theory of hormone response in Luminal A cancers
that encompasses all endocrine therapies, including estrogen, within the complex post-
menopausal hormonal environment.
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Appendix A

Log2fold change in mRNA of ten RB target genes after estrogen treatment *.

PRESTO Group CCNE2 RIBC2 PEG10 PRIM1 CDKN2C NRM SESTD1 SLC1A4 HIRIP3 LRRCC1

Non-Responders 0.0485 −0.0073 0.2826 0.2401 0.0778 −0.0744 −0.1907 0.0925 −0.0721 0.1740

Responders −1.1384 −1.4648 −0.5749 −0.0495 0.0671 −0.0601 −0.3463 −0.0002 −0.4182 −0.4683

* None of the fold changes shown had a significant Padj value.
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Figure A1. (a) Heatmaps highlighting top 10 upregulated, downregulated and intersect genes (com-
mon to both pairs) upon estrogen treatment in patients and cell lines. Color bars indicate log2 fold 
change. (b) Tables of top 10 enriched pathways (Reactome gene set, scored using Gene Set Enrich-
ment Analysis) regulated in cell lines and patients after estrogen treatment. For each pathway, the 
p-value, false discovery rate q-value and the normalized enrichment scores (positive and negative) 
are indicated. 
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Figure A1. (a) Heatmaps highlighting top 10 upregulated, downregulated and intersect genes
(common to both pairs) upon estrogen treatment in patients and cell lines. Color bars indicate log2
fold change. (b) Tables of top 10 enriched pathways (Reactome gene set, scored using Gene Set
Enrichment Analysis) regulated in cell lines and patients after estrogen treatment. For each pathway,
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