COVID-19 Infection in Autosomal Dominant Polycystic Kidney Disease and Chronic Kidney Disease Patients: Progression of Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Laboratory Measurements
2.3. Blood Pressure Measurements
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of ADPKD and CKD Patients at T0
3.2. Demographic and Clinical Characteristics of ADPKD and CKD Patients at T1
3.3. Comparative Analysis of Renal Function at Each Time Point in ADPKD and CKD Patients
3.4. Demographic and Clinical Characteristics of a Subpopulation of ADPKD and CKD Patients with eGFR < 60 mL/min
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kutky, M.; Cross, E.; Treleaven, D.J.; Alam, A.; Lanktree, M.B. The Impact of COVID-19 on Patients With ADPKD. Can. J. Kidney Health Dis. 2021, 8, 20543581211056479. [Google Scholar] [CrossRef] [PubMed]
- Alibrandi, M.T.S.; Vespa, M. Rene, ADPKD e COVID-19: Il doppio ruolo della fragilità renale. G. Clin. Nefrol. Dial 2020, 32, 99–101. [Google Scholar] [CrossRef]
- Banu, N.; Panikar, S.S.; Leal, L.R.; Leal, A.R. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Rev. Life Sci. 2020, 256, 117905. [Google Scholar] [CrossRef]
- Xiang, H.-X.; Fei, J.; Xiang, Y.; Xu, Z.; Zheng, L.; Li, X.-Y.; Fu, L.; Zhao, H. Renal dysfunction and prognosis of COVID-19 patients: A hospital-based retrospective cohort study. BMC Infect Dis. 2021, 21, 158. [Google Scholar] [CrossRef]
- Cui, X.; Gallini, J.W.; Jasien, C.L.; Mrug, M. Autosomal Dominant Polycystic Kidney Disease does not significantly alter major COVID-19 outcomes among veterans. Kidney360 2021, 2, 983–988. [Google Scholar] [CrossRef]
- Ozturk, S.; Turgutalp, K.; Arici, M.; Odabas, A.R.; Altiparmak, M.R.; Aydin, Z.; Cebeci, E.; Basturk, T.; Soypacaci, Z.; Sahin, G.; et al. Mortality analysis of COVID-19 infection in chronic kidney disease, haemodialysis and renal transplant patients compared with patients without kidney disease: A nationwide analysis from Turkey. Nephrol. Dial. Transplant. 2020, 35, 2083–2095. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Xu, E.; Al-Aly, Z. Kidney Outcomes in Long COVID. J. Am. Soc. Nephrol. 2021, 32, 2851–2862. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Hilbrands, L.B. CKD is a key risk factor for COVID-19 mortality. Nat. Rev. Nephrol. 2020, 16, 705–706. [Google Scholar] [CrossRef]
- Mirijello, A.; Piscitelli, P.; de Matthaeis, A.; Inglese, M.; D’Errico, M.M.; Massa, V.; Greco, A.; Fontana, A.; Copetti, M.; Florio, L.; et al. Low eGFR Is a Strong Predictor of Worse Outcome in Hospitalized COVID-19 Patients. J. Clin. Med. 2021, 10, 5224. [Google Scholar] [CrossRef]
- Jansen, J.; Reimer, K.C.; Nagai, J.S.; Varghese, F.S.; Overheul, G.J.; de Beer, M.; Puni, R. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell. 2022, 29, 217–231.e8. [Google Scholar] [CrossRef] [PubMed]
- Parra-Bracamonte, G.M.; Parra-Bracamonte, F.E.; Lopez-Villalobos, N.; Lara-Rivera, A.L. Chronic kidney disease is a very significant comorbidity for high risk of death in patients with COVID-19 in Mexico. Nephrology 2021, 26, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Hilbrands, L.B.; Duivenvoorden, R.; Vart, P.; Franssen, C.F.M.; Hemmelder, M.H.; Jager, K.J.; Kieneker, L.M.; Noordzij, M.; Pena, M.J.; de Vries, H.; et al. COVID-19-related mortality in kidney transplant and dialysis patients: Results of the ERACODA collaboration. Nephrol. Dial. Transplant. 2020, 35, 1973–1983. [Google Scholar] [CrossRef]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef] [PubMed]
- Flythe, J.E.; Assimon, M.M.; Tugman, M.J.; Chang, E.H.; Gupta, S.; Sosa, M.A.; Renaghan, A.D.; Melamed, M.L.; Wilson, F.P.; Neyra, J.A.; et al. Characteristics and outcomes of individuals with pre-existing kidney disease and COVID-19 admitted to intensive care units in the United States. Am. J. Kidney Dis. 2021, 77, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Mikami, T.; Miyashita, H.; Yamada, T.; Harrington, M.; Steinberg, D.; Dunn, A.; Siau, E. Risk factors for mortality in patients with COVID-19 in New York City. J. Gen. Intern. Med. 2021, 36, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Gigante, A.; Pellicano, C.; Mariani, I.; Iannazzo, F.; Concistrè, A.; Letizia, C.; Muscaritoli, M. Kidney dysfunction is associated with adverse outcomes in internal medicine COVID-19 hospitalized patients. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2706–2714. [Google Scholar] [PubMed]
- Perrotta, A.M.; Rotondi, S.; Mazzaferro, S.; Bosi, L.; Letizia, C.; Muscaritoli, M.; Gigante, A.; Salciccia, S.; Pasculli, P.; Ciardi, M.R.; et al. COVID-19 and kidney: Role of SARS-CoV-2 infection in the induction of renal damage. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7861–7867. [Google Scholar] [PubMed]
- Chapman, A.B.; Torres, V.E.; Perrone, R.D.; Steinman, T.I.; Bae, K.T.; Miller, J.P.; Schrier, R.W. The HALT Polycystic Kidney Disease Trials: Design and Implementation. Clin. J. Am. Soc. Nephrol. 2010, 5, 102–109. [Google Scholar] [CrossRef]
- Xu, J.; Teng, Y.; Shang, L.; Gu, X.; Fan, G.; Chen, Y.; Tian, R.; Zhang, S.; Cao, B. The effect of prior angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment on coronavirus disease 2019 (COVID-19) susceptibility and outcome: A systematic review and meta-analysis. Clin. Infect Dis. 2020, 72, e901–e913. [Google Scholar] [CrossRef]
- Cohen, J.B.; Hanff, T.C.; William, P.; Sweitzer, N.; Rosado-Santander, N.R.; Medina, C.; Chirinos, J.A. Continuation versus discontinuation of renin–angiotensin system inhibitors in patients admitted to hospital with COVID-19: A prospective, randomised, open-label trial. Lancet Respir. Med. 2021, 9, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.D.; Macedo, A.V.; Silva PG DB, E.; Moll-Bernardes, R.J.; Dos Santos, T.M.; Mazza, L. Effect of discontinuing vs. continuing angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19: A randomized clinical trial. JAMA 2021, 325, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Shakked, N.P.; de Oliveira, M.H.S.; Cheruiyot, I.; Benoit, J.L.; Plebani, M.; Lippi, G.; Benoit, S.W.; Henry, B.M. Early prediction of COVID-19-associated acute kidney injury: Are serum NGAL and serum Cystatin C levels better than serum creatinine? Clin. Biochem. 2022, 102, 1–8. [Google Scholar] [CrossRef] [PubMed]
ADPKD (n = 59) | CKD (n = 44) | p | |
---|---|---|---|
Age, years | 49 (34–57) | 65.5 (56.7–76) | <0.001 |
M/F | 28 (47.5)/31 (52.5) | 28 (63.6)/16 (36.4) | >0.05 |
Systolic blood pressure, mmHg | 120 (112–130) | 140 (126–140) | <0.001 |
Diastolic blood pressure, mmHg | 80 (75–87) | 80 (70–80) | >0.05 |
Heart rate, bpm | 65 (59–75) | 85.5 (80–97.2) | <0.001 |
SpO2, % | 98.9 (97.5–99.4) | 95 (94–97) | <0.001 |
Hb, g/dL | 12.6 (12–13.8) | 13.1 (12–14) | >0.05 |
Serum creatinine, mg/dL | 1.06 (0.88–1.5) | 0.9 (0.8–1.35) | >0.05 |
eGFR, mL/min | 65.8 (46.8–86.9) | 70 (45–87.2) | >0.05 |
eGFR < 60 mL/min | 20 (33.9) | 17 (38.6) | >0.05 |
Blood urea nitrogen, mg/dL | 15.4 (12.7–30.3) | 20.5 (12.7–35.2) | <0.001 |
Na+, mEq/L | 141 (139–144) | 135 (132–138) | <0.001 |
K+, mEq/L | 4.1 (4–4.4) | 3.9 (3.6–4.4) | >0.05 |
Ca2+, mg/dL | 9.4 (9–10) | 8.5 (8.3–9.2) | >0.05 |
Serum albumin, g/L | 37 (34–39) | 38 (33.7–41) | >0.05 |
Urinary proteins, mg/dL | 12.5 (0–30) | 15 (0–30) | >0.05 |
ADPKD (n = 59) | CKD (n = 44) | p | |
---|---|---|---|
Serum creatinine, mg/dL | 1.1 (0.9–1.74) | 0.89 (0.71–1.32) | <0.01 |
eGFR, mL/min | 59 (41–84.5) | 81 (50.2–94.2) | >0.05 |
eGFR < 60 mL/min | 28 (47.4) | 12 (27.3) | <0.05 |
Serum albumin, g/L | 36 (33–39.7) | 33.5 (30–37) | >0.05 |
Urinary proteins, mg/dL | 20 (10–30) | 15 (0.3–30) | >0.05 |
ADPKD (n = 20) | CKD (n = 17) | p | |
---|---|---|---|
Age, years, median (IQR) | 46 (37.5–63.5) | 76 (71–77) | <0.001 |
M/F, n (%) | 10 (50)/10 (50) | 3 (17.6)/14 (82.4) | <0.05 |
SBP, mmHg, median (IQR) | 130 (120–137) | 130 (120–142) | >0.05 |
DBP, mmHg, median (IQR) | 85 (80–90) | 80 (73–81) | >0.05 |
Heart rate, bpm, median (IQR) | 56 (55–58) | 92 (80–101) | <0.05 |
CRP, mg/L, median (IQR) | 1.8 (1.1–2.3) | 110.4 (74.9–156) | <0.001 |
D-dimer, mcg/L, median (IQR) | 774 (513–1304) | 1154 (852–1663) | >0.05 |
NLR, median (IQR) | 4.2 (2.5–7.3) | 6.25 (5.33–11.9) | <0.001 |
Hb, g/dL, median (IQR) | 11.8 (11.4–12.7) | 12.7 (11.9–13.9) | >0.05 |
P/F ratio, median (IQR) | 490 (471–504.5) | 321.5 (241.7–358.5) | <0.05 |
T0 | T1 | |||||
---|---|---|---|---|---|---|
ADPKD | CKD | p | ADPKD | CKD | p | |
Creatinine, mg/dL | 1.8 (1.5; 2) | 1.7 (1.3; 2.3) | >0.05 | 2.2 (1.6; 2.4) | 1.5 (1.1; 1.9) | >0.05 |
eGFR, mL/min | 42.5 (39.7; 46.3) | 37 (27; 54) | >0.05 | 33.5 (26; 44.2) | 41 (33; 65) | >0.05 |
Variation T1–T0 | ||||||
ADPKD | CKD | p | ||||
Creatinine, mg/dL | 0.29 (0.12; 0.5) | −0.16 (−0.3; 0) | <0.001 | |||
eGFR, mL/min | −6.5 (−16.25; −1.25) | 4 (0; 19) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, S.; Tinti, F.; Perrotta, A.M.; Salomone, L.; Cianci, R.; Izzo, P.; Izzo, S.; Izzo, L.; De Intinis, C.; Pellicano, C.; et al. COVID-19 Infection in Autosomal Dominant Polycystic Kidney Disease and Chronic Kidney Disease Patients: Progression of Kidney Disease. Biomedicines 2024, 12, 1301. https://doi.org/10.3390/biomedicines12061301
Lai S, Tinti F, Perrotta AM, Salomone L, Cianci R, Izzo P, Izzo S, Izzo L, De Intinis C, Pellicano C, et al. COVID-19 Infection in Autosomal Dominant Polycystic Kidney Disease and Chronic Kidney Disease Patients: Progression of Kidney Disease. Biomedicines. 2024; 12(6):1301. https://doi.org/10.3390/biomedicines12061301
Chicago/Turabian StyleLai, Silvia, Francesca Tinti, Adolfo Marco Perrotta, Luca Salomone, Rosario Cianci, Paolo Izzo, Sara Izzo, Luciano Izzo, Claudia De Intinis, Chiara Pellicano, and et al. 2024. "COVID-19 Infection in Autosomal Dominant Polycystic Kidney Disease and Chronic Kidney Disease Patients: Progression of Kidney Disease" Biomedicines 12, no. 6: 1301. https://doi.org/10.3390/biomedicines12061301
APA StyleLai, S., Tinti, F., Perrotta, A. M., Salomone, L., Cianci, R., Izzo, P., Izzo, S., Izzo, L., De Intinis, C., Pellicano, C., & Gigante, A. (2024). COVID-19 Infection in Autosomal Dominant Polycystic Kidney Disease and Chronic Kidney Disease Patients: Progression of Kidney Disease. Biomedicines, 12(6), 1301. https://doi.org/10.3390/biomedicines12061301