Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Anti-Neuropeptide Antibodies Administered to the Spinal Cord with Streptozotocin-Induced Neuropathic Pain on Pain Threshold
3.2. Effects of Antagonists for the CCK-A, CCK-B, and Nociceptin/Orphanin FQ Receptors (ORL-1) Administered to the Spinal Cord with Streptozotocin-Induced Neuropathic Pain on Pain Threshold
3.3. Alterations in Cholecystokinin Receptor mRNA Levels in Spinal Dorsal Horn and DRG Neurons in Diabetic Allodynia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dineen, J.; Freeman, R. Autonomic Neuropathy. Semin. Neurol. 2015, 35, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.M.; Lucero, M.A.; Le, T.; Robinson, R.L.; Dworkin, R.H.; Chappell, A.S. Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: A review. Pain Med. 2007, 8 (Suppl. 2), S50–S62. [Google Scholar] [CrossRef] [PubMed]
- Veves, A.; Backonja, M.; Malik, R.A. Painful diabetic neuropathy: Epidemiology, natural history, early diagnosis, and treatment options. Pain Med. 2008, 9, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Alam, U.; Malik, R.A. Burning through the pain: Treatments for diabetic neuropathy. Diabetes Obes. Metab. 2015, 17, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Couture, R.; Hong, Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur. J. Pharmacol. 2014, 728, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Hokfelt, T.; Broberger, C.; Xu, Z.Q.; Sergeyev, V.; Ubink, R.; Diez, M. Neuropeptides--an overview. Neuropharmacology 2000, 39, 1337–1356. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, H.G.; Muller, M. The cellular localization of the L-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems. Prog. Neurobiol. 1999, 57, 485–505. [Google Scholar] [CrossRef] [PubMed]
- Williams, K. Modulation and block of ion channels: A new biology of polyamines. Cell. Signal. 1997, 9, 1–13. [Google Scholar] [CrossRef]
- Duffy, R.A.; Hedrick, J.A.; Randolph, G.; Morgan, C.A.; Cohen-Williams, M.E.; Vassileva, G.; Lachowicz, J.E.; Laverty, M.; Maguire, M.; Shan, L.S.; et al. Centrally administered hemokinin-1 (HK-1), a neurokinin NK1 receptor agonist, produces substance P-like behavioral effects in mice and gerbils. Neuropharmacology 2003, 45, 242–250. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Furlonger, C.; Wu, G.E.; Paige, C.J. Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis. Nat. Immunol. 2000, 1, 392–397. [Google Scholar] [CrossRef]
- Noble, F.; Roques, B.P. Phenotypes of mice with invalidation of cholecystokinin (CCK(1) or CCK(2)) receptors. Neuropeptides 2002, 36, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Wank, S.A. Cholecystokinin receptors. Am. J. Physiol. 1995, 269, G628–G646. [Google Scholar] [CrossRef] [PubMed]
- Kamei, J.; Zushida, K. The role of spinal cholecystokinin B receptors in thermal allodynia and hyperalgesia in diabetic mice. Brain Res. 2001, 892, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Tamai, H.; Sawamura, S.; Takeda, K.; Orii, R.; Hanaoka, K. Anti-allodynic and anti-hyperalgesic effects of nociceptin receptor antagonist, JTC-801, in rats after spinal nerve injury and inflammation. Eur. J. Pharmacol. 2005, 510, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, T.; Sakai, A.; Nagano, M.; Sawada, M.; Suzuki, H.; Umino, M.; Suzuki, H. Increase in hemokinin-1 mRNA in the spinal cord during the early phase of a neuropathic pain state. Br. J. Pharmacol. 2008, 155, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Aczel, T.; Kecskes, A.; Kun, J.; Szenthe, K.; Banati, F.; Szathmary, S.; Herczeg, R.; Urban, P.; Gyenesei, A.; Gaszner, B.; et al. Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization. Int. J. Mol. Sci. 2020, 21, 2938. [Google Scholar] [CrossRef] [PubMed]
- Hunyady, A.; Hajna, Z.; Gubanyi, T.; Scheich, B.; Kemeny, A.; Gaszner, B.; Borbely, E.; Helyes, Z. Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms. Brain Res. Bull. 2019, 147, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Like, A.A.; Rossini, A.A. Streptozotocin-induced pancreatic insulitis: New model of diabetes mellitus. Science 1976, 193, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wu, W. Antidiabetic effect of a new peptide from Squalus mitsukurii liver (S-8300) in streptozocin-induced diabetic mice. J. Pharm. Pharmacol. 2005, 57, 1575–1580. [Google Scholar] [CrossRef]
- Wu, K.K.; Huan, Y. Diabetic atherosclerosis mouse models. Atherosclerosis 2007, 191, 241–249. [Google Scholar] [CrossRef]
- Hylden, J.L.; Wilcox, G.L. Intrathecal morphine in mice: A new technique. Eur. J. Pharmacol. 1980, 67, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, S.; Hayashi, T.; Yuhki, M.; Orito, T.; Zadina, J.E.; Kastin, A.J.; Fujimura, T.; Murayama, K.; Sakurada, C.; Sakurada, T.; et al. Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse. Eur. J. Pharmacol. 2001, 427, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, H.; Watanabe, C.; Hayashi, T.; Iwata, Y.; Watanabe, H.; Katsuyama, S.; Hamamura, K.; Sakurada, T.; Ohtsu, H.; Yanai, K.; et al. The involvement of spinal release of histamine on nociceptive behaviors induced by intrathecally administered spermine. Eur. J. Pharmacol. 2017, 800, 9–15. [Google Scholar] [CrossRef]
- Vachon, P.; Masse, R.; Gibbs, B.F. Substance P and neurotensin are up-regulated in the lumbar spinal cord of animals with neuropathic pain. Can. J. Vet. Res. 2004, 68, 86–92. [Google Scholar] [PubMed]
- Hayashi, T.; Watanabe, C.; Katsuyama, S.; Agatsuma, Y.; Scuteri, D.; Bagetta, G.; Sakurada, T.; Sakurada, S. Contribution of Histamine to Nociceptive Behaviors Induced by Intrathecally Administered Cholecystokinin-8. Front. Pharmacol. 2020, 11, 590918. [Google Scholar] [CrossRef] [PubMed]
- Moran, T.H.; Robinson, P.H.; Goldrich, M.S.; McHugh, P.R. Two brain cholecystokinin receptors: Implications for behavioral actions. Brain Res. 1986, 362, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Noble, F.; Roques, B.P. CCK-B receptor: Chemistry, molecular biology, biochemistry and pharmacology. Prog. Neurobiol. 1999, 58, 349–379. [Google Scholar] [CrossRef] [PubMed]
- Kovelowski, C.J.; Ossipov, M.H.; Sun, H.; Lai, J.; Malan, T.P.; Porreca, F. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain 2000, 87, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dagerlind, A.; Elde, R.P.; Castel, M.N.; Broberger, C.; Wiesenfeld-Hallin, Z.; Hokfelt, T. Marked increase in cholecystokinin B receptor messenger RNA levels in rat dorsal root ganglia after peripheral axotomy. Neuroscience 1993, 57, 227–233. [Google Scholar] [CrossRef]
- Broberger, C.; Holmberg, K.; Shi, T.J.; Dockray, G.; Hokfelt, T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res. 2001, 903, 128–140. [Google Scholar] [CrossRef]
- Juarez-Rojop, I.E.; Granados-Soto, V.; Diaz-Zagoya, J.C.; Flores-Murrieta, F.J.; Torres-Lopez, J.E. Involvement of cholecystokinin in peripheral nociceptive sensitization during diabetes in rats as revealed by the formalin response. Pain 2006, 122, 118–125. [Google Scholar] [CrossRef]
- Sakaue, Y.; Sanada, M.; Sasaki, T.; Kashiwagi, A.; Yasuda, H. Amelioration of retarded neurite outgrowth of dorsal root ganglion neurons by overexpression of PKCdelta in diabetic rats. NeuroReport 2003, 14, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Mollereau, C.; Parmentier, M.; Mailleux, P.; Butour, J.-L.; Moisand, C.; Chalon, P.; Caput, D.; Vassart, G.; Meunier, J.-C. ORL1, a novel member of the opioid receptor family. FEBS Lett. 1994, 341, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Meunier, J.C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.L.; Guillemot, J.C.; Ferrara, P.; Monsarrat, B.; et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995, 377, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Reinscheid, R.K.; Nothacker, H.P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bunzow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J., Jr.; Civelli, O. Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995, 270, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Rutten, K.; Tzschentke, T.M.; Koch, T.; Schiene, K.; Christoph, T. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia. Eur. J. Pharmacol. 2014, 741, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.H.; Li, C.; Govindasamy, M.; Neo, H.J.; Lee, T.L.; Low, C.M.; Tachibana, S. Elevated prepronociceptin, nociceptin/orphanin FQ and nocistatin concentrations in rat chronic constriction nerve injury and diabetic neuropathic pain models. Neurosci. Lett. 2012, 506, 104–106. [Google Scholar] [CrossRef]
- Anton, B.; Fein, J.; To, T.; Li, X.; Silberstein, L.; Evans, C.J. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J. Comp. Neurol. 1996, 368, 229–251. [Google Scholar] [CrossRef]
- Monteillet-Agius, G.; Fein, J.; Anton, B.; Evans, C.J. ORL-1 and mu opioid receptor antisera label different fibers in areas involved in pain processing. J. Comp. Neurol. 1998, 399, 373–383. [Google Scholar] [CrossRef]
- Borbely, E.; Hunyady, A.; Pohoczky, K.; Payrits, M.; Botz, B.; Mocsai, A.; Berger, A.; Szoke, E.; Helyes, Z. Hemokinin-1 as a Mediator of Arthritis-Related Pain via Direct Activation of Primary Sensory Neurons. Front. Pharmacol. 2020, 11, 594479. [Google Scholar] [CrossRef]
- Watanabe, C.; Mizoguchi, H.; Bagetta, G.; Sakurada, S. Involvement of spinal glutamate in nociceptive behavior induced by intrathecal administration of hemokinin-1 in mice. Neurosci. Lett. 2016, 617, 236–239. [Google Scholar] [CrossRef]
- Borbely, E.; Helyes, Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017, 64, 9–17. [Google Scholar] [CrossRef]
- Stander, S.; Yosipovitch, G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Br. J. Dermatol. 2019, 181, 932–938. [Google Scholar] [CrossRef]
- Ogata, Y.; Nemoto, W.; Nakagawasai, O.; Yamagata, R.; Tadano, T.; Tan-No, K. Involvement of Spinal Angiotensin II System in Streptozotocin-Induced Diabetic Neuropathic Pain in Mice. Mol. Pharmacol. 2016, 90, 205–213. [Google Scholar] [CrossRef]
Objectives of the Experiment | Mouse Streptozotocin Treatment | Reference Number |
---|---|---|
Model of diabetes mellitus | i.v.1 or i.p.2 200 mg/kg (single, high doses) | [18] |
Antidiabetic effect of S-8300 (a peptide extracted from shark liver) | i.v., 150 mg/kg (single, high doses) | [19] |
Diabetic atherosclerosis models | i.p. 40 mg/kg (5 consecutive days, low doses) | [20] |
Administered Substances | Method of Administration | Doses |
---|---|---|
streptozotocin | i.v. 1 | 200 mg/kg |
anti-neuropeptide antibody | i.t. 2 | 1:12.5–1:200 |
SR27897 | i.t. | 10 nmol |
CI988 | i.t. | 5–20 nmol |
JTC-801 | i.t. | 5–10 nmol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, T.; Kanno, S.-i.; Watanabe, C.; Scuteri, D.; Agatsuma, Y.; Hara, A.; Bagetta, G.; Sakurada, T.; Sakurada, S. Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia. Biomedicines 2024, 12, 1332. https://doi.org/10.3390/biomedicines12061332
Hayashi T, Kanno S-i, Watanabe C, Scuteri D, Agatsuma Y, Hara A, Bagetta G, Sakurada T, Sakurada S. Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia. Biomedicines. 2024; 12(6):1332. https://doi.org/10.3390/biomedicines12061332
Chicago/Turabian StyleHayashi, Takafumi, Syu-ichi Kanno, Chizuko Watanabe, Damiana Scuteri, Yasuyuki Agatsuma, Akiyoshi Hara, Giacinto Bagetta, Tsukasa Sakurada, and Shinobu Sakurada. 2024. "Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia" Biomedicines 12, no. 6: 1332. https://doi.org/10.3390/biomedicines12061332
APA StyleHayashi, T., Kanno, S. -i., Watanabe, C., Scuteri, D., Agatsuma, Y., Hara, A., Bagetta, G., Sakurada, T., & Sakurada, S. (2024). Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia. Biomedicines, 12(6), 1332. https://doi.org/10.3390/biomedicines12061332