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Abstract: Background: Autologous vein grafts are widely used for bypass procedures in cardiovascu-
lar surgery. However, these grafts are susceptible to failure due to vein graft disease. Our study aimed
to evaluate the impact of the latest-generation FRAME external support on vein graft remodeling in a
preclinical model. Methods: We performed autologous internal jugular vein interposition grafting
in porcine carotid arteries for one month. Four grafts were supported with a FRAME mesh, while
seven unsupported grafts served as controls. The conduits were examined through flowmetry, an-
giography, macroscopy, and microscopy. Results: The one-month patency rate of FRAME-supported
grafts was 100% (4/4), whereas that of unsupported controls was 43% (3/7, Log-rank p = 0.071).
On explant angiography, FRAME grafts exhibited significantly more areas with no or mild stenosis
(9/12) compared to control grafts (3/21, p = 0.0009). Blood flow at explantation was higher in the
FRAME grafts (145 ± 51 mL/min) than in the controls (46 ± 85 mL/min, p = 0.066). Area and
thickness of neo-intimal hyperplasia (NIH) at proximal anastomoses were similar for the FRAME
and the control groups: 5.79 ± 1.38 versus 6.94 ± 1.10 mm2, respectively (p = 0.558) and 480 ± 95
vs. 587 ± 52 µm2/µm, respectively (p = 0.401). However, in the midgraft portions, the NIH area
and thickness were significantly lower in the FRAME group than in the control group: 3.73 ± 0.64
vs. 6.27 ± 0.64 mm2, respectively (p = 0.022) and 258 ± 49 vs. 518 ± 36 µm2/µm, respectively
(p = 0.0002). Conclusions: In our porcine model, the external mesh FRAME improved the patency of
vein-to-carotid artery grafts and protected them from stenosis, particularly in the mid regions. The
midgraft neo-intimal hyperplasia was two-fold thinner in the meshed grafts than in the controls.
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1. Introduction

Cardiovascular disease is a leading cause of morbidity and mortality worldwide.
Bypass grafting is a widely used surgical technique to treat atherosclerotic occlusive or
aneurysmal disease [1]. Autologous arterial conduits, such as the internal thoracic artery
or the radial artery, are considered the most durable grafts for cardiac bypass procedures.
These arterial grafts exhibit an excellent 10-year patency rate of 90% [2]; however, their use
is constrained by limited availability.

Autologous saphenous vein graft (SVG) is the most frequently utilized conduit for
coronary (CABG) and peripheral artery bypass grafting (PABG). The saphenous vein
is a superficial, non-essential vein that can be harvested from the patient’s leg(s). It is
then implanted as a small-caliber (≤6 mm) arterial bypass or substitution on the heart or
extremities. However, the key limitation is a high failure rate due to vein graft disease
(VGD). The patency rate of SVGs drops to 50% by 10 years in both cardiac and peripheral
bypass applications [1,3].

The VGD occurs because the vein, originally situated in a low-flow and low-pressure
venous environment, undergoes a harvest injury and is then transplanted into the arterial
circulation, which has high-flow and high-pressure conditions. These conditions increase
shear stress and wall tension on the graft, leading to compensatory graft dilation and
wall thickening, a process known as neo-intimal hyperplasia (NIH). NIH is characterized
by the proliferation and migration of vascular smooth muscle cells (VSMCs) from the
media to denuded and dysfunctional intima accompanied by the deposition of extracellular
matrix. NIH comes along as diffuse wall thickening and/or focal lumen irregularities
causing flow disturbances. NIH further predisposes the graft to thrombosis and accelerated
atherosclerosis [3]. Such negative remodeling may result in vessel stenosis and occlusion.
Early graft failures within one month post surgery are attributed to technical factors,
inadequate conduit quality, poor run-off, and acute thrombosis. NIH is a primary cause
of mid-term failures occurring from 1 month onward to 1–2 years postoperatively. Graft
atherosclerosis is responsible for late events [4].

Currently, the only proven methods to prevent VGD involve the “no-touch” vein
harvesting technique [5], lipid-lowering therapies, and antiplatelet agents [1]. Several other
strategies have been explored to combat VGD, including modified surgical techniques,
preservation solutions, topical ex vivo pretreatments, pharmacological interventions, gene
manipulations, and external stenting [1,4].

The VGD is considered biomechanical in nature [6], justifying the use of external stents
as an outer layer that protects vein grafts in arterial circulation [6]. External mesh devices
influence venous wall remodeling post-arterial grafting in several ways. They reduce
wall tension and prevent non-uniform dilation, thereby improving lumen uniformity and
flow patterns. Furthermore, these supports facilitate adventitial neovascularization and
redirect VSMC migration outwards through a reverse chemotactic gradient [7]. These
actions mitigate wall thickening and suppress the formation of NIH and the development
of graft atherosclerosis.

External stenting has shown considerable promise in preclinical [3,8] and, to some
extent, in clinical studies [9,10] (for a review, see [6,11,12]). Most clinical trials have been
conducted on CABG surgery [13]; however, reports on PABG surgery are limited [14,15].

The aim of our in vivo animal study was to investigate the effect of a current-generation
FRAME external support device, which is intended for peripheral vascular surgery, on
patency and neointima formation of autologous internal jugular vein interposition grafts
that were implanted in porcine carotid arteries. Four weeks after implantation, we found
that supported grafts had lower occlusion and stenosis rates than their control unsup-
ported counterparts.
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2. Materials and Methods
2.1. Surgery
2.1.1. Implantation

Our porcine animal model with respect to carotid artery implantations has previ-
ously been described; these descriptions would include anesthesia and surgical consid-
erations [16]. With regards to the handling of the pigs, we implemented standard means
of general anesthesia (GA), analgesia, and peri-operative care. The average weight of the
female domestic pigs (sus scrofa domesticus) at implantation was 42 ± 4 kg.

We carried out operative bilateral common carotid artery exposure with two neck
incisions under sterile conditions in a supine position. Using the no-touch technique
(albeit not exclusively), the internal jugular vein (IJV), which is anatomically located along
the carotid artery, was carefully retrieved and gently flushed with (and stored in) warm
heparinized saline. In order to identify and suture potential leaks, we applied routine
gentle surgical distension with a cannula and a syringe (without pressure monitoring).

The vein was harvested unilaterally from the right side in Pigs 1 and 2 and divided
into two halves, i.e., one graft each for the right and left side. In Pigs 3 and 4, the veins were
retrieved bilaterally and implanted in carotid arteries on the ipsilateral sides. We consider
bilateral retrieval of the IJV safe and well tolerated in swine since blood outflow from the
head may be secured via external jugular veins much larger (8–9 mm) than the retrieved
internal jugulars (4–4.5 mm) [17]. In addition, the diameter of the IJV grafts matched that
of the carotid arteries.

We also implanted autologous IJV grafts in right-sided carotids and autologous IJV
patch grafts in left-sided carotids in three additional pigs in another experiment (Pigs 5–7).
We shared the right-sided implants as controls in the current study to reduce the number of
animals within the 3R principle (reduction, replacement, and refinement).

After full heparinization (200 IU/kg initially plus redosing according to activated
clotting time), a ~2–3 cm-long segment of the cross-clamped common carotid artery was
resected and replaced with an autologous vein interposition graft, which was implanted
under optical magnification using end-to-end anastomoses with a running polypropylene
7/0 suture. The tubular FRAME mesh was threaded over the vein grafts upon completion
of the proximal anastomosis and prior to suturing the distal anastomosis. The grafts were
oriented in a reversed fashion due to valves enabling one-way blood flow in veins. The
implanted grafts eventually needed to be longer than the excised carotid segments due to
physiological retraction of the proximal and distal arterial stumps. Finally, the incisions
were closed in layers, and the animals were allowed to recover. Each animal was given
100 mg of aspirin one day prior to surgery and thereafter received the same dose daily.

The FRAME device was purchased from Vascular Graft Solutions (VGS, Tel Aviv,
Israel; locally traded by CARDION Ltd., Brno, Czech Republic). This is a flexible, kink-
resistant, braided, metal (chromium-cobalt alloy) external mesh support apparatus used
for vein grafts in peripheral (i.e., non-cardiac) bypass and reconstruction procedures. The
device features axial plasticity as well as radial elasticity and is supposed to mitigate the
pathological remodeling of vein grafts. Product models A, B, C, and D are intended for vein
graft diameters of 3.5–4.5 mm, 4.6–5.5 mm, 5.6–6.5 mm, and 6.6–8.0 mm, respectively [18].
Throughout our study, we used the model B diameter based on intraoperative calibration.
Additionally, the company produces two other devices (not utilized in our study): the
FRAME FR device intended for support of arteriovenous fistulas for hemodialysis access;
and the VEST device used for coronary artery vein bypass grafts. No fixation of the external
stents is required. Our procedure is presented in Figure 1.
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Figure 1. Implantation of a FRAME-supported internal jugular vein interposition graft in a porcine 
carotid artery. (A)—Dissection of a common carotid artery (CCA, red arrow) and an internal jugular 
vein (IJV, smaller blue arrow). A larger external jugular vein was also visible (EJV, larger blue arrow). 
N. X—vagal nerve, tenth cranial nerve, yellow arrow. (B)—A flowmetry probe was placed around 
the native carotid artery to measure blood flow volume prior to graft implantation. (C)—Retrieved 
reversed internal jugular vein graft. (D)—Completion of proximal anastomosis in an end-to-end 
fashion (red arrow). (E)—Calibration and selection of FRAME mesh diameter on a pressurized vein 
graft. (F)—Application of the FRAME mesh (white arrows) over a non-pressurized vein graft. The 
distal stump of the carotid artery is visible (red arrow). (G)—Completion of distal anastomosis in 
an end-to-end fashion (red arrow). The FRAME device was pushed proximally (white arrows). 
(H)—Alignment of the FRAME mesh (white arrows) over the entire graft. A flowmetry probe was 
placed around the FRAME-supported vein graft to measure blood flow volume immediately after 
implantation. (I)—Dissection of the graft from postoperative fibrous adhesions (white arrows) 
during the explantation procedure carried out one month (M) post implantation. The adjacent native 
carotid artery was encircled with rubber loops placed proximally and distally to the graft location 
(red arrows). (J)—Flowmetry at explantation on a surgically exposed graft. 

In Pig 1, we deployed the FRAME support mesh over the vein grafts bilaterally, i.e., 
both on the right and left sides. In Pig 2, we implanted bare unsupported vein grafts 
bilaterally as controls. In Pigs 3 and 4, the FRAME support device was applied on the 
right-sided grafts, while the left sides comprised unsupported control grafts. In this 
manner, Pigs 3 and 4 served as their own controls. A list of all implanted grafts is 
presented in Table 1. The mean graft length was somewhat greater in the FRAME group 
(4.6 ± 0.8 cm) than in the control group (3.8 ± 1.1 cm); however, the difference was not 
statistically significant (p = 0.227). 

  

Figure 1. Implantation of a FRAME-supported internal jugular vein interposition graft in a porcine
carotid artery. (A)—Dissection of a common carotid artery (CCA, red arrow) and an internal jugular
vein (IJV, smaller blue arrow). A larger external jugular vein was also visible (EJV, larger blue arrow).
N. X—vagal nerve, tenth cranial nerve, yellow arrow. (B)—A flowmetry probe was placed around
the native carotid artery to measure blood flow volume prior to graft implantation. (C)—Retrieved
reversed internal jugular vein graft. (D)—Completion of proximal anastomosis in an end-to-end
fashion (red arrow). (E)—Calibration and selection of FRAME mesh diameter on a pressurized vein
graft. (F)—Application of the FRAME mesh (white arrows) over a non-pressurized vein graft. The
distal stump of the carotid artery is visible (red arrow). (G)—Completion of distal anastomosis
in an end-to-end fashion (red arrow). The FRAME device was pushed proximally (white arrows).
(H)—Alignment of the FRAME mesh (white arrows) over the entire graft. A flowmetry probe
was placed around the FRAME-supported vein graft to measure blood flow volume immediately
after implantation. (I)—Dissection of the graft from postoperative fibrous adhesions (white arrows)
during the explantation procedure carried out one month (M) post implantation. The adjacent native
carotid artery was encircled with rubber loops placed proximally and distally to the graft location
(red arrows). (J)—Flowmetry at explantation on a surgically exposed graft.

In Pig 1, we deployed the FRAME support mesh over the vein grafts bilaterally, i.e.,
both on the right and left sides. In Pig 2, we implanted bare unsupported vein grafts
bilaterally as controls. In Pigs 3 and 4, the FRAME support device was applied on the right-
sided grafts, while the left sides comprised unsupported control grafts. In this manner, Pigs
3 and 4 served as their own controls. A list of all implanted grafts is presented in Table 1.
The mean graft length was somewhat greater in the FRAME group (4.6 ± 0.8 cm) than in
the control group (3.8 ± 1.1 cm); however, the difference was not statistically significant
(p = 0.227).
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Table 1. List of FRAME-supported and control internal jugular vein interposition grafts implanted in
porcine carotid arteries. Beveling refers to anastomosis beveling.

Right Carotid Artery Left Carotid Artery
Protocol # Group Graft Beveling Length (cm) Group Graft Beveling Length (cm)

Pig 1 50 FRAME IJV right No 5.0 FRAME IJV right No 3.5
Pig 2 56 Control IJV right Yes 4.0 Control IJV right Yes 2.5
Pig 3 60 FRAME IJV right Yes 5.0 Control IJV left Yes 5.0
Pig 4 61 FRAME IJV right Yes 5.0 Control IJV left Yes 5.0
Pig 5 20 Control IJV right No 2.5 N/A
Pig 6 29 Control IJV right No 4.0 N/A
Pig 7 48 Control IJV left No 4.0 N/A

FRAME Control

Mean ± SD 4.6 ± 0.8 cm (n = 4) 3.8 ± 1.1 cm (n = 7) n.s. p = 0.227

IJV—internal jugular vein, N/A—not applicable SD—standard deviation, n.s.—non-significant, #—number.

2.1.2. Flowmetry

Blood flow volume was measured using a flow probe (Transonic, ADInstruments, Ox-
ford, UK) in the following manners and times periods: (1) on the surgically exposed native
artery during the implantation procedure prior to grafting; (2) during the implantation
procedure immediately after vein grafting; and (3) during the explantation procedure (one
month post implantation) immediately after angiography, when the graft was dissected
from postoperative adhesions. Before carrying out flow measurements, we bathed the
wounds in warm saline for 10–20 min in an attempt to relax the graft spasm brought on
by surgical manipulation. The highest measured flow rate was taken into account. We are
aware that flowmetry is burdened by interindividual variability and may be influenced
by vasospasm (see flow values before and after implantations in the Results Section 3.1.2.
Flowmetry). Therefore, a more precise and gold-standard evaluation of patency is through
angiograms of undissected vessels.

2.1.3. Angiography

After a period of 1 month, i.e., 28 days, the pigs underwent angiographic examination
and graft explantation under a second GA. The average body weight of the animals at
explantation was 58 ± 5 kg. Selective carotid angiography (X-ray mobile C-arm Ziehm
Vision FD, Ziehm Imaging, Ltd., Nuremberg, Germany) with an iodinated contrast agent
(Optiray, Guerbet, Princeton, NJ, USA) was carried out using the femoral artery access
according to the Seldinger technique. Each graft was arbitrarily divided into three portions:
proximal anastomosis, mid-graft, and distal anastomosis; this amounted to a total of
12 areas (4 grafts × 3 portions) in the FRAME and 21 areas (7 grafts × 3 portions) in the
control group. The degree of eventual stenosis in each graft area was calculated according
to the North American Symptomatic Carotid Endarterectomy Trial (NASCET) formula, i.e.,
[1 − (G/C) ] × 100, wherein G represents the diameter of the investigated graft portion and
C represents the diameter of the adjacent native carotid artery [19]. We carried out anterior-
posterior, right lateral, and left lateral projections at an angle of 30◦. Therefore, narrowing
(expressed as percentage) was calculated as a mean of these three values. A narrowing of
≤40%, 41–60%, and >60% were considered mild, moderate, and severe cases of stenosis,
respectively.

2.1.4. Explantation

Immediately following the angiographic examinations, we carefully dissected the
implants, carried out flowmetry measurements on exposed grafts, and explanted them
along with parts of native carotid arteries. Heparin was not administered during the
explantation procedure. The retrieved samples were gently flushed with warm saline,
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cross-sectioned at equidistant points along the entire graft, and photographed. The animals
were then euthanized with an overdose of thiopental and potassium.

2.2. Macroscopic Examinations

All cross-section photo-macrographs were zoomed-in and examined for the devel-
opment of luminal neo-intima. We used QuPath open-source software (version 0.3.0) to
analyze macrograph images [20]. Average NIH thickness (µm2/µm) was calculated as the
NIH area (µm2) divided by the presumed (original) lumen circumference (µm) [19]. The
mean values were calculated from all sections of each graft within a specific group. We
used this formula uniformly with all possible NIH events: circular, semicircular (i.e., not
covering the entire lumen circumference), and even with total graft occlusions (Figure 2).
We observed NIH in all cases, with the exception of the left-sided midgraft in Pig 1; we
therefore took a zero value into account in this case.
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Figure 2. Measurement of neo-intimal hyperplasia (NIH) area and thickness using zoomed macro-
graphs of cross-sectioned explants in Pigs 1, 2, 3, and 4 ((A), (B), (C), and (D), respectively). Average
NIH thickness (µm2/µm) was calculated as the NIH area (µm2) divided by the original lumen
circumference (µm).

Near occlusion and total graft occlusions that occurred in the control group can induce
atrophy, i.e., shrinkage of the graft diameter. As such, the NIH area divided by the original
lumen circumference may give lower values. Despite this, the outcomes regarding NIH
formation were more favorable in the FRAME group than in the control group. In contrast,
other studies did not include occluded grafts in their analysis [21].

NIH values were calculated separately for proximal anastomoses and midgraft sec-
tions. Sufficient NIH measurements for distal anastomoses could not be acquired due to
technical reasons: three of the four distal anastomoses in the FRAME group and two in the
control group were not cross-sectioned but rather cut open longitudinally, which impeded
analysis more so than with the other graft portions. Distal anastomotic regions, however,
were evaluated angiographically.

We could not process the supported grafts for histological examinations because of the
adhering FRAME mesh. The presence of any metal material precludes common histological
sectioning. The required technology and equipment, which include methyl-methacrylate
resin embedding as well as appropriate tungsten carbide blade for cutting [7,22], were not
available to us [23].

We are aware of the potential inaccuracy in measuring NIH parameters using macro-
graphs as opposed to histological images, which produce more precise measurements.
Similar inaccuracies, however, were most likely present for the FRAME and control groups.
That is why we considered detailed macroscopic image analysis sufficient for group com-
parisons. Moreover, digital analysis of macroscopic images has been reported in previous
studies [22].
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2.3. Microscopical Examinations
2.3.1. Histology and Immunohistochemistry

The cross-sectioned control samples (without FRAME metal support) were emersion
fixed with 4% formaldehyde (48 h), embedded in paraffin, cut into 4–5 µm thick sections,
mounted on glass slides, dried and stained with hematoxylin and eosin (Merck & Co.,
Inc., Kenilworth, NJ, USA) and Weigert van Gieson and Resorcin-fuchsin for elastic fibers
(proprietary method). We carried out immunostaining for the expression of alpha-smooth
muscle actin (primary antibody: REF: 202M, Cell Marque Corp., a part of MilliporeSigma,
Rocklin, CA, USA; secondary antibody: provided as part of the UltraView Universal DAB
Detection Kit, REF: 760–500, Ventana Medical Systems, Inc., Roche Group, Tucson, AZ,
USA), endothelial marker CD31 (primary antibody: REF: NB100-2284, Novus Biologicals,
LLC, Centennial, CO, USA; secondary antibody: REF: BA-1000, Vector Laboratories, Inc.,
Burlingame, CA, USA), and endothelial marker ERG (primary antibody: REF: 434R, Cell
Marque Corp., a part of MilliporeSigma, Rocklin, CA, USA; secondary antibody: provided
as part of the OptiView DAB IHC Detection Kit, REF: 760–700, Ventana Medical Systems,
Inc., Roche Group, Tucson, AZ, USA). The slides were viewed and scanned with an
Olympus VS110-S5 Slide Scanner (Olympus, Hamburg, Germany).

We used QuPath open-source software (version 0.3.0) for digital pathology image anal-
ysis [20] and measured NIH area and thickness in multiple midgraft histological sections
of the control grafts. The NIH thickness was calculated in a manner identical to that of the
macrograph method, i.e., the NIH area divided by the original lumen circumference. These
parameters can be measured precisely using histology images: the NIH area was defined
as any neo-tissue luminal from internal elastic lamina, and the presumed (original) lumen
circumference was delineated by this internal elastic lamina. The neo-tissue abluminal
from external elastic lamina was termed neo-adventitia.

2.3.2. Macro Photography

Macro photographs were taken under an Olympus SZX125 dissecting microscope
using, a 1.0× objective, and DP 74 CCD camera (Olympus, Japan).

2.3.3. Confocal Microscopy

Confocal imaging was performed following whole mount staining, as described re-
cently [24], with anti-von Willebrand factor antibody (1:50, Sigma #3520, Sigma-Aldrich,
Saint Louis, MO, USA), detected with Cy5 secondary antibody (Jackson ImmunoResearch,
Cambridgeshire, UK) to label the endothelial cells. The instrument used was an Olym-
pus BX61 upright microscope fitted with an Olympus Fluoview FV1000 confocal system
(Olympus, Hamburg, Germany). The stained specimens underwent clearing in CUBIC
for 24 h, as described in references [25,26], and were then pinned to the bottom of a
deep Sylgard-coated Petri dish for imaging. Imaging utilized a 2× 0.14 NA dry and a
10× 0.6 NA multi-immersion objectives with appropriate excitation and emission settings.
A 25× 1.0 NA multi-immersion objective was used for high-power views, allowing for up
to 1 µm z-resolution.

2.3.4. Scanning Electron Microscopy (SEM)

SEM was carried out using an established protocol [27]. The fixed samples underwent
extensive washing in phosphate-buffered saline (1× PBS, pH 7.2) and were postfixed in
a buffered solution of 1% OsO4 for one hour at room temperature. Following another
round of extensive washing with 1× PBS, the samples were dehydrated in a graded series
of alcohols (25%, 50%, 70%, 80%, 96%, 100%, and 100%) and subsequently dried in a
K850 Critical Point Dryer (Quorum Technologies Ltd., Ringmer, UK). The dried samples
were then mounted onto standard aluminum SEM stubs and sputter-coated with a 3 nm
layer of platinum using a high-resolution Q150T Turbo-Pumped Sputter Coater (Quorum
Technologies Ltd., Ringmer, UK). For the final analysis, the samples were examined under
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an FEI Nova NanoSEM 450 scanning electron microscope (FEI, Brno, Czech Republic)
employing an SED detector at a voltage of 5 kV.

2.4. Statistical Analysis

Continuous variables with normal distribution were expressed as mean and standard
deviation (SD). NIH values are expressed as the mean and standard error of the mean (SE).
A two-tailed Student’s t-test was used to compare two data sets, while a one-way analysis
of variance (ANOVA, Newman–Keuls test) was implemented for three data sets, and
finally, the log-rank (Mantel-Cox) test was used for survival (patency) analysis. Categorical
variables were presented as positive and negative observations (expressed as percentages)
and compared using a two-tailed Fisher’s exact test. Data were computed in Microsoft
Excel (version 2108) spreadsheets. We utilized GraphPad Prism software (version 5.03,
2009) for statistical evaluations. A p-value of ≤0.05 was considered statistically significant.

3. Results
3.1. Surgery
3.1.1. Implantation

The mean surgery time was 152 ± 28 min. There were no significant peri-operative or
post-operative adverse events. The mean carotid artery clamping time was 40 ± 8 min in
the FRAME group and 33 ± 6 min in the control group (p = 0.116). The slightly longer time
for the FRAME group was statistically non-significant (n.s.), which indicates favorable and
swift surgical handling when deploying the FRAME device. Intra-operative views of im-
planted constructs, pre-explant angiograms, and macrographs of cross-sections explanted
at 1 month post implantation are shown in Figure 3. Views of the additional three control
grafts are shown in Figure 4.
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Figure 3. Implantation, pre-explantation angiography, and explantation of autologous internal jugular
vein interposition grafts in porcine carotid arteries of Pigs 1 (A–D), 2 (E–H), 3 (I–L), and 4 (M–P). We
implanted grafts supported with FRAME mesh as well as unsupported grafts as controls. Macroscopic
views of the grafts after declamping and hemostasis during implantations are shown in the left-
hand column. Selective carotid angiograms performed from femoral access at 1 month (1 M) post
implantation are shown in the middle two columns (anterior-posterior and lateral projections). Gross
appearances of cross-sectioned explants at 1 M are presented in the right-hand column. Proximal
and distal anastomoses are marked with arrows; green indicates no or mild stenosis (≤40%), yellow
moderate (41–60%), and red severe stenosis (>60%) or occlusion.
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Figure 4. Implantation, pre-explantation angiography, and explantation of autologous internal jugular
vein grafts in porcine carotid arteries of Pigs 5 (A–D), 6 (E–H), and 7 (I–L). We implanted interposition
grafts to the right-sided carotids and patch grafts to the left-sided carotids. We utilized the right-sided
implants as controls to reduce the numbers of experimental animals. Macroscopic views of the
grafts after declamping and hemostasis during implantations are shown in the left-hand column.
Selective carotid angiograms performed from femoral access at 1 month (1 M) post implantation are
shown in the middle two columns (anterior-posterior and lateral projections). Gross appearances
of cross-sectioned explants at 1 M are presented in the right-hand column. Proximal and distal
anastomoses are marked with arrows; green indicates no or mild stenosis (≤40%), yellow moderate
(41–60%), and red severe stenosis (>60%) or occlusion. (B,C)—red arrows point at metal clips, which
indicate boundaries of the occluded grafts. (J,K)—red arrows point at proximal stumps of occluded
carotid arteries.

3.1.2. Flowmetry

Flowmetry results and mean arterial pressures (MAPs) at three time points: native
carotid artery before graft implantation, after graft implantation, and explantation at one
month (i.e., after 28 days), are presented in Table 2. In the FRAME group, mean blood
flow dropped insignificantly after implantation, most likely due to vasospasms and graft
placement per se. Differences between the three time points were not significant. At explan-
tation, flow in the right-sided graft in Pig 1 was markedly lower than in the three remaining
FRAME-supported grafts, indicating more significant stenosis in proximal anastomosis
consistent with the angiograms. Flow in the remaining three FRAME-supported grafts
was normal.

In the control group, mean blood flow after graft implantation dropped significantly,
most likely also due to vasospasms, graft placement per se, as well as lower, albeit non-
significant MAP. The mean flow at explantation dropped markedly, which was statistically
significant in contrast to the values prior to implantation. Neither the FRAME group nor
the control group exhibited any differences between MAPs.

There were no statistically significant differences in mean flows nor in the MAPs
between the FRAME and control groups at any time point. The flow at explantation in the
control group was zero in four out of the seven grafts due to graft occlusions and as low as
22 mL/min in the left-sided graft in Pig 3, indicating a failing graft. Flow in the stenotic
right-sided graft in Pig 6 was subnormal. The only graft with sufficient flow in the control
group was the right-sided graft in Pig 2. Flowmetry results at explantation were, therefore,
generally better in the FRAME group, although narrowly missing statistical significance
(p = 0.066) due to high variations (Figure 5).
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Table 2. Flowmetry results in FRAME-supported and control groups of autologous internal jugular
vein interposition graft in porcine carotid arteries at three time points: native carotid artery prior to
implantation, after graft implantation, and at explantation (1 month post implantation).

FRAME Pre-Implantation Post-Implantation Explantation 1 M

Blood Flow
(mL/min) MAP (mmHg) Blood Flow

(mL/min) MAP (mmHg) Blood Flow
(mL/min) MAP (mmHg)

Pig 1 right 85 67 100 72 85 67
Pig 1 left 185 77 220 84 185 77

Pig 3 right 120 76 95 76 120 76
Pig 4 right 190 69 250 67 190 69

Mean ± SD 228 ± 51 73 ± 8 166 ± 80 75 ± 7 145 ± 51 72 ± 5

ANOVA p = 0.208 n.s. n.s. n.s.
ANOVA p = 0.845 n.s. n.s. n.s.

Control

Pig 2 right 160 65 95 56 230 67
Pig 2 left 450 65 60 58 0 70
Pig 3 left 310 88 190 71 22 80
Pig 4 left 320 77 130 68 0 73

Pig 5 right 400 66 20 60 0 82
Pig 6 right 160 56 75 51 70 74
Pig 7 right 270 68 90 89 0 80

Mean ± SD 296 ± 110 69 ± 10 94 ± 54 65 ± 13 46 ± 85 75 ± 6

ANOVA p = 0.0001 * vs. Pre-impl. * vs. Pre-impl.
ANOVA p = 0.177 n.s. n.s. n.s.

FRAME vs. Control p = 0.280 p = 0.601 p = 0.107 p = 0.186 p = 0.066 p = 0.419

MAP—mean arterial pressure, SD—standard deviation, M—month, n.s.—non-significant, vs. versus, * statistically
significant difference.
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significantly more favorable angiographic results in the FRAME group (p = 0.0009). The 
one-month patency rate of FRAME-supported grafts was 100% (4/4), while that of 
unsupported control grafts was 43% (3/7) (Figure 6C). However, the obvious difference in 

Figure 5. Flowmetry results in (A) FRAME-supported and (B) control groups of autologous internal
jugular vein interposition grafts in porcine carotid arteries at three time points: native carotid artery
prior to graft implantation, after graft implantation, and at explantation (1 month post implantation).
See Table 2 for exact numbers and statistics.

3.1.3. Angiography

Angiography results in the form of a heat map are summarized in Table 3. They
closely correlate with flowmetry results from Table 2 and Figure 5. The correlation is shown
in Figure 6A; the percentage of angiographic patency was inversely proportional to the
percentage of the most severe angiographic stenosis in each graft listed in Table 3. The
left-sided graft in Pig 4 appeared near occluded on the angiogram; however, we considered
this graft completely occluded given the zero flow reading.
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Table 3. Quantitative angiography results in a tabular heat map. Degrees of stenosis in proximal
anastomoses, graft body, and distal anastomoses are given as means from three measurements
(anterior-posterior, right lateral, and left lateral (30◦ angles) projections), calculated according to
the North American Symptomatic Carotid Endarterectomy Trial (NASCET) formula (see Methods).
Green color indicates no or mild stenosis (≤40%), while yellow and red indicate moderate (41–60%)
and severe stenosis/occlusion (>60%), respectively. We considered the left-sided graft in Pig 4
occluded based on zero flow reading. There are significantly more green areas in the FRAME group
(9/12) than in the control group (3/21, p = 0.0009).

FRAME Proximal Anastomosis Graft Body Distal Anastomosis

Pig 1 right Severe stenosis 68% No stenosis * Mild stenosis 36%

Pig 1 left Moderate stenosis 60% No stenosis Mild stenosis 14%

Pig 3 right Severe stenosis 66% No stenosis * Mild stenosis 40%

Pig 4 right Mild stenosis 37% No stenosis * Mild stenosis 11%

Control

Pig 2 right Moderate stenosis 56% No stenosis Mild stenosis 29%

Pig 2 left Occlusion Occlusion Occlusion

Pig 3 left Severe stenosis 76% Mild long stenosis 25% Medium stenosis 41%

Pig 4 left Severe stenosis 73% Long near occlusion 84% Near occlusion 83%

Pig 5 right Occlusion Occlusion Occlusion

Pig 6 right Moderate stenosis 47% Moderate long stenosis 40% Moderate stenosis 52%

Pig 7 right Occlusion Occlusion Occlusion

* Mild eccentric semicircular non-stenotic neo-intimal hyperplasia on cross-sections.
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Figure 6. (A)—Correlation between blood flow and angiographic patency of FRAME-supported and
control autologous internal jugular vein interposition grafts in porcine carotid arteries one month
post implantation. (B)—Numbers of green versus yellow and red areas in the heat map from Table 3.
Green indicates no or mild stenosis (≤40%), while yellow and red indicate moderate (41–60%) and
severe stenosis/occlusion (>60%), respectively. Each graft was divided into three sections: proximal
anastomosis, midgraft, and distal anastomosis. This provided a total of 12 areas in the FRAME group
and 21 in the control group. There are significantly more green areas in the FRAME group (9/12,
p = 0.0009) than in the control group (3/21). (C)—Patency rates in the FRAME-supported and control
groups. The graph is a schematic representation of patency rates at one month, i.e., 28 days post
implantation, since we do not know the exact times of graft occlusions, i.e., drops of the curve in the
control group. The one-month patency rate was 100% (4/4) for the FRAME and 43% (3/7) for the
control group. The difference fell just short of statistical significance (Log-rank p = 0.071, Fisher exact
p = 0.194), most likely due to the low number of grafts.

Nine out of twelve areas in the FRAME group were green, whereas only three out of
twenty-one areas in the control group were green (Figure 6B), which indicates significantly
more favorable angiographic results in the FRAME group (p = 0.0009). The one-month
patency rate of FRAME-supported grafts was 100% (4/4), while that of unsupported control
grafts was 43% (3/7) (Figure 6C). However, the obvious difference in patency rates narrowly
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missed statistical significance (Log-rank p = 0.071, Fisher exact p = 0.194), which was most
likely due to the low number of grafts.

3.1.4. Explantation and Macroscopical Examinations

Average NIH area and thickness values calculated from macrograph analysis are given
in Table 4 and in Figure 7. The NIH was less pronounced in FRAME-supported than in
control grafts, albeit non-significantly in proximal anastomoses. However, in midgraft
sections, the difference was statistically significant; this was also the case when proximal
anastomosis and midgraft portions were calculated together, which gave an overview of
the majority of the grafts. Mild eccentric semicircular non-stenosing NIH was observed in
midgraft portions in three of the four FRAME-supported grafts. This type of NIH was not
visible on angiograms. Notably, there was no NIH whatsoever in the left-sided midgraft of
Pig 1 (Figure 3D).

Table 4. Area and thickness of neo-intimal hyperplasia (NIH) in FRAME-supported and control
internal jugular vein interposition grafts in porcine carotid arteries at one month post implantation.
Data are presented as means ± standard errors of NIH area and thickness computed from a digital
analysis of macrographs of serial cross-sections along the grafts. Thickness was calculated as the NIH
area divided by the original lumen circumference.

Neointimal Area (mm2) Proximal Anastomosis Midgraft Prox. Anastomosis and Midgraft

Control 6.94 ± 1.10 6.27 ± 0.64 6.38 ± 0.56
FRAME 5.79 ± 1.34 3.73 ± 0.64 4.53 ± 0.68

Reduction (%) 16.6% 40.5% 29%
t-test n.s. p = 0.558 * p = 0.022 * p = 0.044

Neointimal Thickness (µm2/µm)

Control 587 ± 52 518 ± 36 530 ± 32
FRAME 480 ± 95 258 ± 49 344 ± 53

Reduction (%) 18.2% 50.2% 35.1%
t-test n.s. p = 0.401 * p = 0.0002 * p = 0.002

n.s.—non-significant, * significant.
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patent grafts. 
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consequence of tissue shrinkage during histological processing. Zilla et al. presented a 
similar fixation-related tissue shrinkage of 9.9% ± 3.9% [28]. We could not directly compare 
histological NIH values between the FRAME and control groups since we were unable to 
conduct histological examinations of the FRAME-supported grafts (see Materials and 
Methods). However, the mean NIH thickness in the FRAME midgrafts (258 ± 49 µm2/µm) 
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in control (p = 0.0062). It is noteworthy that other research studies have acquired and 
compared vascular dimensions from two different measurement methods, e.g., 
ultrasound and the morphometry of pressure-fixed samples [28]. 

Figure 7. (A) Area and (B) thickness of neo-intimal hyperplasia (NIH) in FRAME-supported and
control internal jugular vein interposition grafts in porcine carotid arteries at one month post implan-
tation. Data are given as means ± standard errors of NIH area and thickness computed from a digital
analysis of macrographs of serial cross-sections along the grafts. Thickness was calculated as NIH
area divided by the original lumen circumference. The asterisks (*) indicate statistical significance
between FRAME and control groups.

We were unable to measure NIH in distal anastomoses due to technical issues. There
were, however, no significant angiographic stenoses in the distal anastomoses of the FRAME
group, which was in contrast to the control group (Figure 3 and Table 3). This is further
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indication of the overall more favorable outcomes provided by the FRAME support in
terms of protection against NIH development.

3.2. Microscopical Examinations
3.2.1. Histology and Immunohistochemistry

Histology and immunostaining examinations of the unsupported control grafts are
shown in Figure 8. The seven samples were lined up according to degree of pathological
remodeling and vein graft lesions, i.e., patent, mildly stenotic, severely stenotic, or totally
occluded. The micrographs correlate with angiography and flowmetry examinations. Four
of the seven grafts became occluded (Pigs 2 left, 4 left, 5 right, and 7 right), two remained
patent but developed substantial neointima (Pigs 3 left and 6 right), and only the right-sided
graft in Pig 2 was wide open with insignificant NIH. Detailed microscopical examinations
are shown in Figure 9. Endothelial coverage was visible in the patent grafts.
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Figure 8. Microscopical examinations of autologous internal jugular vein interposition grafts in
porcine carotid arteries at one month post implantation (control group). Representative cross-sections
of the midgraft regions are shown in Pigs 2 (A–D and U–X), 3 (E–H), 4 (M–P), 5 (Y–Z2), 6 (I–L), and
7 (Q–T). The seven control samples are ordered from left to right according to degree of pathological
remodeling and vein graft lesions, i.e., patent, mildly stenotic, severely stenotic, or totally occluded
(see Figure 9 for more details). We performed histological staining with hematoxylin and eosin
and Weigert van Gieson and Resorcin-fuchsin (elastica), as well as immunohistochemistry of alpha-
smooth muscle (SM) actin and endothelial markers ERG (D,L,P,X) or CD31 (H,T,Z2). Magnification
was 20×.

The control midgrafts, calculated from histological sections, had a mean NIH area
and thickness of 4.73 ± 0.58 mm2 and 458 ± 45 µm2/µm, respectively. These values were
25% (area) and 12% (thickness) lower than those calculated from the zoomed-in photo-
macrographs (6.27 ± 0.64 mm2 and 518 ± 36 µm2/µm, respectively), most likely as a
consequence of tissue shrinkage during histological processing. Zilla et al. presented a
similar fixation-related tissue shrinkage of 9.9% ± 3.9% [28]. We could not directly compare
histological NIH values between the FRAME and control groups since we were unable
to conduct histological examinations of the FRAME-supported grafts (see Materials and
Methods). However, the mean NIH thickness in the FRAME midgrafts (258 ± 49 µm2/µm)
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was still significantly lower than that in the control grafts, even when utilizing two different
methods of measurement: macroscopic in FRAME and histological (i.e., shrank) in control
(p = 0.0062). It is noteworthy that other research studies have acquired and compared
vascular dimensions from two different measurement methods, e.g., ultrasound and the
morphometry of pressure-fixed samples [28].
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Figure 9. Detailed microscopical examinations of autologous internal jugular vein interposition
grafts in porcine carotid arteries at one month post implantation (control group). Representative
cross-sections of the midgraft regions are shown. (A–D) shows a patent graft with minimal neointimal
hyperplasia (NIH), (E–H) shows a patent graft with moderate NIH, (I–L) shows a patent graft with
severe NIH, and (M–P) shows a graft occluded with substantial NIH and a thrombus. We performed
histological staining with hematoxylin and eosin and Weigert van Gieson and Resorcin-fuchsin
(elastica), as well as immunohistochemistry of alpha-smooth muscle actin and the endothelial nuclear
marker ERG. Magnification was 20×. Abbreviations: Lum—lumen, NIH—neo-intimal hyperplasia,
Med—tunica media, Adv—tunica adventitia (neo-adventitia), IEL—internal elastic lamina, and
Thr—thrombus.

3.2.2. Confocal Microscopy and Scanning Electron Microscopy (SEM)

The macrograph and corresponding confocal micrograph of the midgraft section of
the left-sided FRAME-supported graft of Pig 1 are presented in Figure 10. The graft was
wide open, and there was literally no neointimal formation. Due to the graft wall being



Biomedicines 2024, 12, 1335 16 of 28

extremely delicate, the mesh contours were visible throughout its entirety. The lumen was
smooth and lined with endothelial cells.
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Figure 10. Pig 1—Representative photographs of the left-sided midgraft section at explantation
(one month post implantation). (A)—Photo-macrograph, scale bar = 1 mm. The graft is patent, and
the FRAME mesh is visible from the inside. (B)—Photo-micrograph, confocal microscopy, scale
bar = 1 mm. The graft lumen is lined with endothelial cells (red color). Red represents staining for
von Willebrand factor; blue represents 4′,6-diamidino-2-phenylindole (DAPI) counterstain for cell
nuclei; and green is autofluorescence (confocal microscope Olympus Fluoview FV1000).

Macrographs, confocal micrographs, macrographs taken with a microscope, and SEM
micrographs of the right-sided FRAME-supported grafts and left-sided bare control grafts
from the same animal are shown in Figure 11. Semicircular NIH regions that brought
about mild stenosis (Pig 3) and no stenosis (Pig 4) were visible in the lumen of the FRAME-
supported grafts. Conversely, NIH in the form of severe circular stenosis (Pig 3) and near
occlusion (Pig 4) was found in the control grafts. All grafts were lined with endothelium.
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Figure 11. Pig 3 and Pig 4 (representative photographs at explantation, i.e., one month post im-
plantation); (A–F), left two columns: representative photographs of proximal graft sections of Pig 3.
First column (A–C): right-sided FRAME-supported graft; semicircular neo-intimal hyperplasia (NIH)
causing mild stenosis is visible in the lumen. Second column (D–F): left-sided unsupported control
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graft; circular NIH causing severe stenosis is found in the lumen. (A,D)—photo-macrographs, scale
bar = 1 mm. (B,E)—confocal micrographs, magnification 2×, scale bar = 1 mm; insets: high-power
views, magnification 25×, scale bar = 50 µm. Both grafts possess endothelial cells in the lumen. Red
represents staining for von Willebrand factor; blue represents 4′,6-diamidino-2-phenylindole (DAPI)
counterstain for cell nuclei; and green is autofluorescence (confocal microscope Olympus Fluoview
FV1000). (C,F)—macrographs from a dissecting microscope, scale bar = 1 mm. (G–L), right two
columns: representative photographs of midgraft sections of Pig 4. Third column (G–I): right-sided
FRAME-supported graft; semicircular NIH (no stenosis) is visible in the lumen. Fourth column
(J–L): left-sided unsupported control graft; circular NIH (near occlusion) is visible in the lumen.
(G,J)—photo-macrographs, scale bar = 1 mm. (H,I,K,L)—scanning electron microscopy, (H,K): scale
bars = 1 mm, (I): scale bar = 200 µm, and (L): scale bar = 10 µm; FEI Nova NanoSEM 450 scanning
electron microscope.

4. Discussion

In our in vivo animal study, we demonstrated the beneficial effects of external support
on porcine autologous vein-to-carotid artery interposition grafts. Specifically, we observed
improvements in patency rates and a reduction in the formation of neointimal hyperplasia
compared to control group without support. Our novel findings include (1) confirming
the efficacy of the latest generation external FRAME stenting device in preventing adverse
remodeling in the midgraft regions of veins, and (2) utilizing a specific model involving
internal jugular vein grafts interposed into the carotid artery circulation in pigs. The
beneficial effect was less pronounced at the proximal anastomoses.

4.1. Animal Model

A recent systematic review (2023) on large animal models of vein graft hyperplasia [8]
identified five studies that utilized porcine internal jugular veins as vascular graft in carotid
arteries [29–33]. Additionally, we have found one more [34]. All these studies investigated
the mechanisms or treatments of vein graft disease but did not involve the use of an external
stenting device. The sole study that explored the use of peri-vascular wrap on porcine IJVs
was conducted in vitro in a perfusion system [35]. The in vivo study designs and vein graft
patency rates, in comparison to our study, are presented in Table 5. The studies employing
interposition end-to-end grafting do not mention anastomosis beveling [29,31,34], with
one exception that explicitly reported the absence of beveling [33]. Additionally, most
studies have omitted details regarding intraoperative graft storage solutions [30–33]. In the
gene manipulation studies, the vein grafts were specifically rinsed in the gene transfection
solutions [29,34].

The published patency rates of porcine internal jugular vein-to-carotid artery grafts
varied from 37.5% to 100% at various time points. One-month patency rate of the control
grafts in our series was 42.9% (3/7). In analogy to our study, Quint et al. achieved a
one-month-patency rate of 37.5% (3/8) in an end-to-side bypass model [32].

In comparison, several large series of pig distended saphenous vein-to-carotid artery
interposition grafting demonstrated patency rates of, e.g., 60% (15/25) at one month [36]
and 64% (16/25) at 22 ± 2 (range 5–37) days [37]. Interestingly, grafts made with un-
distended veins harvested with a “no-touch” technique had significantly better patency
rates of 89% (8/9) [21], 96% (24/25) at 16 ± 2 (range 7 to 36) days [37], or even remarkable
rates of 100% (9/9) at 4 weeks [38]. Our inferior patency of the control grafts may possibly be
explained by using other graft types (jugular vs. saphenous veins) [37], not strictly applying
the “no-touch” harvesting technique [36], and using different animal subspecies [34].
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Table 5. Published studies using the internal jugular vein-to-carotid artery model in pigs. The
conventional vein graft harvest involves a technique as opposed to a no-touch technique.

Study Objective Animal
Model Graft Harvest Configuration Heparin Antiplatelet Period Patency

Chen et al.
1994 [29]

Vein graft gene
transfer (iNOS) Farm pig N/R, prob.

conventional
Interposition
end-to-end 300 IU/kg Aspirin 150

mg (3 ds bef.) 3 ds 100% (8/8)

Kibbe et al.,
2001 [34]

Vein graft gene
transfer
(VCAM)

Domestic pig N/R, prob.
conventional

Interposition
end-to-end 100 IU/kg N/R 21 ds 100% (8/8)

Bartels
et al.,

2003 [30]

Vein graft
brachytherapy,
control group

Hyperchol.
Landrace pig

N/R, prob.
conventional

Bypass
end-to-side N/R Aspirin 100

mg (post-op.) 4 wks 87.5%
(14/16)

Jevon et al.,
2011 [31]

Vein graft
disease study

Inbred
Landrace pig

N/R, prob.
conventional

Interposition
end-to-end 1000 IU/kg N/R 4 wks 100% (4/4)

Quint et al.,
2011 [32]

Tissue
engineering,

control group
Yorkshire pig N/R, prob.

conventional
Bypass

end-to-side 100 IU/kg

Aspirin 5
mg/kg +

clopidogrel
1 mg/kg,
(1 d bef.)

30 ds 37.5% (3/8)

Thim et al.,
2012 [33]

Vein graft
disease study

Hyperchol.
minipig

Conventional,
no distension

Interposition
end-to-end
not beveled

Yes, dose
N/R

Aspirin 150
mg (post-op) 12–14 wks 88.9% (8/9)

Our study
External
stenting,

control group
Domestic pig

Conventional,
gentle

distension

Interposition
end-to-end 200 IU/kg

Aspirin
100 mg (1 d

bef.)
4 wks 42.9% (3/7)

Abbreviations: before surgery and post-operatively (bef.), day (d), days (ds), hypercholesterolemic (hyperchol.),
inducible nitric oxide synthase (iNOS), not reported (N/R), post-operatively (post-op.), probably (prob.), vascular
cell adhesion molecule (VCAM), weeks (wks).

In the majority of our FRAME midgrafts, mild semicircular eccentric not stenotic NIH
was found, analogous to other studies [22]. This type of NIH, however, was not visible on
angiograms and may thus be regarded as clinically insignificant. On the contrary, control
midgrafts displayed NIH and negative remodeling ranging from stenotic lesions to total oc-
clusions. Notably, there was no intimal thickening at all in the left-sided FRAME-supported
midgraft in Pig 1. The contralateral right-sided graft was also supported with FRAME and
developed only mild lesions. By contrast, no adverse remodeling either was found in the
right-sided control graft in Pig 2. Here, the contralateral graft was also unsupported and
became occluded. This occlusion, however, might have been related to technical factors or
poor vein quality (insufficient diameter). It seems that FRAME functioned fully protectively
in one particular animal while the support was not needed in another particular one. It
has been postulated that some vein grafts adapt better to arterial conditions while others
undergo progressive negative remodeling [28,39]. In humans, possible individual genetic
predisposition to vein graft disease has been reported; polymorphism in the p27Kip1 gene
was associated with improved peripheral vein graft patency [40].

4.2. Anastomosis Considerations

Instructions for Use (IFU) advise covering the entire graft with the FRAME mesh
and positioning it as close as 2 mm to the anastomotic sites. In our experiment, the mesh
extended a few millimeters beyond the anastomoses, as shown in Figures 1 and 3. This
extension is feasible in end-to-end anastomosis within interposition grafting, unlike the
end-to-side anastomosis commonly used in bypass grafting. Specifically, coronary artery
procedures exclusively use end-to-side bypass grafting, while both end-to-side and end-to-
end configurations are employed in peripheral vascular reconstructions, including surgery
on extremity arteries. In their clinical series on replacing popliteal artery aneurysms,
Ciftci et al. (2021) adhered to the IFU guidelines [15]. Conversely, several experimental
studies, including ours, have placed the mesh over the anastomotic regions [7,21,41,42].
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Notably, anastomotic lesions in our study emerged irrespective of the FRAME device’s
use, with stenoses developing more frequently at proximal than at distal anastomoses
in both FRAME and control groups. Consequently, we believe that extending the mesh
over the end-to-end anastomoses in our experimental setup did not adversely affect the
outcomes. We further hypothesize that this placement may even offer additional protection,
particularly in distal anastomoses.

From a technical standpoint, the stent should initially permit unrestricted graft expan-
sion in response to arterial pressure. Additionally, a close fit of the external stent along the
vein graft is crucial for its effective function. The stent is supposed to be designed highly
porous and become incorporated into the neo-adventitia, as disruption of the adventitia
can lead to vessel wall hypoxia [38]. However, the anastomotic site is generally more sus-
ceptible to NIH development due to surgical trauma from stitches, graft/artery compliance
and diameter mismatches [3], and increased platelet aggregation [34]

In analogy to our findings, Zilla et al. (2011) observed manifold thicker NIH in anas-
tomotic regions compared to midgraft regions, possibly attributed to pannus overgrowth
from adjacent arteries, with this disparity being notably more pronounced in proximal
anastomoses [43]. Conversely, other studies have focused solely on NIH formation in
midgraft regions [22,28].

4.3. Existing Preclinical Data

Parsonnet et al. proposed using external support for vein grafts for the first time in 1963.
They applied a knitted polypropylene tube stent over the external jugular vein to carotid
artery interpose grafts in dogs to prevent dilation for up to 63 days [44]. External stents
made of various nonabsorbable and absorbable, loose-fitting and tight-fitting, polymeric
and metal materials (polyethylene terephthalate—Dacron, polytetrafluoroethylene—PTFE,
polyethylene, polypropylene, polyester, polygalactin, polydioxan, braided or knitted nitinol,
chrome-cobalt alloy) have been further tested as a treatment for vein graft disease in several
animal models (murine, leporine, canine, porcine, ovine), anatomical positions (carotid,
femoral, and coronary), and observational periods (usually from 4 weeks to up to 6 months);
for reviews, see [6,11]. For instance, a PTFE wrap around jugular vein grafts interposed
in common carotid arteries significantly reduced wall thickness, cross-sectional area, and
formation of foam cells in both normocholesterolemic and hypercholesterolemic rabbits for
8 weeks [45].

Large animal models, however, have predominated, owing to vessel dimensions
similar to man. In an ovine model, Ramachandra et al. (2022) implanted four external
jugular-to-carotid artery grafts that were externally wrapped with a biodegradable, braided
Vicril-Rapide scaffold. All of the wrapped grafts remained patent at four months; mean-
while, of the four control grafts, one developed an aneurysm, one exhibited severe stenosis,
and two remained patent with no signs of stenosis [41].

The research group of Angelini et al. showed numerous short-term and long-term
beneficial effects of polyester and polygalactin external stents on suppression of neointimal
hyperplasia and early atherosclerotic events in a model of pig saphenous vein-to-carotid
artery interposition grafting [21,38,46–51].

The group of Zilla et al. demonstrated positive effects of braided and knitted niti-
nol stents on various vessel dimensions in saphenous veins implanted as femoral
interposition or coronary bypass grafts in nonhuman primates—senescent Chacma
baboons [22,28,42,43,52–54] whose anatomy and vascular healing responses are closest to
man [55]. They even showed that extreme constriction led to almost absent neointima
formation in femoral grafts [53]. Based on different flow hemodynamics, shear stress
patterns, and target artery-to-graft caliber mismatch degrees, they found distinctly more
intimal hyperplasia in coronary than in femoral vein grafts [28]. Thus, the inhibitory effect
of nitinol stenting on neointimal tissue formation was still significant in coronary but
less pronounced than in infra-inguinal femoral grafts using the same baboon model [22].
Notwithstanding, they declared that milder coronary artery/saphenous vein graft diameter
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mismatch in humans would make the effect of mesh likely to be more pronounced when
clinically used [22].

Preclinical testing showed considerable promise; nonetheless, due to a range of techni-
cal or methodological issues, none of the external support frameworks were adopted into
routine surgical procedures [56].

Similar types of external stents as those in our study have been evaluated in the follow-
ing two preclinical studies in sheep. Ben-gal et al. (2013) proved the Fluent external stent
device (braided cobalt-chromium-nickel-molybdenum-iron alloy, VGS, Tel Aviv, Israel)
to be efficacious in reducing saphenous vein graft irregularity and intimal hyperplasia
and improving graft patency rate in an ovine case-controlled model (n = 10) of cardiac
revascularization over a period of 12 weeks [56]. Following this successful animal study,
a clinical randomized controlled trial was initiated (Venous External Stenting Trial, VEST
Trial). Nitecki et al. (2017) evaluated a novel braided cobalt-chromium external support for
peripheral, i.e., extra-cardiac, vascular reconstructions (FRAME, VGS, Tel Aviv, Israel) in an
ovine model (n = 6) of saphenous vein-to-carotid artery bilateral, case-controlled interposi-
tion grafting. All six supported and six unsupported grafts remained patent at 12–14 weeks.
The diameter of supported veins was unchanged, as opposed to unsupported grafts that
significantly dilated, elicited greater lumen irregularity (as shown by the angiographic
coefficient of variance), and also developed significantly more intimal hyperplasia [7].

4.4. Existing Clinical Data
4.4.1. Coronary Artery Bypass Grafting

First-generation external stents have given disappointing results, e.g., in 2007 with
the Extent device (Vascutek, Ltd., Inchinnan, Scotland) that was a knitted Dacron tube
reinforced with polytetrafluoroethylene ribs [57]. In 2015, studies with eSVS mesh (nitinol
knit, Kipsbay Medical, Inc., Minneapolis, USA) also reported discouraging outcomes [58,59].
Nevertheless, new technologies have emerged, and new trials have been conducted.

Current-generation VEST external support is a cobalt-chrome braid with axial plasticity
and radial elasticity. It is manufactured by the same company as FRAME (VGS Ltd., Tel
Aviv, Israel); however, VEST is intended for use in heart bypass surgery. In 2015, Taggart
et al. first reported a positive effect of VEST on suppressing NIH one year after CABG [60].
A recently published (2023) meta-analysis of three randomized controlled trials (the VEST I
trial [60], the VEST III trial [61], and the VEST Pivotal trial [62]) performed between 2011
and 2020, including 437 patients, summarized the current available evidence [9]. Each
patient received one stented and one or more non-stented control bypass grafts to obtain a
within-patient comparison. VEST did not seem to reduce the incidence of graft failure at
short-term follow-up of 1–2 years, although it was associated with significant attenuation
of graft nonuniformity or ectasia (as assessed by angiography) and significant reduction of
intimal hyperplasia area or thickness (as assessed by intravascular ultrasound). Thus, all
risk factors for the development of vein graft atherosclerosis were attenuated. A follow-up
of 4.5 years (“the VEST IV trial”) has been reported in 21 patients from the VEST I trial;
external stenting significantly reduced diffuse intimal hyperplasia and the development
of lumen irregularities; however, graft failure rates were still comparable between stented
and non-stented groups [63]. Other meta-analyses [64,65] and a review [13] have reported
similar conclusions. Larger trials with longer follow-ups are warranted to determine
whether the positive remodeling effects might translate into clinical benefits [6,9].

4.4.2. Peripheral Vascular Surgery

External reinforcements have been used for decades to cover varicose veins used
as grafts in peripheral (i.e., extra-cardiac) vascular surgery, most commonly in the lower
extremities, thus preventing the development of both graft aneurysm and stenosis. Neoin-
timal hyperplasia is actually more commonly formed in dilated grafts [66,67]. In a prospec-
tive multicenter study involving 50 patients and using polyester (polyethylene terephtha-
late, PET) mesh (ProVena, BBraun, Aesculap, Melsungen, Germany), an acceptable 6-month
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primary patency rate of 82.3% was achieved with no occurrence of device infection. The
indications for infra-inguinal bypass in this study included critical limb ischemia, severe
claudication, or popliteal aneurysm. The use of external scaffolding was indicated for vari-
cosity or ectasia of the vein graft or the use of spliced vein grafts with segments of widely
differing diameters [66]. In another study involving 21 patients undergoing infra-inguinal
bypass surgery with suboptimal, i.e., varicose vein grafts covered with ProVena mesh, the
primary patency at 24 months was 57.1%, similar to that of unmeshed, i.e., normal-quality
bypass grafts (63.8%). No mesh infection was noted. The authors recommended the use of
external mesh in young patients with a long-term bypass patency expectancy to prevent
graft dilation [67]. Noteworthily, ProVena mesh is no longer manufactured.

The purpose of external stenting, however, extends to preventing the mid and long-
term development of neointimal hyperplasia in grafts of sufficient quality, i.e., non-varicose
venous grafts as well [56]. Reports on the use of current-generation external support for
normal vein grafts in peripheral vascular surgery are scarce.

Ciftci et al. (2021) performed open surgical repair of popliteal artery aneurysms using
FRAME-supported saphenous vein grafts in 12 patients. Eleven subjects received a bypass,
and one subject received an interposition graft (mean length 22 ± 5 cm, mean diameter
5 ± 1 mm). Three of the twelve procedures were emergent due to acute limb ischemia. At a
mean follow-up of 12 months (range, 7–17 months), the primary patency rate was 100%,
there was no change in graft diameters or in the coefficient of variance, and there were no
graft revisions, reinterventions, or deep infections. The authors emphasized the potential
benefit of using the external stent in patients with aneurysmal arterial disease, as they tend
to develop vein graft aneurysms as well [15].

Vigliotti et al. (2022) reported a case of an autologous saphenous vein graft (40–45 cm
in length) covered with a FRAME external support to prevent compression in an extra-
anatomical position as an axillary-brachial artery bypass around the infected shoulder area.
One-year patency was confirmed by a Duplex scan [14].

Vein bypass grafts for lower extremity peripheral arterial occlusive disease are typically
longer (40–60 cm) than their coronary counterparts (15 cm) [9] The possible problem with
maintaining close contact or conformity along the entire length of the graft may elicit the
risk of unprotected segments [43,54]. Furthermore, given the longer grafts’ exposure to
bending and the presence of irregular segments that would be excised in coronary grafts,
a mildly worse clinical performance of externally stented long infra-inguinal bypass grafts
may be encountered [28].

4.4.3. Arterio-Venous Fistulas (AVFs) for Hemodialysis Access

Autologous AVFs for hemodialysis are prone to develop high flow rates and/or
aneurysmal dilation. Volume overload correlates with adverse cardiac remodeling in
these end-stage kidney failure patients. Steal syndrome and limb ischemia can also oc-
cur. Aneurysmorhaphy, with or without external reinforcement, is the surgical treatment
method of choice. ProVena mesh has been utilized for external stenting to prevent re-
current high flow after an aneurysmorhaphy procedure [68,69]; however, the results of
a randomized AVAH trial are still awaited. Chemla et al. (2016) placed VasQ (Laminate
Medical Technologies, Tel Aviv, Israel) metal external support device to improve flow and
reduce NIH at the anastomotic site in 20 patients undergoing a brachiocephalic fistula.
They reported device safety with high unassisted maturation and patency rates [70].

Matoussevitch et al. (2021) reconstructed and supported 43 high-flow and/or aneurys-
mal upper arm fistulas in 42 hemodialysis patients using an external stent FRAME FR (VGS).
The stent is designed to cover at least 4 cm of the reconstructed fistula and is not intended
to cover the cannulation area. Recurrence of high flow (i.e., ≥1500 mL/min) occurred in
16% and 25% of the patients at 6 and 12 months, respectively, while primary patency rates
were 86% and 70%, respectively. Only three patients (9%) experienced flow rates exceeding
2000 mL/min and underwent surgical revision to address the recurrent high flow [71]. In
contrast, the banding technique is associated with a 52% 12-month-recurrence rate [72].
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The authors concluded that the novel external stenting technique is a safe and effective
method for reducing and stabilizing flow rates up to 1 year post-operatively. Additionally,
their initial learning curve should be considered.

In contrast, Kuemmerli et al. (2020) applied the FRAME device already during the
creation of a brachial-basilic upper arm transposition AVF to prevent possible vein dilation.
The shunt showed a plateauing flow volume 3 months post-procedurally, illustrating the
safety and feasibility of this intervention [73].

4.5. Limitations

Our study has several limitations. First, the number of grafts supported with the
FRAME device was limited (n = 4), which likely contributed to the marginally significant
differences in patency rates and blood flows between groups. The control group had a
slightly higher number of grafts (n = 7); however, their mean blood flow post-implantation
was significantly lower than that in native carotid arteries. This drop in flow volume was
insignificant in the FRAME-supported grafts. The low post-implantation flow is typically
attributed to vasospasm of the adjacent carotid artery as long as technical errors are excluded.
Nonetheless, we can speculate that the quality or diameter of the control grafts (Pig 2
left and Pig 5 right in particular) could have been suboptimal, potentially compromising
their outcomes.

Second, we lack data on graft patency rates and the extent of NIH beyond one month.
In a pig model, maximal NIH thickness has been observed at one month, but it can continue
to increase over a six-month period [3].

Next, our use of end-to-end interposition grafting, while common in animal models
for its simplicity and reproducibility, differs from the more frequent use of end-to-side
bypass grafting in actual clinical practice. Angelini et al. reported similar turbulent flow
in proximal anastomoses but significantly less turbulent flow in midpoints and distal
anastomoses in porcine end-to-end vein-to-artery grafting compared to end-to-side bypass
grafting [37]. It is important to note that variations in the angle of beveling in our end-to-
end anastomoses occurred (see Table 1) despite all implantations being performed by a
single surgeon (J. Ch.).

We acknowledge that our model of internal jugular vein-to-artery grafting may have
somewhat less clinical relevance compared to conventional models using saphenous vein
grafts, such as those in pigs [46,51], sheep [7,56], or baboons [22,42], since the saphenous
vein is commonly used in clinical practice. However, saphenous veins exhibit physiolog-
ical differences in bipeds and other species, which can limit the applicability of various
experimental models [74]. Furthermore, jugular veins engrafted in carotid arteries have
previously been utilized in research on vein graft disease in mice [75], rabbits [76,77], and
pigs [29–34]. These grafts have also been used in studies involving external stenting in
animal models (excluding pigs), namely rabbits [45,78,79], dogs [44,80], and sheep [41,81].
Interestingly, Angelini et al. (1990) initially used IJVs as experimental grafts in pig carotid
arteries but had to abandon them due to their larger diameters and early ruptures, opting
instead for saphenous veins [37]. We speculate that they utilized external rather than
internal jugular veins [17]. In contrast, we did not encounter such adverse events, and IJVs
were well-matched in diameter with porcine carotid arteries [17,34].

Further, our methodology, which involves placing explanted specimens in warm
saline followed by formaldehyde immersion fixation, may have resulted in natural recoil of
non-pressurized vessels, potentially leading to tissue analysis in a slightly shrunken state.
Most studies have used (perfusion) fixation at arterial pressures, such as 80 mmHg [37],
100 mmHg [38,56], or even systolic 120 mmHg [7,28] to better preserve in vivo dimensions,
while others did not [82]. Our group comparisons, however, remain valid, as all samples
underwent identical processing. Though speculative, the presence of the healed metal
mesh may have provided some protection against sample shrinkage, or conversely, the
mesh itself could have exerted a recoil force [22].
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We focused exclusively on measuring neo-intimal parameters, in contrast to other
studies that also assessed parameters of the medial layer [34,56], the intima-medial thick-
ness [34,38,61], and the adventitia [43]. It is noteworthy that, unlike neointima formation,
the preservation of functional smooth muscle mass in the medial layer is a desired outcome
when applying an external mesh [43].

Then, only two of our animals (Pigs 3 and 4) received both stented and non-stented
grafts as part of a within-subject control strategy. This approach, employed in both preclini-
cal [7,21,51,56] and clinical trials [9], eliminates subject-related factors that might otherwise
influence the extent of vein graft disease. In these two animals, however, the right vs. left
carotid artery was not randomized for the application of the tested device as opposed to
other studies [7,56]. Furthermore, the vein grafts for the right and left sides were specifi-
cally taken from their respective sides, thus avoiding the use of vein segments with similar
quality from the same vein for implantation. This approach may have influenced the vein
remodeling process following implantation [7].

After that, we chose to use female pigs exclusively due to their docile nature and slower
weight gain over the study period compared to male pigs. As a result, our experimental
findings should not be generalized to both sexes. It is worth noting that many prior studies
did not specify the sex of their experimental animals [22,38,43,48].

Finally, it is essential to recognize that our findings pertain to grafts of shorter lengths
placed in healthy juvenile animals. These results cannot be directly extrapolated to clinical
scenarios involving longer grafts in elderly patients with cardiovascular diseases [55].

4.6. Clinical Implications and Future Directions

The results of our study do not have a straightforward clinical impact as the FRAME
mesh has already received approval for clinical use in peripheral vascular surgery [18].
However, our study demonstrated the efficacy of FRAME support in our specific animal
model, i.e., porcine internal jugular vein-to-carotid artery interposition grafting. Addi-
tionally, the study provided us with valuable experience in handling the device before
proceeding to clinical use.

Many questions regarding the optimal mesh material, porosity, potential degradation
kinetics, and design (such as loose-fitting vs. constrictive, permanent vs. bioabsorbable, or
braided vs. knitted) remain unanswered [11,43]. Nonetheless, metal meshes are known to
elicit hardly any inflammatory reaction [7,43] and offer protection to vein grafts not only
against over-distention and neointima formation [7] but also against external compression
and deformation [43].

It is crucial to emphasize that external stenting is not intended to prevent short-term
graft failures but rather to mitigate neointimal hyperplasia and superimposed atherosclero-
sis in the long term [62]. Vein graft failure is a complex issue with multiple contributing
factors, and no single treatment is likely to provide a complete solution [11]. Factors such as
graft selection, meticulous surgical techniques for vein harvesting, manipulation, preserva-
tion, grafting configuration, and anastomosing, along with optimal medical therapy, remain
essential for graft function and cannot be replaced by a device-oriented approach [83]. No-
tably, despite being an innovative and simple device, the mesh incurs additional costs in
bypass procedures [84].

Possible future directions may involve combining external support with other inter-
ventions for vein graft disease, such as pharmacological treatment [3], gene delivery [85,86],
or tissue-engineered vascular grafts.

5. Conclusions

In our preclinical model, using an external mesh FRAME enhanced the patency rate of
porcine autologous internal jugular vein-to-carotid artery interposition grafts at one month.
Upon explant angiography, grafts supported by the FRAME exhibited significantly fewer
stenotic areas compared to unsupported grafts. The formation of neointimal hyperplasia
was substantially reduced in the FRAME-stented grafts, particularly in the mid portions.
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Notably, the thickness of the midgraft neointima in the FRAME-supported grafts was half
that of their non-supported counterparts.
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