Electromyographic Characteristics of Postactivation Effect in Dopamine-Dependent Spectrum Models Observed in Parkinson’s Disease and Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Induction of Postactivation Effect
2.3. Electromyography
2.4. sEMG Parameters
2.5. Statistics
3. Results
3.1. sEMG Patterns of PAE in the Studied Groups
3.2. sEMG Parameters of PAE in the Studied Groups
4. Discussion
4.1. The Incidence of PAE in PD and SZ
4.2. The Pattern of PAE
4.3. sEMG Characteristics
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hemsley, K.M.; Crocker, A.D. Changes in muscle tone are regulated by D1 and D2 dopamine receptors in the ventral striatum and D1 receptors in the substantia nigra. Neuropsychopharmacology 2001, 25, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Hemsley, K.M.; Farrall, E.J.; Crocker, A.D. Dopamine receptors in the subthalamic nucleus are involved in the regulation of muscle tone in the rat. Neurosci. Lett. 2002, 317, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, P.B.; Peever, J.H. Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J. Neurophysiol. 2011, 106, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Hornykiewicz, O. Brain monoamines and parkinsonism. Natl. Inst. Drug Abuse Res. Monogr. Ser. 1975, 3, 13–21. [Google Scholar]
- Van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [Google Scholar] [CrossRef]
- Baradaran, N.; Tan, S.N.; Liu, A.; Ashoori, A.; Palmer, S.J.; Wang, Z.J.; Oishi, M.M.; McKeown, M.J. Parkinson’s disease rigidity: Relation to brain connectivity and motor performance. Front. Neurol. 2013, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Bonoldi, I.; Howes, O.D. The enduring centrality of dopamine in the pathophysiology of schizophrenia: In vivo evidence from the prodrome to the first psychotic episode. Adv. Pharmacol. 2013, 68, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; McCutcheon, R.; Owen, M.J.; Murray, R.M. The role of genes, stress, and dopamine in the development of schizophrenia. Biol. Psychiatry 2017, 81, 9–20. [Google Scholar] [CrossRef]
- Ungvari, S.; Goggins, W.; Leung, S.K.; Gerevich, J. Schizophrenia with prominent catatonic features (‘catatonic schizophrenia’). II. Factor analysis of the catatonic syndrome. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2007, 31, 462–468. [Google Scholar] [CrossRef]
- Levin, J.; Hasan, A.; Höglinger, G.U. Psychosis in Parkinson’s disease: Identification, prevention and treatment. J. Neural Transm. 2016, 123, 45–50. [Google Scholar] [CrossRef]
- Blanchet, P.J.; Normandeau, L.; Rompré, P.H. Comparing three screening tools for drug-induced parkinsonism in patients with advanced schizophrenia: A pilot study. Schizophr. Res. 2012, 137, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Manohar, S.; Husain, M. Impulsivity and apathy in Parkinson’s disease. J. Neuropsychol. 2013, 7, 255–283. [Google Scholar] [CrossRef] [PubMed]
- Meigal, A.I.; Rissanen, S.; Tarvainen, M.P.; Karjalainen, P.A.; Iudina-Vassel, I.A.; Airaksinen, O.; Kankaanpää, M. Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J. Electromyogr. Kinesiol. 2009, 19, e206–e213. [Google Scholar] [CrossRef]
- Meigal, A.Y.; Miroshnichenko, G.G.; Kuzmina, A.P.; Rissanen, S.M.; Georgiadis, S.D.; Karjalainen, P.A. Nonlinear parameters of surface EMG in schizophrenia patients depend on kind of antipsychotic therapy. Front. Physiol. 2015, 6, 197. [Google Scholar] [CrossRef]
- Ruonala, V.; Pekkonen, E.; Airaksinen, O.; Kankaanpää, M.; Karjalainen, P.A.; Rissanen, S.M. Levodopa-induced changes in electromyographic patterns in patients with advanced Parkinson’s disease. Front. Neurol. 2018, 9, 35. [Google Scholar] [CrossRef]
- Kohnstamm, O. Demonstration einer katatoneartigen erscheinung beim gesunden (Katatonusversuch). Neurol. Central. 1915, 34, 290–291. [Google Scholar]
- De Havas, J.; Ghosh, A.; Gomi, H.; Haggard, P. Sensorimotor organization of a sustained involuntary movement. Front. Behav. Neurosci. 2015, 9, 185. [Google Scholar] [CrossRef]
- De Havas, J.; Gomi, H.; Haggard, P. Experimental investigations of control principles of involuntary movement: A comprehensive review of the Kohnstamm phenomenon. Exp. Brain Res. 2017, 235, 1953–1997. [Google Scholar] [CrossRef]
- Gurfinkel, V.S.; Levik, I.S.; Lebedev, M.A. Blizhnie i otdalennye postaktivatsionnye éffekty v dvigatel’noĭ sisteme cheloveka [Immediate and remote postactivation effects in the human motor system]. Neirofiziologiia 1989, 21, 343–351. (In Russian) [Google Scholar]
- Duclos, C.; Roll, R.; Kavounoudias, A.; Roll, J.P. Cerebral correlates of the “Kohnstamm phenomenon”: An fMRI study. Neuroimage 2007, 34, 774–783. [Google Scholar] [CrossRef]
- Carli, G.; Farabollini, F. Neurophysiological mechanisms involved in tonic immobility (TI). Prog Brain Res. 2022, 271, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Kozhina, G.V.; Person, R.S.; Popov, K.E.; Smetanin, B.N.; Shlikov, V.Y. Motor unit discharge during muscular after-contraction. J. Electromyogr. Kinesiol. 1996, 6, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Meigal, A.Y.; Pis’mennyi, K.N. The influence of whole-body heating and cooling on the aftercontraction effect in the upper limb muscles. Hum. Physiol. 2009, 35, 51–57. [Google Scholar] [CrossRef]
- Meigal, A.Y.; Gerasimova-Meigal, L.I.; Peskova, A.Y. Postactivation effect in the deltoid muscle of healthy young subjects after a short-term “dry” immersion. Hum. Physiol. 2021, 47, 289–295. [Google Scholar] [CrossRef]
- Schade, S.; Mollenhauer, B.; Trenkwalder, C. Levodopa equivalent dose conversion factors: An updated proposal including opicapone and safinamide. Mov. Disord. Clin. Pract. 2020, 7, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Brice, T.; McDonagh, M. Abduction of the humerus by postural aftercontractions in man: Effects of force and duration of previous voluntary contractions. J. Physiol. 2001, 536, 51. [Google Scholar]
- Gitter, J.A.; Czemiecki, M.J. Fractal analysis of the electromyographic interference pattern. J. Neurosci. Methods 1995, 58, 103–108. [Google Scholar] [CrossRef]
- Boon, M.Y.; Henry, B.I.; Suttle, C.M.; Dain, S.J. The correlation dimension: A useful objective measure of the transient visual evoked potential? J. Vis. 2008, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Meigal, A.Y.; Peskova, A.E.; Sklyarova, A.S.; Gerasimova-Meigal, L.I. Characteristics of the post-activation effect in human skeletal muscles using spectral and nonlinear parameters of the interference electromyogram. Hum. Physiol. 2024; in press. [Google Scholar]
- Herman, T.; Weiss, A.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. Gait and balance in Parkinson’s disease subtypes: Objective measures and classification considerations. J. Neurol. 2014, 261, 2401–2410. [Google Scholar] [CrossRef]
- Cubo, E.; Martínez-Martín, P.; González-Bernal, J.; Casas, E.; Arnaiz, S.; Miranda, J.; Gámez, P.; Santos-García, D.; Coppadis Study Group. Effects of Motor Symptom Laterality on Clinical Manifestations and Quality of Life in Parkinson’s Disease. J. Park. Dis. 2020, 10, 1611–1620. [Google Scholar] [CrossRef]
- Selionov, V.A.; Solopova, I.A.; Zhvansky, D.S.; Karabanov, A.V.; Chernikova, L.A.; Gurfinkel, V.S.; Ivanenko, Y.P. Lack of non-voluntary stepping responses in Parkinson’s disease. Neuroscience 2013, 235, 96–108. [Google Scholar] [CrossRef]
- Selionov, V.A.; Ivanenko, Y.P.; Solopova, I.A.; Gurfinkel, V.S. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. J. Neurophysiol. 2009, 101, 2847–2858. [Google Scholar] [CrossRef]
- Solopova, I.A.; Selionov, V.A.; Zhvansky, D.S.; Gurfinkel, V.S.; Ivanenko, Y. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J. Neurophysiol. 2016, 115, 1018–1030. [Google Scholar] [CrossRef]
- Enoka, R.M.; Christou, E.A.; Hunter, S.K.; Kornatz, K.W.; Semmler, J.G.; Taylor, A.M.; Tracy, B.L. Mechanisms that contribute to differences in motor performance between young and old adults. J. Electromyogr. Kinesiol. 2003, 13, 1–12. [Google Scholar] [CrossRef]
- Meigal, A.Y.; Rissanen, S.M.; Tarvainen, M.P.; Georgiadis, S.D.; Karjalainen, P.A.; Airaksinen, O.; Kankaanpää, M. Linear and nonlinear tremor acceleration characteristics in patients with Parkinson’s disease. Physiol. Meas. 2012, 33, 395–412. [Google Scholar] [CrossRef]
- Glendinning, D.S.; Enoka, R.M. Motor unit behavior in Parkinson’s disease. Phys. Ther. 1994, 74, 61–70. [Google Scholar] [CrossRef]
- Baker, J.R.; Davey, N.J.; Ellaway, P.H.; Friedland, C.L. Short-term synchrony of motor unit discharge during weak isometric contraction in Parkinson’s disease. Brain 1992, 115, 137–154. [Google Scholar] [CrossRef]
Group | N (f, m) | Age (Years) | Height (cm) | Body Mass (kg) | BMI |
---|---|---|---|---|---|
HC | 11 (6, 5) | 52 (38; 62) | 172 (165; 175) | 75 (65; 89) | 24.8 (22.5; 28.7) |
PD | 14 (6, 8) | 62 (55; 66) | 169 (165; 176) | 67 (62; 76) | 23 (22; 25.2) |
SZ | 39 (21, 18) | 37 (26; 51) | 168 (160; 177) | 76 (69; 85) | 25.5 (21.9; 31.3) |
Group | UPDRS-I | UPDRS-II | UPDRS-III | Tremor | Rigidity | Akinesia | LEDD mg/Day |
---|---|---|---|---|---|---|---|
PDon | 1 (0; 2.7) | 6 (4; 9) | 21 (15; 25) | 1 (0; 3.5) | 6 (4; 9) | 8 (5; 9) | 282 (100; 350) |
PDoff | 0.5 (0; 3.5) | 11.5 (8; 16) | 31 (28; 33) * | 3.5 (2.3; 5.5) | 7 (6; 8) | 11.5 (9; 11.8) |
Group | N (f, m) | Age (Years) | Height (cm) | Body Mass (kg) | BMI | PANSS | Remission | Psychotic Stage |
---|---|---|---|---|---|---|---|---|
SZon | 25 (14, 11) | 37 (27; 50) | 168 (157; 180) | 74.5 (49; 88) | 25.5 (21.9; 31.3) | 79 (61; 75) | 11 | 14 |
SZoff | 14 (7, 7) | 44 (25.5; 53) | 168 (163; 176) | 76 (71; 88) | 27 (22.7; 31.5) | 68 (69; 99) * | 13 | 1 |
Dopaminergic Condition | D− | D | D+ | ||
---|---|---|---|---|---|
Groups | SZon | PDoff | HCs | PDon | SZoff |
PAE-positive participants (%) | 3/25 (12) | 3/14 (21.4) | 10/11 (91.1) | 5/14 (35.7) | 10/14 (71.3) |
Duration, right side (s) | (60; 66) | (24; 33) | 81 (42; 101) | 52 (26; 144) | 51 (30; 115) |
Duration, left side (s) | (62; 66) | (33; 35) | 81 (42; 102) | 80 (27; 144) | 51 (30; 121) |
Dopaminergic Condition | D− | D | D+ | ||
---|---|---|---|---|---|
Groups | SZon | PDoff | HC | PDon | SZoff |
VIC | 56.9 (53.3; 68.3) | 54.1 (47.1; 62.6) | 67.0 (59.8; 73.6) | 50.1 (46.4; 60.3) # | 80.3 (72.2; 81.6) |
PAE | (60; 62.3) | 66.9 (54.9; 70.9) * | 69.5 (63.,5; 75.7) ** | 61.1 (51.1; 64.1) * # | 78.7 (74.1; 85.4) |
Dopaminergic Condition | D− | D | D+ | |||
---|---|---|---|---|---|---|
Groups | SZon | PDoff | HC | PDon | SZoff | |
Fractal dimension | VIC | 1.82 (1.78; 1.84) | 1.79 (1.75; 1.82) | 1.79 (1.72; 1.84) | 1.78 (1.78; 1.83) | 1.80 (1.74; 1.82) |
PAE | (1.72; 1.79) | 1.81 (1.75; 1.82) | 1.76 (1.73; 1.80) | 1.78 (1.74; 1.84) | 1.79 (1.74; 1.82) | |
Correlation dimension | VIC | 4.12 (3.61; 4.58) | 3.66 (2.61; 3.84) | 3.90 (3.80; 4.20) | 3.66 (3.25; 3.92) | 3.93 (3.64; 4.18) |
PAE | (3.91; 3.99) | 4.00 (2.61; 4.33) * # | 4.17 (4.05; 4.70) ** | 3.89 (3.27; 4.21) * # | 3.96 (3.73; 4.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meigal, A.; Gerasimova-Meigal, L.; Kuzmina, A.; Antonen, E.; Peskova, A.; Burkin, M. Electromyographic Characteristics of Postactivation Effect in Dopamine-Dependent Spectrum Models Observed in Parkinson’s Disease and Schizophrenia. Biomedicines 2024, 12, 1338. https://doi.org/10.3390/biomedicines12061338
Meigal A, Gerasimova-Meigal L, Kuzmina A, Antonen E, Peskova A, Burkin M. Electromyographic Characteristics of Postactivation Effect in Dopamine-Dependent Spectrum Models Observed in Parkinson’s Disease and Schizophrenia. Biomedicines. 2024; 12(6):1338. https://doi.org/10.3390/biomedicines12061338
Chicago/Turabian StyleMeigal, Alexander, Liudmila Gerasimova-Meigal, Anna Kuzmina, Elena Antonen, Alexandra Peskova, and Mark Burkin. 2024. "Electromyographic Characteristics of Postactivation Effect in Dopamine-Dependent Spectrum Models Observed in Parkinson’s Disease and Schizophrenia" Biomedicines 12, no. 6: 1338. https://doi.org/10.3390/biomedicines12061338
APA StyleMeigal, A., Gerasimova-Meigal, L., Kuzmina, A., Antonen, E., Peskova, A., & Burkin, M. (2024). Electromyographic Characteristics of Postactivation Effect in Dopamine-Dependent Spectrum Models Observed in Parkinson’s Disease and Schizophrenia. Biomedicines, 12(6), 1338. https://doi.org/10.3390/biomedicines12061338