Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Assessing Risk of Bias in Included Studies
3. Results
3.1. Studies Included and Excluded
3.2. Bias Analysis
3.3. Study Characteristics
3.4. Overview of the Application of Cerebellar NIBS
3.5. Motor Symptoms
3.5.1. Gait and Balance
3.5.2. Muscle Spasticity
3.5.3. Upper Limb Dexterity
3.6. Other Symptoms
3.6.1. Dysphagia
3.6.2. Aphasia
3.7. Functional Ability
3.8. Adverse Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.J.; Hummel, F.C. Non-invasive Cerebellar Stimulation: A Promising Approach for Stroke Recovery? Cerebellum 2018, 17, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lima, M.J.M.; Brasileiro, I.C.; Lima, T.L.; Braga-Neto, P. Quality of life after stroke: Impact of clinical and sociodemographic factors. Clinics 2018, 73, e418. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Lang, C.E.; Zeiler, S.; Byblow, W.D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020, 19, 348–360. [Google Scholar] [CrossRef]
- Chien, W.T.; Chong, Y.Y.; Tse, M.K.; Chien, C.W.; Cheng, H.Y. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [Google Scholar] [CrossRef] [PubMed]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 11, Cd008349. [Google Scholar] [CrossRef] [PubMed]
- Kemps, H.; Gervois, P.; Brône, B.; Lemmens, R.; Bronckaers, A. Non-invasive brain stimulation as therapeutic approach for ischemic stroke: Insights into the (sub)cellular mechanisms. Pharmacol. Ther. 2022, 235, 108160. [Google Scholar] [CrossRef] [PubMed]
- Li, K.P.; Wu, J.J.; Zhou, Z.L.; Xu, D.S.; Zheng, M.X.; Hua, X.Y.; Xu, J.G. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci. 2023, 13, 451. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhang, J.L.; Wang, X.J.; Cai, K.R.; Li, S.Y.; Du, X.L.; Wang, L.Y.; Yang, R.Y.; Han, J.; Hu, J.Y.; et al. Clinical application of repetitive transcranial magnetic stimulation in improving functional impairments post-stroke: Review of the current evidence and potential challenges. Neurol. Sci. 2024, 45, 1419–1428. [Google Scholar] [CrossRef]
- Orrù, G.; Conversano, C.; Hitchcott, P.K.; Gemignani, A. Motor stroke recovery after tDCS: A systematic review. Rev. Neurosci. 2020, 31, 201–218. [Google Scholar] [CrossRef]
- Li, L.L.; Wu, J.J.; Li, K.P.; Jin, J.; Xiang, Y.T.; Hua, X.Y.; Zheng, M.X.; Xu, J.G. Comparative efficacy of different noninvasive brain stimulation protocols on upper-extremity motor function and activities of daily living after stroke: A systematic review and network meta-analysis. Neurol. Sci. 2024, 3, 1590–3478. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, A.T.; Bertolucci, F.; Torrealba-Acosta, G.; Huerta, R.; Fregni, F.; Thibaut, A. Non-invasive brain stimulation for fine motor improvement after stroke: A meta-analysis. Eur. J. Neurol. 2018, 25, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, M.; Chen, J.; Cai, G.; Liu, Q.; Zhao, Y.; Huang, Z.; Lan, Y. Non-invasive brain stimulation effectively improves post-stroke sensory impairment: A systematic review and meta-analysis. J. Neural Transm. 2023, 130, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Tang, J.; Tang, B.; Han, T.; Pan, J.; Wang, N. The effectiveness and safety of noninvasive brain stimulation technology combined with speech training on aphasia after stroke: A systematic review and meta-analysis. Medicine 2024, 103, e36880. [Google Scholar] [CrossRef] [PubMed]
- Aleman, A.; Begemann, M.J.; Brand, B.A.; Sommer, I.E.; Ćurčić-Blake, B. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychol. Med. 2020, 50, 2465–2486. [Google Scholar] [CrossRef] [PubMed]
- Yanyu, S.; Ying, L.; Kexin, L.; Jin, W. Non-invasive brain stimulation for treating post-stroke depression: A network meta-analysis. Int. J. Geriatr. Psychiatry 2023, 38, e5941. [Google Scholar] [CrossRef] [PubMed]
- Morishita, T.; Hummel, F.C. Non-invasive Brain Stimulation (NIBS) in Motor Recovery after Stroke: Concepts to Increase Efficacy. Curr. Behav. Neurosci. Rep. 2017, 4, 280–289. [Google Scholar] [CrossRef]
- Guell, X.; Schmahmann, J. Cerebellar Functional Anatomy: A Didactic Summary Based on Human fMRI Evidence. Cerebellum 2020, 19, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, C.; Chen, Y.; Zhang, Y. Cognitive Dysfunction following Cerebellar Stroke: Insights Gained from Neuropsychological and Neuroimaging Research. Neural Plast. 2022, 2022, 3148739. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Davis, C.; Thomas, A.M.; Economo, M.N.; Abrego, A.M.; Svoboda, K.; De Zeeuw, C.I.; Li, N. A cortico-cerebellar loop for motor planning. Nature 2018, 563, 113–116. [Google Scholar] [CrossRef]
- Carta, I.; Chen, C.H.; Schott, A.L.; Dorizan, S.; Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 2019, 363, eaav0581. [Google Scholar] [CrossRef] [PubMed]
- van Dun, K.; Mitoma, H.; Manto, M. Cerebellar Cortex as a Therapeutic Target for Neurostimulation. Cerebellum 2018, 17, 777–787. [Google Scholar] [CrossRef] [PubMed]
- van Dun, K.; Bodranghien, F.; Manto, M.; Mariën, P. Targeting the Cerebellum by Noninvasive Neurostimulation: A Review. Cerebellum 2017, 16, 695–741. [Google Scholar] [CrossRef] [PubMed]
- Celnik, P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum 2015, 14, 171–174. [Google Scholar] [CrossRef] [PubMed]
- ul-ain, Q.; Ilyas, S.; Ali, H.; Ali, I.; Ullah, R.; Arshad, H.; Khalid, S.; Azim, M.E.; Liu, T.; Wang, J. Exploring the Differential Effects of Transcranial Direct Current Stimulation: A Comparative Analysis of Motor Cortex and Cerebellar Stimulation. Heliyon 2024, 10, e26838. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, S.H.; Lim, S.H.; Im, S.; Hong, B.Y.; Oh, J.; Kim, Y. Degeneration of the Inferior Cerebellar Peduncle after Middle Cerebral Artery Stroke: Another Perspective on Crossed Cerebellar Diaschisis. Stroke 2019, 50, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Zhang, Z.J.; Li, J.; Xiong, T.; He, W.C.; Zhu, N. Effects of Cerebellar Transcranial Direct Current Stimulation in Patients with Stroke: A Systematic Review. Cerebellum 2023, 12, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Ntakou, E.A.; Nasios, G.; Nousia, A.; Siokas, V.; Messinis, L.; Dardiotis, E. Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke-Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare 2022, 10, 2401. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Li, F.; Zhong, L.; Wang, J.; Peng, Y.; Liu, H.; Wang, P.; Xu, J. Bilateral Cerebellar Intermittent Theta Burst Stimulation Combined with Swallowing Speech Therapy for Dysphagia after Stroke: A Randomized, Double-Blind, Sham-Controlled, Clinical Trial. Neurorehabil. Neural Repair 2022, 36, 437–448. [Google Scholar] [CrossRef]
- Dong, L.H.; Pan, X.; Wang, Y.; Bai, G.; Han, C.; Wang, Q.; Meng, P. High-Frequency Cerebellar rTMS Improves the Swallowing Function of Patients with Dysphagia after Brainstem Stroke. Neural Plast. 2022, 2022, 6259693. [Google Scholar] [CrossRef]
- Dai, M.; Qiao, J.; Shi, Z.; Wei, X.; Chen, H.; Shen, L.; Wen, H.; Dou, Z. Effect of cerebellar transcranial magnetic stimulation with double-cone coil on dysphagia after subacute infratentorial stroke: A randomized, single-blinded, controlled trial. Brain Stimul. 2023, 16, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Wen, X.; Liu, Z.; Li, F.; Ma, X.; Liu, H.; Chen, H. Effects of bilateral cerebellar repetitive transcranial magnetic stimulation in poststroke dysphagia: A randomized sham-controlled trial. Neurorehabilitation 2023, 52, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M. Multi-focal stimulation of the cortico-cerebellar loop during the acquisition of a novel hand motor skill in chronic stroke survivors. Brain Stimul. 2023, 16, 161. [Google Scholar] [CrossRef]
- Rosso, C.; Moulton, E.; Kemlin, C.; Leder, S.; Corvol, J.C.; Mehdi, S.; Obadia, M.A.; Obadia, M.; Yger, M.; Meseguer, E.; et al. Cerebello-Motor Paired Associative Stimulation and Motor Recovery in Stroke: A Randomized, Sham-Controlled, Double-Blind Pilot Trial. Neurotherapeutics 2022, 19, 491–500. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, A.T.; Dvorak, E.; Lacey, E.; Stoodley, C.J.; Turkeltaub, P.E. An Exploratory Study of Cerebellar Transcranial Direct Current Stimulation in Individuals with Chronic Stroke Aphasia. Cogn. Behav. Neurol. 2021, 34, 96–106. [Google Scholar] [CrossRef]
- Ain, Q.U.; Ahmad, Z.; Ishtiaq, S.; Ilyas, S.; Shahid, I.; Tariq, I.; Malik, A.N.; Liu, T.; Wang, J. Short term effects of anodal cerebellar vs. anodal cerebral transcranial direct current stimulation in stroke patients, a randomized control trial. Front. Neurosci. 2022, 16, 1035558. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.S.G. Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011.
- Kim, W.S.; Jung, S.H.; Oh, M.K.; Min, Y.S.; Lim, J.Y.; Paik, N.J. Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: A pilot study. J. Rehabil. Med. 2014, 46, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Bonnì, S.; Casula, E.P.; Iosa, M.; Paolucci, S.; Pellicciari, M.C.; Cinnera, A.M.; Ponzo, V.; Maiella, M.; Picazio, S.; et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients with Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 170–178. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, Q.C.; Zhang, M.Z.; Xie, Y.J.; Liao, L.Y.; Tan, H.X.; Guo, Q.F.; Gao, Q. Cerebellar Intermittent Theta-Burst Stimulation Reduces Upper Limb Spasticity after Subacute Stroke: A Randomized Controlled Trial. Front. Neural Circuits 2021, 15, 655502. [Google Scholar] [CrossRef]
- Li, D.; Cheng, A.; Zhang, Z.; Sun, Y.; Liu, Y. Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke. BMC Neurol. 2021, 21, 369. [Google Scholar] [CrossRef]
- Liao, L.Y.; Xie, Y.J.; Chen, Y.; Gao, Q. Cerebellar Theta-Burst Stimulation Combined with Physiotherapy in Subacute and Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Neurorehabilit. Neural Repair 2021, 35, 23–32. [Google Scholar] [CrossRef]
- Xie, Y.J.; Wei, Q.C.; Chen, Y.; Liao, L.Y.; Li, B.J.; Tan, H.X.; Jiang, H.H.; Guo, Q.F.; Gao, Q. Cerebellar Theta Burst Stimulation on Walking Function in Stroke Patients: A Randomized Clinical Trial. Front. Neurosci. 2021, 15, 9. [Google Scholar] [CrossRef]
- Zhong, L.; Rao, J.; Wang, J.; Li, F.; Peng, Y.; Liu, H.; Zhang, Y.; Wang, P. Repetitive Transcranial Magnetic Stimulation at Different Sites for Dysphagia after Stroke: A Randomized, Observer-Blind Clinical Trial. Front. Neurol. 2021, 12, 625683. [Google Scholar] [CrossRef] [PubMed]
- Im, N.G.; Oh, K.R.; Kim, M.G.; Lee, Y.; Lim, N.N.; Cho, T.H.; Ryu, S.R.; Yoon, S.R. Effect of Low Frequency Cerebellar Repetitive Transcranial Magnetic Stimulation on Balance Impairment in Patients with Cerebral Infarction. Ann. Rehabil. Med. 2022, 46, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Yan, R.; Chen, H.; Duan, X.; Wu, X.; Zhang, X.; Zhou, Y.; Feng, Z.; Chen, Y.; Liu, J.; et al. Effects of cerebellar transcranial direct current stimulation on rehabilitation of upper limb motor function after stroke. Front. Neurol. 2023, 14, 1044333. [Google Scholar] [CrossRef]
- Marangolo, P.; Fiori, V.; Caltagirone, C.; Pisano, F.; Priori, A. Transcranial Cerebellar Direct Current Stimulation Enhances Verb Generation but Not Verb Naming in Poststroke Aphasia. J. Cogn. Neurosci. 2018, 30, 188–199. [Google Scholar] [CrossRef]
- Zandvliet, S.B.; Meskers, C.G.M.; Kwakkel, G.; van Wegen, E.E.H. Short-Term Effects of Cerebellar tDCS on Standing Balance Performance in Patients with Chronic Stroke and Healthy Age-Matched Elderly. Cerebellum 2018, 17, 575–589. [Google Scholar] [CrossRef]
- Bonnì, S.; Motta, C.; Pellicciari, M.C.; Casula, E.P.; Cinnera, A.M.; Maiella, M.; Picazio, S.; Tramontano, M.; Sallustio, F.; Koch, G. Intermittent Cerebellar Theta Burst Stimulation Improves Visuo-motor Learning in Stroke Patients: A Pilot Study. Cerebellum 2020, 19, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, R.; Kim, J.H.; Brenowitz, R.; Tippett, D.C.; Desmond, J.E.; Celnik, P.A.; Hillis, A.E. Cerebellar neuromodulation improves naming in post-stroke aphasia. Brain Commun. 2020, 2, fcaa179. [Google Scholar] [CrossRef]
- Solanki, D.; Rezaee, Z.; Dutta, A.; Lahiri, U. Investigating the feasibility of cerebellar transcranial direct current stimulation to facilitate post-stroke overground gait performance in chronic stroke: A partial least-squares regression approach. J. Neuroeng. Rehabil 2021, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Carson, R.; Kennedy, N. Modulation of human corticospinal excitability by paired associative stimulation. Front. Hum. Neurosci. 2013, 7, 823. [Google Scholar] [CrossRef] [PubMed]
- Morton, S.M.; Bastian, A.J. Cerebellar control of balance and locomotion. Neuroscientist 2004, 10, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Casula, E.P.; Pellicciari, M.C.; Ponzo, V.; Stampanoni Bassi, M.; Veniero, D.; Caltagirone, C.; Koch, G. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci. Rep. 2016, 6, 36191. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.K.; Tsai, C.H.; Ziemann, U. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front. Hum. Neurosci. 2012, 6, 260. [Google Scholar] [CrossRef] [PubMed]
- Lupo, M.; Olivito, G.; Angelini, L.; Funghi, G.; Pignatelli, F.; Siciliano, L.; Leggio, M.; Clausi, S. Does the cerebellar sequential theory explain spoken language impairments? A literature review. Clin. Linguist Phon. 2021, 35, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]
- Wong, D.L.; Baker, C.M. Pain in children: Comparison of assessment scales. Pediatr. Nurs. 1988, 14, 9–17. [Google Scholar] [PubMed]
- Feng, Y.W.; Huang, Y.Q.; Yan, Y.; Li, G.; He, X.F.; Liang, F.Y.; Pei, Z.; Lan, Y.; Xu, G.Q. Phasic GABA signaling mediates the protective effects of cTBS against cerebral ischemia in mice. Neurosci. Lett. 2020, 715, 134611. [Google Scholar] [CrossRef]
- Cui, J.; Kim, C.S.; Kim, Y.; Sohn, M.K.; Jee, S. Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Aerobic Exercise on the Recovery of Motor Function in Ischemic Stroke Rat Model. Brain Sci. 2020, 10, 186. [Google Scholar] [CrossRef]
- Ahn, S.M.; Jung, D.H.; Lee, H.J.; Pak, M.E.; Jung, Y.J.; Shin, Y.I.; Shin, H.K.; Choi, B.T. Contralesional Application of Transcranial Direct Current Stimulation on Functional Improvement in Ischemic Stroke Mice. Stroke 2020, 51, 2208–2218. [Google Scholar] [CrossRef] [PubMed]
- Grami, F.; de Marco, G.; Bodranghien, F.; Manto, M.; Habas, C. Cerebellar Transcranial Direct Current Stimulation Reconfigures Brain Networks Involved in Motor Execution and Mental Imagery. Cerebellum 2022, 21, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Halko, M.; Farzan, F.; Eldaief, M.; Schmahmann, J.; Pascual-Leone, A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J. Neurosci. 2014, 34, 12049–12056. [Google Scholar] [CrossRef] [PubMed]
- Hordacre, B.; Moezzi, B.; Ridding, M.C. Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study. Hum. Brain Mapp. 2018, 39, 3326–3339. [Google Scholar] [CrossRef] [PubMed]
- Ting, W.K.; Fadul, F.A.; Fecteau, S.; Ethier, C. Neurostimulation for Stroke Rehabilitation. Front. Neurosci. 2021, 15, 649459. [Google Scholar] [CrossRef]
- Zeng, Y.; Ye, Z.; Zheng, W.; Wang, J. Efficacy of Cerebellar Transcranial Magnetic Stimulation for Post-stroke Balance and Limb Motor Function Impairments: Meta-analyses of Random Controlled Trials and Resting-State fMRI Studies. Cerebellum 2024, 1, 1473–4230. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, S.; Yang, X.; Luo, S.; Zhu, F.; Zeng, Z.; Hu, Q.; Xu, L.; Yu, Q. Effects of cerebellar repetitive transcranial magnetic stimulation in the treatment of post-stroke dysphagia: A meta-analysis and systematic review of randomized controlled trials. Eur. Neurol. 2024, 87, 67–78. [Google Scholar] [CrossRef]
- Duque, J.; Hummel, F.; Celnik, P.; Murase, N.; Mazzocchio, R.; Cohen, L.G. Transcallosal inhibition in chronic subcortical stroke. NeuroImage 2005, 28, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 2019, 2019, CD009760. [Google Scholar] [CrossRef]
- Harvey, D.; Hamilton, R. Noninvasive brain stimulation to augment language therapy for poststroke aphasia. Handb. Clin. Neurol. 2022, 185, 241–250. [Google Scholar] [CrossRef]
- Benussi, A.; Cantoni, V.; Manes, M.; Libri, I.; Dell’Era, V.; Datta, A.; Thomas, C.; Ferrari, C.; Di Fonzo, A.; Fancellu, R.; et al. Motor and cognitive outcomes of cerebello-spinal stimulation in neurodegenerative ataxia. Brain 2021, 144, 2310–2321. [Google Scholar] [CrossRef] [PubMed]
- França, C.; de Andrade, D.C.; Teixeira, M.J.; Galhardoni, R.; Silva, V.; Barbosa, E.R.; Cury, R.G. Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain Stimul. 2018, 11, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Mitoma, H.; Manto, M. The Era of Cerebellar Therapy. Curr. Neuropharmacol. 2019, 17, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Schulz, R.; Frey, B.M.; Koch, P.; Zimerman, M.; Bönstrup, M.; Feldheim, J.; Timmermann, J.E.; Schön, G.; Cheng, B.; Thomalla, G.; et al. Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke. Cereb. Cortex 2015, 27, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.Y.; Zhu, Y.; Peng, Q.Y.; Gao, Q.; Liu, L.; Wang, Q.H.; Gao, S.H.; Tao, Y.; Huang, H.; Xu, P.D.; et al. Intermittent Theta-Burst Stimulation for Stroke: Primary Motor Cortex Versus Cerebellar Stimulation: A Randomized Sham-Controlled Trial. Stroke 2024, 55, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Sobesky, J.; Thiel, A.; Ghaemi, M.; Hilker, R.; Rudolf, J.; Jacobs, A.; Herholz, K.; Heiss, W. Crossed cerebellar diaschisis in acute human stroke: A PET study of serial changes and response to supratentorial reperfusion. J. Cereb. Blood Flow Metab. 2005, 25, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.C.; Bousser, M.G.; Comar, D.; Castaigne, P. “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans. Am. Neurol Assoc. 1981, 105, 459–461. [Google Scholar] [PubMed]
- van Niftrik, C.; Sebök, M.; Muscas, G.; Wegener, S.; Luft, A.; Stippich, C.; Regli, L.; Fierstra, J. Investigating the Association of Wallerian Degeneration and Diaschisis after Ischemic Stroke with BOLD Cerebrovascular Reactivity. Front. Physiol. 2021, 12, 645157. [Google Scholar] [CrossRef] [PubMed]
- Bonnì, S.; Ponzo, V.; Caltagirone, C.; Koch, G. Cerebellar theta burst stimulation in stroke patients with ataxia. Funct. Neurol. 2014, 29, 41–45. [Google Scholar] [CrossRef]
- Alia, C.; Spalletti, C.; Lai, S.; Panarese, A.; Lamola, G.; Bertolucci, F.; Vallone, F.; Di Garbo, A.; Chisari, C.; Micera, S.; et al. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation. Front. Cell. Neurosci. 2017, 11, 76. [Google Scholar] [CrossRef]
- Galea, J.M.; Jayaram, G.; Ajagbe, L.; Celnik, P. Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. J. Neurosci. 2009, 29, 9115–9122. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Bai, X.; Jiang, B.; Guo, Z.; Mu, Q. Repetitive Transcranial Magnetic Stimulation Induces Quantified Functional and Structural Changes in Subcortical Stroke: A Combined Arterial Spin Labeling Perfusion and Diffusion Tensor Imaging Study. Front. Hum. Neurosci. 2022, 16, 829688. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Tang, X.; Hu, R.; Liu, J.; Zhang, Q.; Tian, S.; Wang, W.; Li, C.; Zhu, Y. Cerebellum-Cerebrum paired target magnetic stimulation on balance function and brain network of patients with stroke: A functional near-infrared spectroscopy pilot study. Front. Neurol 2022, 13, 1071328. [Google Scholar] [CrossRef] [PubMed]
- Popa, T.; Russo, M.; Vidailhet, M.; Roze, E.; Lehéricy, S.; Bonnet, C.; Apartis, E.; Legrand, A.P.; Marais, L.; Meunier, S.; et al. Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: An open label trial. Brain Stimul. 2013, 6, 175–179. [Google Scholar] [CrossRef]
- Creutzfeldt, O.D.; Fromm, G.H.; Kapp, H. Influence of transcortical d-c currents on cortical neuronal activity. Exp. Neurol. 1962, 5, 436–452. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Transcranial magnetic stimulation: A primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G.; et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2021, 24, 256–313. [Google Scholar] [CrossRef]
- Woods, A.J.; Antal, A.; Bikson, M.; Boggio, P.S.; Brunoni, A.R.; Celnik, P.; Cohen, L.G.; Fregni, F.; Herrmann, C.S.; Kappenman, E.S.; et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Fierro, B.; Giglia, G.; Palermo, A.; Pecoraro, C.; Scalia, S.; Brighina, F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp. Brain Res. 2007, 176, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Brighina, F.; Daniele, O.; Piazza, A.; Giglia, G.; Fierro, B. Hemispheric cerebellar rTMS to treat drug-resistant epilepsy: Case reports. Neurosci. Lett. 2006, 397, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Kent, J.S.; Park, K.; Guell, X.; Anteraper, S. Resting-state functional connectivity-based parcellation of the human dentate nucleus: New findings and clinical relevance. Brain Struct. Funct. 2023, 228, 1799–1810. [Google Scholar] [CrossRef] [PubMed]
- Jayasekeran, V.; Rothwell, J.; Hamdy, S. Non-invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system. Neurogastroenterol. Motil. 2011, 23, 831-e341. [Google Scholar] [CrossRef] [PubMed]
- Guell, X.; Schmahmann, J.D. Diaschisis in the human brain reveals specificity of cerebrocerebellar connections. J. Comp. Neurol. 2023, 531, 2185–2193. [Google Scholar] [CrossRef] [PubMed]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. 2015, 45, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, D.A.; Casula, E.P.; Koch, G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2023, 8, 1073–8584. [Google Scholar] [CrossRef]
- Gera, G.; Fling, B.W.; Horak, F.B. Cerebellar White Matter Damage Is Associated with Postural Sway Deficits in People with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2020, 101, 258–264. [Google Scholar] [CrossRef]
- Surgent, O.J.; Dadalko, O.I.; Pickett, K.A.; Travers, B.G. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture 2019, 71, 245–252. [Google Scholar] [CrossRef]
- Naro, A.; Bramanti, A.; Leo, A.; Manuli, A.; Sciarrone, F.; Russo, M.; Bramanti, P.; Calabrò, R.S. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct. Funct. 2017, 222, 2891–2906. [Google Scholar] [CrossRef]
- Cantarero, G.; Spampinato, D.; Reis, J.; Ajagbe, L.; Thompson, T.; Kulkarni, K.; Celnik, P. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J. Neurosci. 2015, 35, 3285–3290. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.J.; Zimerman, M.; Timmermann, J.E.; Heise, K.F.; Gerloff, C.; Hummel, F.C. Enhancing Consolidation of a New Temporal Motor Skill by Cerebellar Noninvasive Stimulation. Cereb. Cortex 2016, 26, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- Vasant, D.H.; Sasegbon, A.; Michou, E.; Smith, C.; Hamdy, S. Rapid improvement in brain and swallowing behavior induced by cerebellar repetitive transcranial magnetic stimulation in poststroke dysphagia: A single patient case-controlled study. Neurogastroenterol. Motil. 2019, 31, e13609. [Google Scholar] [CrossRef] [PubMed]
- Roostaei, T.; Nazeri, A.; Sahraian, M.A.; Minagar, A. The human cerebellum: A review of physiologic neuroanatomy. Neurol. Clin. 2014, 32, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Sasegbon, A.; Watanabe, M.; Simons, A.; Michou, E.; Vasant, D.H.; Magara, J.; Bath, P.M.; Rothwell, J.; Inoue, M.; Hamdy, S. Cerebellar repetitive transcranial magnetic stimulation restores pharyngeal brain activity and swallowing behaviour after disruption by a cortical virtual lesion. J. Physiol. 2019, 597, 2533–2546. [Google Scholar] [CrossRef] [PubMed]
- Michou, E.; Mistry, S.; Jefferson, S.; Singh, S.; Rothwell, J.; Hamdy, S. Targeting unlesioned pharyngeal motor cortex improves swallowing in healthy individuals and after dysphagic stroke. Gastroenterology 2012, 142, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Sasegbon, A.; Niziolek, N.; Zhang, M.; Smith, C.J.; Bath, P.M.; Rothwell, J.; Hamdy, S. The Effects of Midline Cerebellar rTMS on Human Pharyngeal Cortical Activity in the Intact Swallowing Motor System. Cerebellum 2021, 20, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Guell, X.; Gabrieli, J.D.E.; Schmahmann, J.D. Triple representation of language, working memory, social and emotion processing in the cerebellum: Convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 2018, 172, 437–449. [Google Scholar] [CrossRef]
- Turkeltaub, P.E.; Swears, M.K.; D’Mello, A.M.; Stoodley, C.J. Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restor. Neurol. Neurosci. 2016, 34, 491–505. [Google Scholar] [CrossRef]
- D’Mello, A.M.; Turkeltaub, P.E.; Stoodley, C.J. Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study. J. Neurosci. 2017, 37, 1604–1613. [Google Scholar] [CrossRef]
- Cho, S.S.; Yoon, E.J.; Bang, S.A.; Park, H.S.; Kim, Y.K.; Strafella, A.P.; Kim, S.E. Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: A study with FDG PET. Cerebellum 2012, 11, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Nasios, G.; Dardiotis, E.; Messinis, L. From Broca and Wernicke to the Neuromodulation Era: Insights of Brain Language Networks for Neurorehabilitation. Behav. Neurol. 2019, 2019, 9894571. [Google Scholar] [CrossRef] [PubMed]
- Dave, S.; VanHaerents, S.; Voss, J.L. Cerebellar Theta and Beta Noninvasive Stimulation Rhythms Differentially Influence Episodic Memory versus Semantic Prediction. J. Neurosci. 2020, 40, 7300–7310. [Google Scholar] [CrossRef] [PubMed]
- Viñas-Guasch, N.; Ng, T.H.B.; Heng, J.G.; Chan, Y.C.; Chew, E.; Desmond, J.E.; Chen, S.H.A. Cerebellar Transcranial Magnetic Stimulation (TMS) Impairs Visual Working Memory. Cerebellum 2023, 22, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.; Oldrati, V.; Gallucci, M.; Vecchi, T.; Cattaneo, Z. The role of the cerebellum in explicit and incidental processing of facial emotional expressions: A study with transcranial magnetic stimulation. NeuroImage 2018, 169, 256–264. [Google Scholar] [CrossRef]
- Ferrari, C.; Ciricugno, A.; Urgesi, C.; Cattaneo, Z. Cerebellar contribution to emotional body language perception: A TMS study. Soc. Cogn. Affect. Neurosci. 2022, 17, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, L.; Gordon, P.C.; Ziemann, U. Assessing effective connectivity of the cerebellum with cerebral cortex using TMS-EEG. Brain Stimul. 2022, 15, 1354–1369. [Google Scholar] [CrossRef]
- Pan, Y.; Li, H.; Wardlaw, J.M.; Wang, Y. A new dawn of preventing dementia by preventing cerebrovascular diseases. BMJ 2020, 371, m3692. [Google Scholar] [CrossRef]
- Brainin, M.; Tuomilehto, J.; Heiss, W.D.; Bornstein, N.M.; Bath, P.M.; Teuschl, Y.; Richard, E.; Guekht, A.; Quinn, T. Post-stroke cognitive decline: An update and perspectives for clinical research. Eur. J. Neurol. 2015, 22, 229-e16. [Google Scholar] [CrossRef]
Number | Author, Year | Focus | |||||||
---|---|---|---|---|---|---|---|---|---|
Muscle Spasticity | Gait | Balance | Hand Function | Dysphagia | Aphasia | Cognitive Function | Functional Ability | ||
1 | Kim, 2014 [39] | √ | √ | ||||||
2 | Marangolo, 2017 [48] | √ | |||||||
3 | Zandvliet, 2018 [49] | √ | √ | ||||||
4 | Koch, 2019 [40] | √ | √ | √ | |||||
5 | Liao, 2020 [43] | √ | √ | √ | |||||
6 | Sebastian, 2020 [51] | √ | |||||||
7 | Bonnì, 2020 [50] | √ | |||||||
8 | Zhong, 2021 [45] | √ | √ | ||||||
9 | Xie, 2021 [44] | √ | |||||||
10 | Li, 2021 [42] | √ | √ | √ | |||||
11 | Chen, 2021 [41] | √ | √ | ||||||
12 | Solanki, 2021 [52] | √ | √ | ||||||
13 | Rao, 2022 [29] | √ | |||||||
14 | Rosso, 2022 [34] | √ | √ | √ | |||||
15 | Im, 2022 [46] | √ | √ | ||||||
16 | Dong, 2022 [30] | √ | |||||||
17 | DeMarco, 2022 [35] | √ | |||||||
18 | Qurat-ul-ain, 2023 [36] | √ | √ | √ | |||||
19 | Gong, 2023 [47] | √ | |||||||
20 | Wessel, 2023 [33] | √ | √ | ||||||
21 | Dai, 2023 [31] | √ | |||||||
22 | Zhong, 2023 [32] | √ |
Number | Studies, Year | Sample Size | Stimulation Type and Parameters | Stimulation Location | Outcome Assessments | Main Findings |
---|---|---|---|---|---|---|
1 | Kim, 2014 [39] | CS: n = 22; SS: n = 10 | rTMS, 100% of RMT, 1 Hz, 900 pulses, 5 sessions for 5 consecutive days. | At 2 cm lateral, 2 cm below inion in cerebellum ipsilateral to the ataxia side. | BBS; 10 MWT | Percentage changes after therapy for time and steps in the 10 MWT and BBS between CS vs. SS group: −16.7 ± 35.1% vs. −8.4 ± 72.5%, −8.5 ± 23.0% vs. −0.3 ± 28.4%, and 46.4 ± 100.2% vs. 36.6 ± 71.6%. |
2 | Zandvliet, 2018 [49] | CS: n = 30; SS: n = 15 | tDCS, anodal stimulation, 1.5 mA, 3 sessions for 20 min of 5 consecutive days. | Anodal electrode at 3 cm lateral of the inion. | BBS; TUG; EmNSA-LE; FES; FMA-LE; MI-LE; VAS; CoP | A decrease in CoP composite score in the tandem position was found after CS: β = −0.25, p = 0.03. |
3 | Koch, 2019 [40] | CS: n = 18; SS: n = 18 | iTBS, 80% of AMT, 5 Hz, 600 pulses, 2 sessions for 3 consecutive weeks. | Contralesional cerebellar hemisphere. | BBS; BI; FMA; locomotion assessment | The BBS score and step width in gait analysis were compared pre- and post-CS: 34.5 ± 3.4 vs. 43.4 ± 2.6 (p < 0.05) and 16.8 ± 4.8 vs. 14.3 ± 6.2 (p < 0.05). There were no significant differences observed in FMA and BI between pre- and post-CS. |
4 | Bonnì, 2020 [50] | CS: n = 8; SS: n = 8 | iTBS, 80% of AMT, 600 pulses, 2 sessions, at least once a week. | At 3 cm lateral, 1 cm below inion. | Visuo-motor adaptation task | The rate of error reduction in visuo-motor learning and re-adaptation task between CS vs. SS group: 1.14 ± 0.33 vs. 0.31 ± 0.12 (p = 0.03) and 1.33 ± 0.31 vs. 0.47 ± 0.16 (p = 0.04). No difference was found in the de-adaptation phase between the two groups. |
5 | Liao, 2020 [43] | CS: n = 15; SS: n = 15 | iTBS, 80% of AMT, 600 pulses, 1 session for 10 days. | At 3 cm lateral, 1 cm below inion in contralesional cerebellum. | BBS; TIS; FMA-LE; BI | All clinical scores significantly increased after CS. The scores in BBS (p < 0.001) and TIS (p < 0.05) improved more in the CS group than in the SS group. |
6 | Xie, 2021 [44] | CS: n = 18; SS: n = 18 | iTBS, 80% of AMT, 5 Hz, 600 pulses, 2 session for 10 consecutive days. | At 3 cm lateral, 1 cm below inion in contralesional cerebellum. | FMA-LE; 10 MWT; TUG; FAC | Walking performance significantly improved over time and between groups. FMA-LE scores marginally progressed in both groups with no differences observed between groups or across time. |
7 | Solanki, 2021 [52] | CS: n = 10; SS: n = 10 | tDCS, 2 bilateral montages that applied 2 mA for 15 min. | Dentate nuclei, lower-limb representations (lobules VIIb-IX). | 10 MWT; TUG; BBS | Overground gait performance improved after CS and is correlated with lobular electric field strength (r = 0.66). |
8 | Im, 2022 [46] | CS: n = 16; SS: n = 16 | rTMS, 90% of RMT, 1 Hz, 900 pulses, 1 session, 5 times per week for 2 weeks. | At 2 cm lateral, 2 cm below inion in the contralesional cerebellum. | BBS; TUG; 10 MWT; ABC | All clinical scores significantly increased after CS therapy. BBS and ABC scores (p < 0.05) showed greater improvement in the CS group compared to the SS group. There were no significant differences in the changes observed in the 10 mWT and TUG between the two groups. |
9 | Qurat-ul-ain, 2023 [36] | CS: n = 22; MS: n = 22; SS: n = 22 | tDCS, anodal stimulation, 2 mA, 3 sessions for 20 min of 3 days. | At 1–2 cm below inion occipital protuberance. | BBS; TUG; 6 MWT; 25 FWT; JHFRA; BESTest; MMSE; MoCA | The performance of BBS, TUG, and BESTest significantly improved for both the MS and CS group, demonstrating similar effects. However, neither stimulation induced notable improvements in MMSE and MoCA. |
Number | Studies, Year | Sample Size | Stimulation Type and Parameters | Stimulation Location | Outcome Assessments | Main Findings |
---|---|---|---|---|---|---|
1 | Chen, 2021 [41] | CS: n = 16; SS: n = 16 | iTBS, 80% AMT, 600 pulses, 10 sessions, 5 times a week for 2 weeks. | At 3 cm lateral, 1 cm below inion. | MAS, MTS, SWV, BI | Compared with SS group, CS group had better performance in MAS (p < 0.01), MTS (p < 0.001) and SWV (p < 0.05). |
2 | Li, 2021 [42] | CS: n = 30; MS: n = 30; CS + MS: n = 30 | cTBS, 80% of AMT, 3-pulse bursts at 50 Hz cTBS, 20 days. | At 3 cm lateral, 1 cm below inion in right cerebellum. | MAS, FMA, MBI | Improvements were shown in MAS, FMA, and MBI after therapy in all three groups. CS+MS group showed a lower MAS score and higher FMA and MBI scores than the MS group and CS group. |
Number | Studies, Year | Sample Size | Stimulation Type and Parameters | Stimulation Location | Outcome Assessments | Main Findings |
---|---|---|---|---|---|---|
1 | Rosso, 2022 [34] | CS: n = 14; SS: n = 13 | PAS, 50% of the maximal stimulator output, 120 pairs of 0.2 Hz stimuli, 5 sessions. | At 3 cm lateral to the inion in the contralesional cerebellum. | JTT; GS | Significant effect of group × time interaction in JTT (p = 0.04) was shown, but not in GS (p = 0.54). Improved JTT linked to increased ipsilesional motor cortex activation (p = 0.04). |
2 | Gong, 2023 [47] | CS: n = 37; SS: n = 35 | tDCS, anodal stimulation, 2 mA for 20 min, 1 session, 5 days a week for 4 weeks. | At 3 cm right lateral to the inion in the right cerebellum. | FMA-UE | Post-stimulation changes in FMA-UE between the CS and SS groups at day 1 and 60 post-therapy: 10.7 ± 1.4 vs. 5.8 ± 1.3 (p = 0.01) and 18.9 ± 2.1 vs. 12.7 ± 2.1 (p = 0.04). The stimulation effect was more pronounced in patients with right hemiplegia (p = 0.03). Different age groups did not show difference between groups (p = 0.66). |
3 | Wessel, 2023 [33] | CS: n = 11; MS: n = 11 | tDCS, anodal stimulation; 2 mA for 20 min; fade-in/out interval, 8 s | CS: 3 cm lateral to the inion in the cerebellum ipsilateral to the affected hand; MS: contralateral to the affected hand. | SGFMT | Sequential multifocal tDCS of M1 and CB improved motor performance in a hand-based, sequential motor task in chronic stroke survivors. |
Number | Studies, Year | Sample Size | Stimulation Type and Parameters | Stimulation Location | Outcome Assessments | Main Findings |
---|---|---|---|---|---|---|
1 | Zhong, 2021 [45] | CS: n = 34; Unaffected MS: n = 38; Affected MS: n = 36; SS: n = 35 | rTMS, 110% RMT, 5 Hz, 1800 pulses, 1 session for 10 consecutive days. | At 4.3 cm lateral, 2.4 cm below inion. | FEDSS; SSA; PAS; GUSS | Significant time and intervention interaction effects were found for the FEDSS, PAS, SSA, and GUSS scores in all groups (p < 0.05). Compared with the SS group, improvements in the above scale scores were shown in the CS, unaffected, and affected MS group (p < 0.05). |
2 | Dong, 2022 [30] | Unilateral CS: n = 12; Bilateral CS: n = 12; SS: n = 12 | rTMS, 80% RMT, 10 Hz, 250 pulses, 1 session, 5 days a week for 2 weeks. | At 3 cm lateral, 1 cm below inion. | PAS; FDS | Scores for PAS and FDS improved after therapy in both unilateral and bilateral CS groups (p < 0.05), while no significant change was observed in the SS group. Compared to the SS group, improvements in the aforementioned scales also showed in both unilateral and bilateral CS groups (p < 0.05), with no significant difference between the two CS groups. |
3 | Rao, 2022 [29] | Bilateral CS: n = 33; SS: n = 33 | iTBS, 100% RMT, 3 pulses of 50 Hz stimulation and repeated at 5 Hz, 600 pulses, 1 session, 5 times a week for 2 weeks. | At 4.3 cm lateral, 2.4 cm below inion. | FEDSS; PAS; SSA; FOIS | Significant time and group interaction effects showed in FEDSS, PAS, SSA, and FOIS score (p < 0.001). Compared to the SS group, the scores in the above scales at 2 weeks and 4 weeks significantly improved in the CS group (p < 0.05). All scores were significantly improved over time in both CS and SS groups (p < 0.001). |
4 | Dai, 2023 [31] | Bilateral CS: n = 14; Unilateral CS: n = 14; SS: n = 14 | rTMS, 90% RMT, 5 trains of 50, 10 Hz stimuli at an intratrain interval of 10 s, 1 session, 5 times a week for 2 weeks. | At 3 cm lateral, 1 cm below inion. | FOIS; DOSS; PAS | Significant time and intervention interaction effects were observed for the FOIS score (p = 0.02). Post therapy, the changes in the FOIS scores were significantly higher in the bilateral CS group compared to the SS group (p < 0.05). Similarly, greater changes in the DOSS and PAS scores were observed in both the unilateral and bilateral CS groups (p < 0.05). Bilateral corticobulbar tract excitability partly increased in the two CS groups, although no significant difference was observed compared to the SS group. |
5 | Zhong, 2023 [32] | CS: n = 41; SS: n = 43 | rTMS, 80% RMT, 10 Hz, 250 pulses, 5 days a week for 2 weeks. | At 2–4 cm anterior, 4–6 cm lateral to the cranial apex. | FEDSS; PAS | The interaction between time and intervention had a significant effect on PAS (p < 0.001) and FEDSS (p < 0.001). Compared to the SS group, the CS group significantly improved in PAS (p = 0.007) and FEDSS (p = 0.002). |
Number | Studies, Year | Sample Size | Stimulation Type and Parameters | Stimulation Location | Outcome Assessments | Main Findings |
---|---|---|---|---|---|---|
1 | Marangolo, 2017 [48] | CS: n = 12; SS: n = 12 | tDCS, anodal stimulation, 2 mA for 20 min, 5 consecutive daily sessions over 4 weeks. | At 4 cm lateral, 1 cm inferior below inion in right cerebellum. | Verb generation and naming task | Significant effects of condition (p < 0.01) and time (p < 0.001) were observed. The percentage of correct responses increased after treatment in both groups (p < 0.01); only the CS group improved in the verb generation task (p < 0.001) |
2 | DeMarco, 2022 [35] | CS: n = 10; SS: n = 14 | tDCS, anodal stimulation, 2 mA for 20 min, 5 consecutive days | At 4 cm lateral, 1 cm inferior below inion in right cerebellum. | WAB–R; PS-PDT; PNT; category and letter fluency tasks; CSC; verb generation and naming tasks; motor speech production task. | Cerebellar tDCS did not significantly enhance language processing, measured either immediately following treatment or at the 3-month follow-up. |
3 | Sebastian, 2020 [51] | CS: n = 21; SS: n = 21 | tDCS, anodal stimulation, 2 mA for 20 min, 15 sessions (3–5 sessions per week) | At 4 cm lateral, 1 cm inferior below inion in right cerebellum. | Naming 80 test; PNT. | A significant order × treatment interaction was observed immediately post-treatment (p = 0.004) in the Naming 80 test. In PNT, the change in naming accuracy between the CS and SS groups was 9.57 (p = 0.016) immediately post-treatment and 10.22 (p = 0.012) at 2 months post-treatment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Liu, Y.; Zhang, Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024, 12, 1348. https://doi.org/10.3390/biomedicines12061348
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines. 2024; 12(6):1348. https://doi.org/10.3390/biomedicines12061348
Chicago/Turabian StyleLiu, Qi, Yang Liu, and Yumei Zhang. 2024. "Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review" Biomedicines 12, no. 6: 1348. https://doi.org/10.3390/biomedicines12061348
APA StyleLiu, Q., Liu, Y., & Zhang, Y. (2024). Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines, 12(6), 1348. https://doi.org/10.3390/biomedicines12061348