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Abstract: Current chemical treatments for cerebrovascular disease and neurological disorders have
limited efficacy in tissue repair and functional restoration. Induced pluripotent stem cells (iPSCs)
present a promising avenue in regenerative medicine for addressing neurological conditions. iPSCs,
which are capable of reprogramming adult cells to regain pluripotency, offer the potential for patient-
specific, personalized therapies. The modulation of molecular mechanisms through specific growth
factor inhibition and signaling pathways can direct iPSCs’ differentiation into neural stem cells
(NSCs). These include employing bone morphogenetic protein-4 (BMP-4), transforming growth
factor-beta (TGFβ), and Sma-and Mad-related protein (SMAD) signaling. iPSC-derived NSCs can
subsequently differentiate into various neuron types, each performing distinct functions. Cell
transplantation underscores the potential of iPSC-derived NSCs to treat neurodegenerative diseases
such as Parkinson’s disease and points to future research directions for optimizing differentiation
protocols and enhancing clinical applications.

Keywords: BMP-4 protein; induced pluripotent stem cells; neural stem cells; SMAD proteins;
transforming growth factor beta; transplantation

1. Introduction

Neurological disorders, especially cerebrovascular diseases and strokes, are a signifi-
cant global issue [1]. These conditions lead to irreversible neural damage, and currently,
there are limited effective treatments available for repairing damaged tissue or restor-
ing function [2–4]. To overcome this, regenerative medicine has begun to focus on the
differentiation of neural cells from induced pluripotent stem cells (iPSCs) [5].

Stem cells inherently possess two key functions: the capacity for unlimited self-
renewal and the ability to differentiate into one or more specialized cell types [6]. These
characteristics play a fundamental role in exploring tissue repair and disease treatment
methods through stem cells [7].

iPSCs are cells that have regained pluripotency through the reprogramming of already
differentiated mature cells and are created by manipulating the expression of specific
genes [8,9]. The technology of iPSCs, which restores pluripotency from mature cells, of-
fers innovative potential for generating patient-specific disease models and developing
personalized treatments [10]. Neural cells generated from iPSCs can be used to replace
or repair damaged neural tissue [11]. Moreover, using neural cells differentiated from
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patient-derived iPSCs allows for effective testing of new drugs’ efficacy or toxicity [12].
Transplanting these iPSC-derived neural cells could lead to functional recovery in neurode-
generative diseases such as Alzheimer’s or Parkinson’s disease.

Against this background, it is expected that the process of neuronal differentiation
of iPSCs will be examined, and the mechanisms of neuronal differentiation will be elu-
cidated, providing an important step in the development of regenerative medicine and
disease therapies.

2. Inhibiting the SMAD Pathway in iPSCs for Neural Differentiation

The process of differentiating iPSCs into various cells includes several complex sig-
naling pathways and molecular mechanisms. iPSCs have important advantages over
embryonic stem cells (ESCs). iPSCs are derived from adult cells; they bypass the ethical
issues of destroying embryos to derive ESCs [13,14]. iPSCs can be self-derived from the
patient, allowing for the creation of patient-specific cell lines [12,15]. They can differentiate
into multiple cell types, allowing drug testing to assess effectiveness and identify side ef-
fects safely and efficiently [16]. Furthermore, iPSCs retain the same pluripotency as that of
ESCs [17]. Both iPSCs and ESCs exhibited equivalent neuronal differentiation potential, and
both cells showed similar cholinergic motor neuron differentiation potential and the ability
to induce the contraction of myotubes [18]. In another study, while iPSC-derived neural
stem cells (NSCs) had decreased ATP production compared to that of ESC-derived NSCs,
iPSC-derived astrocytes had increased ATP production compared to that of ESC-derived
astrocytes [19].

Specifically, the differentiation of neuronal cells is induced by the dual inhibition of
the Sma- and Mad-related protein (SMAD) pathway (Figure 1). Before understanding the
SMAD pathway, it is necessary to understand the transforming growth factor-beta (TGFβ)
signaling pathway, which includes SMAD.
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Figure 1. Adding reprogramming factors to PBMCs to induce their reverse differentiation into iPSCs.
Reverse-differentiated iPSCs can be induced to undergo mesoderm or endoderm differentiation
through the activation of the SMAD pathway. Inhibition of the SMAD pathway induces the neural
stem cell differentiation of iPSCs. BMP: bone morphogenetic protein, TGFβ: transforming growth
factor-beta, NSC: neural stem cell, iPSC: induced pluripotent stem cell, PBMC: peripheral blood
mononuclear cell, OSKM: Oct4/Sox2/Klf4/c-Myc, SMAD: Sma- and Mad-related protein.
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2.1. SMAD Pathway Inhibition

Inhibition of the SMAD pathway directs the fate of iPSCs towards the neuroectoderm
and induces neural cell differentiation through the inhibition of TGFβ and BMP-4 signaling,
as mentioned above [20]. For the dual inhibition of the SMAD pathway, SB431542 is used
to inhibit the TGFβ pathway and Noggin is used to inhibit the BMP pathway.

SB431542 inhibits the Lefty/Activin/TGFβ pathway by blocking the phosphorylation
of ALK4, ALK5, and ALK7 receptors. SB431542 also inhibits differentiation to the mesoderm
by inhibiting Activin/Nodal signaling. Noggin inhibits differentiation to the ectoderm by
inhibiting the BMP pathway. A combined treatment of SB431542 and Noggin induced
the neural differentiation of stem cells with high efficiency [20]. The mechanisms by
which Noggin and SB431542 induced neural cell differentiation include Activin- and Nanog-
mediated network destabilization [21], BMP-induced inhibition of differentiation [22],
and the inhibition of mesodermal and endodermal differentiation through the inhibition
of endogenous Activin and BMP signaling [23,24]. Treatment with SB431542 decreases
Nanog expression and significantly increases CDX2 expression. The inhibition of CDX2
in the presence of Noggin or SB431542 demonstrates that one of the key roles of Noggin
is the inhibition of endogenous BMP signaling, which induces trophoblast fate during
differentiation.

2.2. TGFβ Signaling Pathway

The TGFβ signaling pathway is a pathway that regulates cell growth, differentiation,
migration, death, and homeostasis [25]. The superfamily of TGFβ includes bone mor-
phogenetic protein (BMP), Activin, Nodal, and TGFβ. Signal transduction in this pathway
begins with the binding of superfamily ligands of TGFβ to TGFβ receptor type II and TGFβ
receptor type I [26]. Activated TGFβ receptors recruit Smad2/3 for TGFβ and activation
signaling [27] and form complexes of CoSmad and R-smad, such as Smad4, for BMP sig-
naling [28]. Smad complexes accumulate in the nucleus and are directly involved in the
transcriptional regulation of target genes [29].

2.3. BMP Signaling Pathway

BMPs are cytokines that belong to a group of growth factors [30]. BMPs have a role
in early skeletal formation during embryonic development and were originally known to
act as bone growth factors [31]. BMPs bind to a heteromeric receptor complex composed
of type I and type II serine/threonine kinase receptors, which are received by different
activin receptors and BMP receptors [32]. The two receptors are highly homologous and
can activate both Smad and non-Smad signaling.

BMP-4 is a member of the BMP superfamily, which induces the ventral mesoderm
to establish dorsal–ventral morphogenesis. BMP4 signaling is found in the formation of
early mesoderm and germ cells, and the development of the lungs and liver is attributed
to BMP4 signaling [33]. Inhibition of this BMP-4 signaling induces neurogenesis and the
formation of the neural plate. Indeed, the knockout of BMP-4 in mice resulted in little
mesodermal differentiation [34].

2.4. RA Pathway

Retinoic acid (RA) is a molecule that contributes to the development and homeostasis
of the nervous system [35]. The RA signaling depends on cells having the ability to
metabolize retinol. Transcription is regulated by the binding of RA to its receptor, RA
receptor (RAR), which forms a complex with the retinoid X receptor (RXR) [36]. The RA is
involved in the differentiation of NSCs into neurons, astrocytes, or oligodendrocytes [37].
RA activates the Hox gene, which is required for hindbrain development and regulates the
head–trunk transition [38]. RA is required for the formation of primary neurons [39]. In an
embryonal carcinoma cell line in vitro, RA promoted neurite outgrowth and stimulated the
expression of neural differentiation markers [40].
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Furthermore, RA is essential in embryonic development and is essential for the de-
velopment of many organs, including the hindbrain, spinal cord, skeleton, heart, and
brain [41].

2.5. BDNF, GDNF, and NGF Pathway Regulation

Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor found primarily
in the brain and central nervous system that regulates nerve cell survival, growth, and
neurotransmission [42]. BDNF promotes neuronal survival and growth in dorsal root
ganglion cells and in hippocampal and cortical neurons [43,44]. In in vitro experiments in
which neural differentiation was induced in a variety of stem cells, neural differentiation
was confirmed after treatment with BDNF [45,46].

Glial-cell-line-derived neurotrophic factor (GDNF) is a protein that promotes the
survival of many different neurons [47]. GDNF can be secreted by neurons and peripheral
cells during development, including astrocytes, and interacts with GDNF family receptor
alpha 1 and 2 [48]. In particular, it has a protective effect on dopamine-producing nerve
cells, making it an important target in neurodegenerative diseases such as Parkinson’s
disease [49].

Nerve growth factor (NGF) is a neuropeptide involved in regulating the growth,
proliferation, and survival of neurons [50]. In in vivo and in vitro studies, NGF has been
shown to have an important role in the differentiation and survival of neurons, as well as
in the protection of degenerating neurons.

3. Differentiation of Various Neural Cells from iPSCs

Through various mechanisms, neural cell differentiation from iPSCs can develop a
diverse array of neurons (Figure 2, Table 1). It is possible to consider prior studies that
successfully differentiated various neurons from iPSCs and the application of protocols
used for the differentiation of human ESCs (hESCs) into iPSCs.
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Figure 2. Different neural cells that can differentiate from neural stem cells. Cells induced to become
neural stem cells due to the inhibition of the dual SMAD pathway with SB431542 and Noggin can be
combined to add cytokines specific to each differentiation target. The cytokines described next to
the black arrows indicate the fate of each neuron. Differentiated neurons are identified through the
detection of the proteins listed under each neuron.
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Table 1. Strategies for iPSCs differentiated into neural progenitor cells to become multifunctional
neurons.

References Type of Neuron Differentiation Inducers Specific Markers

[51,52] Cortical Neurons
Cyclopamine, DKK-1, DMH-1,
BDNF, GDNF, cAMP, Ascorbic

acid, Laminin

Tbr1, CTIP2, Satb2,
Brn2, Cux1

[53,54] Dopaminergic
Neurons FGF8, SHH TH, TUJ-1, LMX1A,

FOXA2, NURR1

[55] Motor Neurons GDNF, CTNF, BDNF, SHH, RA BIII-tubulin, ChAT,
Islet1

[56] Astrocytes B27, BMP, CTNF, bFGF GFAP, GalC,
BIII-tubulin

[57] Oligodendrocytes PDGF, RA, SAG OLIG2, MAP2, SOX10

[58] Hippocampal
Neurons CHIR, BDNF, Cyclopamine, XAV PROX1, MAP2

[59] Serotonergic Neurons Purmophamine, BDNF, RA 5-HT, MAP2

3.1. Differentiation into Cortical Neurons

iPSCs can differentiate into cortex neurons. The study by Kaveena Autar [51] induced
an initial neural lineage in iPSCs using two small molecule inhibitors of the SMAD pathway,
LDN193189 and SB431542, promoting neuroepithelial differentiation. Following the early
neural induction, the neural epithelium was induced using DKK-1, a Wnt/B antagonist, and
DMH-1, a BMP inhibitor, enhancing the development of rostral neuroepithelial cells. Finally,
the application of cyclopamine, an SHH inhibitor, designated the cortex fate, while BDNF,
GDNF, cAMP, ascorbic acid, and laminin improved the generation of cortical neurons.

In the research by Yichen Shi, cortical development was induced in both hESCs and
iPSCs using dorsomorphin, an inhibitor of the SMAD pathway [52].

Cortical differentiation can be confirmed by the reduced expression of the pluripotency
gene Oct4 and the increased expression of the genes Tbr1, CTIP2, Satb2, Brn2, and Cux1.

3.2. Differentiation into Dopaminergic Neurons

Human iPSCs are capable of differentiating into midbrain dopaminergic neurons.
In a study by Lixiang Ma, dopaminergic neurons were generated from iPSCs [53]. After
inducing iPSCs into neural epithelial cells, applying FGF8 and SHH efficiently produced
dopaminergic neurons from midbrain precursors without the need for co-culture. Dopamin-
ergic neurons can be identified by detecting markers such as TH, TUJ-1, LMX1A, FOXA2,
and NURR1.

It is also possible to induce the dopaminergic neuronal differentiation of iPSCs without
the use of pharmacological compounds for the inhibition of SMAD mechanisms [54].
Adeno-associated viral vectors were designed to upregulate Lmx1a through SHH and Wnt
and then transfected into iPSCs. The iPSCs not only successfully generated dopaminergic
neurons but also showed a consistent number of them.

3.3. Differentiation into Motor Neurons

iPSCs can differentiate into motor neurons [55]. After inducing iPSCs into embryonic
bodies, treatment with RA and purmorphamine, an activator of the sonic hedgehog path-
way, resulted in the expression of neural precursor markers. Cells forming neural rosettes
were mechanically separated, plated in media containing RA and Shh, and cultured for a
week. Following further culture with BDNF, CTNF, GDNF, and Shh, after 3–5 weeks, cells
displayed motor neuron characteristics, and BIII-tubulin, ChAT, and Islet1 were detected.
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3.4. Differentiation into Astrocytes

iPSCs can differentiate into astrocytes [56]. iPSCs induced into NSCs were cultured
in NSC media containing B27, BMP, CTNF, and bFGF. The differentiated astrocytes were
co-cultured with the neuron layer. Throughout the culture, neurons were distinguished by
their distinct cell bodies and measured along axons using fluorescence imaging. Neurons
and astrocytes, as well as oligodendrocytes, were differentiated by expressing markers
such as BIII-tubulin, GFAP, and GalC.

3.5. Differentiation into Oligodendrocytes

iPSCs can differentiate into oligodendrocytes [57]. Neural differentiation was induced
through dual SMAD inhibition. After differentiation, adding SAG and RA promoted sphere
aggregation, and using PDGF media encouraged OPC formation. The development of
oligodendrocytes was confirmed through the detection of OLIG2, MAP2, and SOX10.

3.6. Differentiation into Hippocampal Neurons

NSCs derived from iPSCs can differentiate into the hippocampus [58]. Neural in-
duction media composed of B27, N2, and NEAA were supplemented with LDN-193189,
Cyclopamine, SB431542, and XAV-939 to induce differentiation, and CHIR-99021 and BDNF
were added to promote hippocampal neuron development. The generation of hippocampal
neurons was confirmed through the detection of PROX1.

3.7. Differentiation into Serotonergic Neurons

NSCs derived from iPSCs can differentiate into serotonergic neurons [59]. Human
pluripotent stem cells (hPSCs) were cultured in an N2 medium combined with a knockout
serum replacement medium and treated with SB431542, LDN193189, purmorphamine,
and RA. After 11 days, the medium was switched to NB/B27 medium, and BDNF was
added. Following differentiation, the presence of serotonergic neurons was confirmed
through immunofluorescence staining for 5-HT, MAP2, TUJ1, FEV, and TPH2 expression.
Subsequent 3D culture also successfully yielded organoids, and the release of 5-HT and its
metabolites was observed.

4. Therapeutic Research Using Neural Cells Derived from iPSCs

Researchers are hopeful that the transplantation of neural cells derived from iPSCs
can overcome neurodegenerative diseases. To treat Parkinson’s disease, which has been
identified as a disorder of dopaminergic neurons, the transplantation of iPSC-derived
dopaminergic neurons is considered. If these transplanted neurons function normally, they
could potentially cure Parkinson’s disease. This anticipation has led to the execution of cell
transplantation therapies targeting either cells or animals, and in some cases, applications
have extended to clinical trials.

4.1. Dopaminergic Neuron Therapy in a Model of Parkinson’s Disease

Dopaminergic neurons from PSCs may be a candidate for the treatment of Parkinson’s
disease. When dopaminergic neurons were transplanted into the nigrostriatal lesions of
rats with Parkinson’s disease, the neurons survived and interacted in the rats’ brains for a
long period of time [60]. After cell transplantation, the rats’ motor function was restored.

4.2. In Vivo Transplantation and Survival of Astrocytes

Astrocytes derived from PSCs were transplanted into the striatum of mice to investi-
gate their survival and function [56]. In the brains of mice obtained 2 weeks after astrocyte
transplantation, GFAP-positive cells were still observed.

Furthermore, when iPSC-derived astrocyte progenitors were transplanted into the
brain of an Alzheimer’s disease model in mice and examined through immunostaining,
they interacted and functionally integrated with other cells in vivo [61].
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4.3. Survival of Oligodendrocytes after Transplantation in Mice

To investigate the function of iPSC-derived oligodendrocytes, cells were injected
into the forebrain of immunocompromised mice. At 12 weeks after cell injection, the
oligodendrocytes were detected through immunofluorescence staining of hNA+ and OLIG2
protein in the corpus callosum.

4.4. Clinical Trials with iPSC Transplantation

There are very few studies in which iPSCs have been transplanted into humans.
This is because questions about the safety, stability, and efficacy of iPSCs are constantly
being raised. The first thing that researchers worry about is the ability to form tumors,
which is a common concern in stem cell research [62]. iPSCs also have a theoretical risk
of forming tumors, so safety considerations follow. In addition, treatments using iPSC
technology may result in modifications to the human genome, which requires discussion
of the long-term ethical implications. For example, concerns include human cloning or
human–animal chimeras.

On the other side of the spectrum, there are also concerns related to the immune
response. Even though iPSCs are self-derived cells, the immune system may recognize
them as foreign and attack them [63,64]. This can happen mainly due to mismatches in
human leukocyte antigens (HLAs), which is why it is important to select cells based on
HLA matching. If iPSCs are generated from a donor with a specific HLA type, it is possible
to use iPSCs from other people [63]. If an HLA is incompatible, one can also modulate HLA
expression or use gene editing [64].

Finally, because iPSCs must undergo reverse differentiation from human-derived cells,
it takes a significant amount of time just to generate the cells. This can make it difficult to
use autologous cells to treat acute illnesses.

In 2020, a transplantation study of iPSC-derived dopamine progenitor cells for the
treatment of Parkinson’s disease patients was conducted [65]. After harvesting fibroblasts
by skin biopsy, dopamine progenitor cells were characterized in vitro with dopamine-
neuron-specific and other neuronal markers. Characterized dopamine progenitor cells
were transplanted into patients with Parkinson’s disease, and Parkinson’s-disease-related
measures were assessed at 1, 3, 6, 9, and 12 months and every 6 months thereafter. Trans-
planted cells survived for 2 years without side effects. F-DOPA PET-CT imaging from 0 to
24 months showed a modest increase in dopamine uptake in the posterior cingulate near
the implantation site. They also showed improved quality of life in clinical assessments
of motor signs in Parkinson’s disease, although interpretation should be carried out with
caution due to the lack of a control group comparison.

In 2021, there was a planned clinical study of the transplantation of iPSC-derived neu-
ral progenitor cells for the treatment of subacute complete spinal cord injury [66]. However,
this was postponed due to the sudden onset of the COVID-19 pandemic. A clinical-grade
iPSC line (YZWJs513) prepared at the GMP facility of Osaka National Hospital was induced
to differentiate into neural progenitor cells (NPCs), and preclinical studies using mouse
models confirmed its promotion of motor function recovery after spinal cord injury.

5. Conclusions

iPSCs can differentiate into a variety of neuronal cell types, including dopaminergic
neurons, astrocytes, and microglia, which could be a revolutionary way to treat a variety of
neurodegenerative diseases. Inhibition of TGFβ and the SMAD pathway induces neural
progenitor cell differentiation of cells with restored pluripotency. The differentiated cells
still survive and function in the body.

The chemical drugs used to treat neurodegenerative diseases have different suscepti-
bilities in different patients and have short half-lives, meaning that they are quickly used
up by the body. Drugs for neurodegenerative diseases such as Parkinson’s disease and
Alzheimer’s disease can slow their progression by increasing the release of neurotrans-
mitters, but they cannot reverse the course of the disease. In addition, unlike a body part
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such as an arm, it is very difficult to accurately deliver chemical drugs to the brain. Cell
transplantation treatments using patient-derived iPSCs are entirely patient-derived, have
a high degree of tolerance, and may be able to survive and function in the long term to
reverse the progression of neurodegenerative diseases.

However, clinical experimental studies of iPSCs and neural progenitor cells differ-
entiated from them are extremely rare and require careful handling. The response in
experimental animals and humans may be different, and we do not yet fully understand
the differentiation of iPSCs.

Future research should focus on optimizing protocols for iPSC-derived neural cell
differentiation, ensuring long-term viability and the functional integration of transplanted
cells in vivo and paving the way for clinical applications.
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BDNF Brain-derived neurotrophic factor
BMP Bone morphogenetic protein
ESC Embryonic stem cell
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iPSC Induced pluripotent stem cell
NPC Neural progenitor cell
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PSC Pluripotent stem cell
RA Retinoic acid
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RXR Retinoid X receptor
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