Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Group Characteristics
3.2. Results of Serum Tests
3.3. Correlations of SIRT1 with Height, Body Mass and IGF-1
3.4. Sirtuin 1 Levels with Respect to the Severity of GHD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juul, A. Serum Levels of Insulin-like Growth Factor I and Its Binding Proteins in Health and Disease. Growth Horm. IGF Res. 2003, 13, 113–170. [Google Scholar] [CrossRef]
- Boguszewski, C.L.; Barbosa, E.J.L.; Svensson, P.A.; Johannsson, G.; Glad, C.A.M. Mechanisms in Endocrinology: Clinical and Pharmacogenetic Aspects of the Growth Hormone Receptor Polymorphism. Eur. J. Endocrinol. 2017, 177, R309–R321. [Google Scholar] [CrossRef] [PubMed]
- Yakar, S.; Liu, J.-L.; Stannard, B.; Butler, A.; Accili, D.; Sauer, B.; LeRoith, D. Normal Growth and Development in the Absence of Hepatic Insulin-like Growth Factor I. Proc. Natl. Acad. Sci. USA 1999, 96, 7324–7329. [Google Scholar] [CrossRef] [PubMed]
- Juul, A.; Dalgaard, P.; Blum, W.F.; Bang, P.; Hall, K.; Michaelsen, K.F.; Müller, J.; Skakkebaek, N.E. Serum Levels of Insulin-like Growth Factor (IGF)-Binding Protein-3 (IGFBP-3) in Healthy Infants, Children, and Adolescents: The Relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, Age, Sex, Body Mass Index, and Pubertal Maturation. J. Clin. Endocrinol. Metab. 1995, 80, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.G. Biochemical Diagnostic Strategies in the Evaluation of Short Stature: The Diagnosis of Insulin-like Growth Factor Deficiency. Horm. Res. 1996, 46, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Iguchi, G.; Fukuoka, H.; Suda, K.; Bando, H.; Takahashi, M.; Nishizawa, H.; Seino, S.; Takahashi, Y. SIRT1 Regulates Adaptive Response of the Growth Hormone--Insulin-like Growth Factor-I Axis under Fasting Conditions in Liver. Proc. Natl. Acad. Sci. USA 2013, 110, 14948–14953. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Lee, J.-H.; Lee, H.-Y.; Min, K.-J. Sirtuin Signaling in Cellular Senescence and Aging. BMB Rep. 2019, 52, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, M.; Ge, Y.; Wang, X. SIRT1 and Aging Related Signaling Pathways. Mech. Ageing Dev. 2020, 187, 111215. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Kitamura, T. Roles of FoxO1 and Sirt1 in the Central Regulation of Food Intake. Endocr. J. 2010, 57, 939–946. [Google Scholar] [CrossRef]
- Sipos, F.; Műzes, G. Sirtuins Affect Cancer Stem Cells via Epigenetic Regulation of Autophagy. Biomedicines 2024, 12, 386. [Google Scholar] [CrossRef]
- Fedorczak, A.; Lewiński, A.; Stawerska, R. Sirtuin 1 Serum Concentration in Healthy Children—Dependence on Sex, Age, Stage of Puberty, Body Weight and Diet. Front. Endocrinol. 2024, 15, 1356612. [Google Scholar] [CrossRef]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Swiąder, A.; Różdżyńska-Świątkowska, A.; Litwin, M. Polish 2012 Growth References for Preschool Children. Eur. J. Pediatr. 2013, 172, 753–761. [Google Scholar] [CrossRef]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 Growth References for School-Aged Children and Adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef]
- Ranke, M.B.; Lindberg, A. Growth Hormone Treatment of Idiopathic Short Stature: Analysis of the Database from KIGS, the Kabi Pharmacia International Growth Study. Acta Paediatr. Suppl. 1994, 406, 18–23, discussion 24. [Google Scholar] [CrossRef]
- Adamczewska, K.; Adamczewski, Z.; Łupińska, A.; Lewiński, A.; Stawerska, R. Strong Positive Correlation between TSH and Ghrelin in Euthyroid Non-Growth Hormone-Deficient Children with Short Stature. Molecules 2020, 25, 3912. [Google Scholar] [CrossRef]
- Ranke, M.B.; Wit, J.M. Growth Hormone—Past, Present and Future. Nat. Rev. Endocrinol. 2018, 14, 285–300. [Google Scholar] [CrossRef]
- Cohen, L.E. Idiopathic Short Stature: A Clinical Review. JAMA 2014, 311, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.-L.; et al. Small Molecule Activators of Sirtuins Extend Saccharomyces Cerevisiae Lifespan. Nature 2003, 425, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Arab Sadeghabadi, Z.; Nourbakhsh, M.; Pasalar, P.; Emamgholipour, S.; Golestani, A.; Larijani, B.; Razzaghy-Azar, M. Reduced Gene Expression of Sirtuins and Active AMPK Levels in Children and Adolescents with Obesity and Insulin Resistance. Obes. Res. Clin. Pract. 2018, 12, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Donato, J.; Wasinski, F.; Furigo, I.C.; Metzger, M.; Frazão, R. Central Regulation of Metabolism by Growth Hormone. Cells 2021, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, L.; Waters, M.J.; Chen, C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol. Metab. 2020, 31, 642–654. [Google Scholar] [CrossRef]
- Holt, R.I.G.; Sönksen, P.H. Growth Hormone, IGF-I and Insulin and Their Abuse in Sport. Br. J. Pharmacol. 2008, 154, 542–556. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Klibanski, A. Determinants of GH Resistance in Malnutrition. J. Endocrinol. 2014, 220, R57–R65. [Google Scholar] [CrossRef]
- Wójcik, M.; Krawczyńska, A.; Antushevich, H.; Herman, A.P. Post-Receptor Inhibitors of the GHR-JAK2-STAT Pathway in the Growth Hormone Signal Transduction. Int. J. Mol. Sci. 2018, 19, 1843. [Google Scholar] [CrossRef] [PubMed]
- Fedorczak, A.; Lewiński, A.; Stawerska, R. Involvement of Sirtuin 1 in the Growth Hormone/Insulin-like Growth Factor 1 Signal Transduction and Its Impact on Growth Processes in Children. Int. J. Mol. Sci. 2023, 24, 15406. [Google Scholar] [CrossRef] [PubMed]
- Satoh, A.; Brace, C.S.; Ben-Josef, G.; West, T.; Wozniak, D.F.; Holtzman, D.M.; Herzog, E.D.; Imai, S.-i. SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. J. Neurosci. 2010, 30, 10220–10232. [Google Scholar] [CrossRef]
- De Lima, J.B.M.; Ubah, C.; Debarba, L.K.; Ayyar, I.; Didyuk, O.; Sadagurski, M. Hypothalamic GHR-SIRT1 Axis in Fasting. Cells 2021, 10, 891. [Google Scholar] [CrossRef]
- Cohen, D.E.; Supinski, A.M.; Bonkowski, M.S.; Donmez, G.; Guarente, L.P. Neuronal SIRT1 Regulates Endocrine and Behavioral Responses to Calorie Restriction. Genes. Dev. 2009, 23, 2812–2817. [Google Scholar] [CrossRef]
- Velásquez, D.A.; Martínez, G.; Romero, A.; Vázquez, M.J.; Boit, K.D.; Dopeso-Reyes, I.G.; López, M.; Vidal, A.; Nogueiras, R.; Diéguez, C. The Central Sirtuin 1/P53 Pathway Is Essential for the Orexigenic Action of Ghrelin. Diabetes 2011, 60, 1177–1185. [Google Scholar] [CrossRef]
- Krukowska-Andrzejczyk, B.; Kalina, M.; Kalina-Faska, B.; Małecka-Tendera, E. Growth Hormone Therapy in Children with Partial Growth Hormone Deficiency. Are We Treating the Right Patients? Pediatr. Endocrinol. Diabetes Metab. 2020, 26, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Smyczyńska, J.; Lewiński, A.; Hilczer, M.; Stawerska, R.; Karasek, M. Partial Growth Hormone Deficiency (GHD) in Children Has More Similarities to Idiopathic Short Stature than to Severe GHD. Endokrynol. Pol. 2007, 58, 182–187. [Google Scholar]
- Savage, M.O.; Burren, C.P.; Rosenfeld, R.G. The Continuum of Growth Hormone–IGF-I Axis Defects Causing Short Stature: Diagnostic and Therapeutic Challenges. Clin. Endocrinol. 2010, 72, 721–728. [Google Scholar] [CrossRef]
- Murray, P.G.; Dattani, M.T.; Clayton, P.E. Controversies in the Diagnosis and Management of Growth Hormone Deficiency in Childhood and Adolescence. Arch. Dis. Child. 2016, 101, 96–100. [Google Scholar] [CrossRef]
- Kaplan, D.S.; Canak, A.; Isık, E.; Orkmez, M.; Kumru, B. Relationship of Fibroblast Growth Factor 21, Sirtuin 1, Visfatin, and Regulators in Children with Short Stature. Growth Factors 2018, 36, 172–177. [Google Scholar] [CrossRef]
- Yamamoto, M.; Bando, H. A New Insight into GH Regulation and Its Disturbance from Nutrition and Autoimmune Perspectives. Endocr. J. 2023, 70, 867–874. [Google Scholar] [CrossRef]
- Yamamoto, M.; Takahashi, Y. The Essential Role of SIRT1 in Hypothalamic-Pituitary Axis. Front. Endocrinol. 2018, 9, 605. [Google Scholar] [CrossRef]
- Piao, S.; Lee, I.; Jin, S.-A.; Kim, S.; Nagar, H.; Choi, S.; Jeon, B.H.; Kim, C.-S. SIRT1 Activation Attenuates the Cardiac Dysfunction Induced by Endothelial Cell-Specific Deletion of CRIF1. Biomedicines 2021, 9, 52. [Google Scholar] [CrossRef]
- Chojdak-Łukasiewicz, J.; Bizoń, A.; Waliszewska-Prosół, M.; Piwowar, A.; Budrewicz, S.; Pokryszko-Dragan, A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022, 10, 2434. [Google Scholar] [CrossRef]
- Pardo, P.S.; Boriek, A.M. SIRT1 Regulation in Ageing and Obesity. Mech. Ageing Dev. 2020, 188, 111249. [Google Scholar] [CrossRef]
- Alves-Fernandes, D.K.; Jasiulionis, M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019, 20, 3153. [Google Scholar] [CrossRef]
- Chen, J.; Lou, R.; Zhou, F.; Li, D.; Peng, C.; Lin, L. Sirtuins: Key Players in Obesity-Associated Adipose Tissue Remodeling. Front. Immunol. 2022, 13, 1068986. [Google Scholar] [CrossRef]
Variable | ISS, n = 62 | GHD, n = 38 | ISS vs. GHD, p< | Controls, n = 47 | p< | |
---|---|---|---|---|---|---|
age [years] | 10.4 ± 2.75 | 10.75 ± 2.88 | 0.4754 | 10.35 ± 2.6 | 0.6780 | |
5.02; 15.98 | 3.01; 15.26 | 4.21; 14.35 | ||||
sex, N (%) | female | 28 (45.16%) | 13 (34.21%) | 0.2798 | 20 (42.5%) | 0.5500 |
male | 34 (54.84%) | 25 (65.7%) | 27 (57.5%) | |||
height [cm] | 127.93 ± 14.17 | 130.97 ± 15.39 | 0.2233 | 146.46 ± 17.89 | 0.0001 * | |
94; 150.1 | 89; 154.4 | 105; 181 | ||||
height SDS | −2.62 ± 0.51 | −2.40 ± 0.3 | 0.1586 | 0.52 ± 1.02 | 0.0001 * | |
−4.85; −2 | −3.77; −2 | −1.07; 2.91 | ||||
body mass [kg] | 26.56 ± 7.86 | 31.17 ± 10.54 | 0.0285 * | 39.40 ± 14.25 | 0.0001 * | |
12.2; 44.6 | 12.5; 54.2 | 16; 78 | ||||
body | −1.99 ± 0.62 | −1.40 ± 1.05 | 0.0050 * | 0.48 ± 1.26 | 0.0001 * | |
mass [SDS] | −3.41; −0.60 | −3.05; −1.77 | −2.08; 3.5 | |||
BMI [kg/m2] | 15.82 ± 2.13 | 17.61 ± 3.22 | 0.0060 * | 17.69 ± 2.73 | 0.0004 * | |
12.53; 22.87 | 12.93; 25.89 | 13.83; 24.07 | ||||
BMI SDS for | −0.87 ± 1.08 | −0.01 ± 1.61 | 0.0066 * | 0.18 ± 1.27 | 0.0001 * | |
CA | −2.60; 2.27 | −2.69; 2.46 | −2.25; 2.83 | |||
height age, | 7.77 ± 2.35 | 8.33 ± 2.45 | 0.2062 | x | x | |
HA [years] | 2.79; 12.81 | 2.96; 11.82 | ||||
BMI SDS for | −0.34 ± 1.36 | 0.69 ± 1.83 | 0.0057 * | x | x | |
HA | −2.70; 4.60 | −1.98; 5.03 |
Variable | ISS, n = 62 | GHD, n = 38 | ISS vs. GHD, p< | Control Group, n = 47 | p< |
---|---|---|---|---|---|
Max GH after | 13.98 ± 4.42 | 6.05 ± 2.64 | 0.0001 * | x | x |
clonidine [ng/mL] | 3.30; 26.12 | 0.90; 9.83 | |||
Max GH after | 9.94 ± 5.48 | 4.91 ± 2.66 | 0.0001 * | x | x |
glucagon [ng/mL] | 1.88; 27.25 | 0.28; 9.85 | |||
IGF-1 [ng/mL] | 155.48 ± 86.92 | 137.17 ± 59.49 | 0.6443 | 270.56 ± 183.39 | 0.0001 * |
40.00; 510.90 | 19.10; 303.90 | 36.60; 679.40 | |||
IGF-1 SDS | −1.28 ± 0.84 | −1.67 ± 0.98 | 0.0386 * | −0.39 ± 1.14 | 0.0001 * |
−2.92; 0.83 | −3.69; 0.29 | −3.67; 1.41 | |||
IGFBP-3 | 3482 ± 979 | 3481 ± 979 | 0.7493 | 4317 ± 1435 | 0.0017 * |
[ng/mL] | 2100; 5521 | 1458; 5703 | 1542; 6336 | ||
IGF-1/IGFBP-3 | 0.23 ± 0.09 | 0.22 ± 0.06 | 0.5820 | 0.32 ± 0.16 | 0.0088 * |
molar ratio | 0.08; 0.51 | 0.06; 0.42 | 0.11; 0.71 | ||
SIRT1 [ng/mL] | 0.89 ± 0.45 | 1.24 ± 0.86 | 0.090 | 0.29 ± 0.21 | 0.0001 * |
0.15; 2.14 | 0.16; 3.33 | 0.04; 0.96 |
Variable | ISS, n = 62 | pGHD, n = 22 | sGHD, n = 16 | p< | |
---|---|---|---|---|---|
age [years] | 10.4 ± 2.75 | 10.34 ± 2.84 | 11.32 ± 2.92 | 0.6780 | |
5.02; 15.98 | 5.35; 13.85 | 3.01; 15.26 | |||
sex, N (%) | female | 28 (45.16%) | 9 (40.91%) | 12 (75%) | 0.5500 |
male | 34 (54.84%) | 13 (59.09%) | 5 (25%) | ||
height [cm] | 127.93 ± 14.17 | 128.59 ± 15.05 | 134.25 ± 15.73 | 0.2134 | |
94; 150.1 | 101.20; 148.50 | 89; 154.40 | |||
height SDS | −2.62 ± 0.64 | −2.46 ± 0.56 | −2.32 ± 0.48 | 0.3321 | |
−4.85; −2 | −3.77; −2 | −2.61; −2.09 | |||
BMI [kg/m2] | 15.82 ± 2.13 a,b | 16.36 ± 2.25 a,c | 19.33 ± 3.60 b,c | 0.0011 * | |
12.53; 22.87 | 12.93; 21.48 | 13.89; 25,89 | |||
BMI SDS | −0.87 ± 1.08 a | −0.59 ± 1.09 b | 0.79 ± 1.09 a,b | 0.0020 * | |
for CA | −2.60; 2.27 | −2.17; 1.52 | 2.17; 1.52 | ||
height age, | 7.77 ± 2.35 | 7.97 ± 2.44 | 8.83 ± 2.45 | 0.2288 | |
HA [years] | 2.83; 12.81 | 3.75; 11.5 | 2.16; 12 | ||
BMI SDS | −0.34 ± 1.36 a | −0.01± 1.26 | 1.65 ± 2.08 a | 0.0018 * | |
for HA | −2.70; 4.60 | −1.98; 2.53 | −1.87; 5.03 |
Variable | ISS, n = 62 | pGHD, n = 22 | sGHD, n = 16 | p< |
---|---|---|---|---|
GH peak | 15.23 ± 4.28 a,b | 8.52 ± 0.98 a,c | 4.3 ± 2.19 b,c | 0.0001 * |
[ng/mL] | 10; 27.25 | 7.09; 9.85 | 0.90; 6.9 | |
IGF-1 | 155.48 ± 86.92 | 137.72 ± 56.35 | 136.43 ± 65.45 | 0.8942 |
[ng/mL] | 40.00; 510.90 | 55.40; 287.20 | 19.10; 303.90 | |
IGF-1 SDS | −1.28 ± 0.84 a | −1.44 ± 0.89 | −1.99 ± 1.04 a | 0.0395 * |
−2.92; 0.83 | 3.63; 0.29 | −2.61; −1.40 | ||
IGFBP-3 | 3482 ± 979 | 3501 ± 935 | 3454 ± 1069 | 0.9379 |
[ng/mL] | 2100; 5521 | 2180; 5703 | 1458; 5628 | |
IGF-1/IGFBP-3 | 0.23 ± 0.09 | 0.22 ± 0.07 | 0.21 ± 0.06 | 0.8570 |
0.08; 0.51 | 0.11; 0.42 | 0.06; 0.30 | ||
SIRT1 [ng/mL] | 0.89 ± 0.45 a | 1.51 ± 0.98 a | 0.87 ± 0.49 | 0.0391 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorczak, A.; Kowalik, D.; Kopciuch, J.; Głowacka, E.; Mikołajczyk, K.; Tkaczyk, M.; Lewiński, A.; Stawerska, R. Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature. Biomedicines 2024, 12, 1433. https://doi.org/10.3390/biomedicines12071433
Fedorczak A, Kowalik D, Kopciuch J, Głowacka E, Mikołajczyk K, Tkaczyk M, Lewiński A, Stawerska R. Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature. Biomedicines. 2024; 12(7):1433. https://doi.org/10.3390/biomedicines12071433
Chicago/Turabian StyleFedorczak, Anna, Dorota Kowalik, Justyna Kopciuch, Ewa Głowacka, Katarzyna Mikołajczyk, Marcin Tkaczyk, Andrzej Lewiński, and Renata Stawerska. 2024. "Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature" Biomedicines 12, no. 7: 1433. https://doi.org/10.3390/biomedicines12071433
APA StyleFedorczak, A., Kowalik, D., Kopciuch, J., Głowacka, E., Mikołajczyk, K., Tkaczyk, M., Lewiński, A., & Stawerska, R. (2024). Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature. Biomedicines, 12(7), 1433. https://doi.org/10.3390/biomedicines12071433