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Abstract: Iron plays a critical role in lung infections due to its function in the inflammatory immune
response but also as an important factor for bacterial growth. Iron chelation represents a potential
therapeutic approach to inhibit bacterial growth and pathologically increased pro-inflammatory
mediator production. The present study was designed to investigate the impact of the iron chela-
tor DIBI in murine lung infection induced by intratracheal Pseudomonas aeruginosa (strain PA14)
administration. DIBI is a polymer with a polyvinylpyrrolidone backbone containing nine 3-hydroxy-
1-(methacrylamidoethyl)-2-methyl-4(1H) pyridinone (MAHMP) residues per molecule and was given
by intraperitoneal injection either as a single dose (80 mg/kg) immediately after PA14 administration
or a double dose (second dose 4 h after PA14 administration). The results showed that lung NF-κBp65
levels, as well as levels of various inflammatory cytokines (TNFα, IL-1β, IL-6) both in lung tissue and
bronchoalveolar lavage fluid (BALF), were significantly increased 24 h after PA14 administration.
Single-dose DIBI did not affect the bacterial load or inflammatory response in the lungs or BALF.
However, two doses of DIBI significantly decreased bacterial load, attenuated NF-κBp65 upregulation,
reduced inflammatory cytokines production, and relieved lung tissue damage. Our findings support
the conclusion that the iron chelator, DIBI, can reduce lung injury induced by P. aeruginosa, via its
anti-bacterial and anti-inflammatory effects.

Keywords: lung infection; Pseudomonas aeruginosa; iron chelation; inflammation

1. Introduction

As a Gram-negative opportunistic pathogen, Pseudomonas aeruginosa is one of the most
prevalent pathogens that cause acute and chronic infections in various parts of our body,
such as lung, wounds, and urinary tract [1,2]. In recent years, the rate of infections induced
by P. aeruginosa among hospitalized patients increased significantly. For example, during
the past three decades, the rates of hospital-acquired infections caused by P. aeruginosa
was nearly 15%, and the rates for patients with cystic fibrosis (CF) or chronic obstructive
pulmonary disease (COPD) was up to 50% [3]. In addition, P. aeruginosa is the primary
pathogen isolated from individuals with hospital-acquired pneumonia, and it is associated
with high morbidity and mortality [4]. Moreover, with the increase in multi-drug-resistant
strains, eradicating P. aeruginosa infections becomes more challenging.
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It has been reported that iron dysregulation is an important factor in the maintenance
of lung infection induced by P. aeruginosa for several reasons [5]. The main reason is that iron
is essential for multiple bacterial metabolic pathways and required for host colonization. P.
aeruginosa utilizes iron acquired from the host to promote growth and increase virulence
so as to aggravate the development of lung infection [6]. Secondly, iron is necessary to
produce reactive oxygen species (ROS) as part of the immune response to an infection.
Excess iron can cause ROS overproduction, which can lead to the damage of healthy cells
and aggravation of inflammation [7]. Thirdly, the cells of the immune system require
iron to sustain its function, metabolism, and proliferation [8]. However, iron overload
can attenuate the phagocytosis of macrophages and affect the function of T lymphocytes,
leading to disruption of the immune system [7]. It has been reported that enhancing
macrophage iron accumulation promoted acute lung inflammation and oxidative stress,
and macrophage ferroportin could serve as a therapeutic target in bacteria-induced acute
lung injury [9,10]. Therefore, targeting iron metabolism, specifically iron overload, by
using iron chelators is a potential supportive antimicrobial strategy to relieve lung infection
caused by P. aeruginosa.

Increasing evidence suggests that the hydroxypyridinone iron chelator, DIBI, through
depriving microorganisms of bioavailable iron, has the potential to serve as a new anti-
infective agent. Allan et al. reported that DIBI showed efficacy in reducing Staphylococcus
aureus (S. aureus) burden in mouse nares comparable to mupirocin [11]. Because of the high
sensitivity of S. aureus, DIBI was considered as an adjuvant to mupirocin to combat the
natural colonization of S. aureus isolates. Using minimum inhibitory concentration assay,
Ang et al. also demonstrated that DIBI had an inhibitory effect against representative refer-
ence strains for Gram-positive and Gram-negative bacteria, such as S. aureus, Acinetobacter
baumannii, and the fungal pathogen Candida albicans [12]. In previous experiments, we have
demonstrated that DIBI has significant anti-inflammatory effects in lipopolysaccharides
(LPS)-induced acute lung injury [13]. In a previously published study by our group, the
cytotoxicity of DIBI was evaluated in BALB/C mice for both acute and chronic dosages. The
results showed that neither acute nor chronic DIBI administration had cytotoxic effects [14].

However, it is unclear whether DIBI has the same effect against lung infections caused
by P. aeruginosa. In order to reduce the risk of antimicrobial resistance and explore novel
antimicrobial agents or potential adjuvant drugs that can be used in conjunction with
existing antibiotics, we investigated the anti-inflammatory and anti-bacterial effects of DIBI
in P. aeruginosa-induced experimental lung infection in mice.

2. Materials and Methods
2.1. Bacterial Preparation

P. aeruginosa strain PA14 was kept in a freezing medium (50% Luria broth (LB), 50%
glycerol) and stored at −80 ◦C until use. Three days prior to infection experiments, PA14
was streaked on LB agar plates to isolate single colonies and incubated at 37 ◦C for 16–24 h.
Following this, a single colony was selected from the plate and inoculated into 5 mL of LB
broth, which was then cultured overnight in a rotating incubator (200 rpm, 37 ◦C) for at
least 18 h. On the third day, the bacterial optical density at 600 nm (OD600) was verified to
be in the 5–6 range before the overnight culture was diluted 1:50 in 5 mL of fresh LB broth.
The subculture was shaken for approximately 3 h until OD600 reached 1.5–2, indicating
that bacteria were in the exponential growth phase. Next, 1 mL of subculture was prepared
by centrifugation (5000× g, 5 min) and washing in phosphate-buffered saline (PBS). The
final concentration was determined by the equation 1 OD600 = 1 × 109 CFU/mL. Bacteria
were then diluted in PBS to deliver a dose of 5 × 105 CFU in 40 µL. Meanwhile, bacteria
from the final concentration were serially diluted and plated to confirm the accuracy of
the dose.
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2.2. Animals

Age- and weight-matched C57BL/6 male and female mice were purchased from the
Jackson Laboratory (Bar Harbor, ME, USA), and they were housed in ventilated plastic cage
racks in a pathogen-free room of the Carleton Animal Care Facility, Dalhousie University,
Halifax, NS, Canada. Animals were kept on a 12 h light/dark cycle at 21 ◦C and were
acclimatized for one week prior to experiments. Animals were enrolled in experiments at
8–12 weeks of age. Experimental protocols were approved by the University Committee
on Laboratory Animals at Dalhousie University under protocol number #21-090 and were
performed following the guidelines and standards of the Canadian Council on Animal Care.

2.3. Experimental Model

Mice were randomly allocated to four groups as follows: Control + PBS, PA14 + PBS,
PA14 + DIBI X1, PA14 + DIBI X2 (n = 12/group). Animals were weighed prior to anesthesia,
and the induction of anesthesia was accomplished by inhalation of 4–5% isoflurane with
oxygen (1 L/min). After 2–3 min induction, once the animals reached the surgical plane
of anesthesia (unresponsive to foot pinch), the animals were removed from the nose cone
and placed onto a 45◦ angled platform hanging by the front incisors. The tongue was
immobilized, and an otoscope was inserted into the mouth to visualize tracheal opening.
Using otoscope guidance, 40 µL of bacterial culture, containing 5 × 105 CFU bacteria, was
delivered by pipette just in front of the vocal folds of the tracheal opening. In order to
maximize the inhalation of inoculum, after withdrawing the tip, the otoscope was left in
the mouth for a few breaths to keep the airway open. After PA14 instillation, the animal
was placed back into the cage on a 37 ◦C heating pad and monitored for 24 h. In the control
group (Control + PBS), the mice were given PBS to the tracheal at the same volume of
bacterial culture. DIBI (80 mg/kg) was given by intraperitoneal (i.p.) injection either as a
single dose immediately after PA14 administration in the PA14 + DIBI X1 group or a double
dose (second dose 4 h after PA14 administration) in the PA14 + DIBI X2 group. The mice in
the PA14 + PBS group were treated with i.p. PBS once right after PA14 administration.

2.4. Clinical Scores and Body Weight Measurement

Mouse physical appearance, posture, righting reflex, respiration rate, activity/behavior
and body temperature were scored (each on a scale of 0–3) to assess morbidity after PA14
infection. The clinical scores were recorded 4 h and 24 h after PA14 administration. The
weight changes were also recorded at each observation. The clinical scores > 10 and/or
weight loss > 15% were considered as criteria for immediate euthanasia.

2.5. Bronchoalveolar Lavage Fluid Collection

Twenty-four hours after PA14 infection, mice were anesthetized again. After reaching
the surgical plane of anesthesia, blood was collected via cardiac puncture. Then, a total
of 1.4 mL of ice-cold PBS with protease inhibitors (Complete tablets, Roche Diagnostic,
Basel, Switzerland) was used to perform the bronchoalveolar lavage fluid (BALF) collection.
Briefly, after exposure of the trachea, a nick between two of the cartilage rings was created,
and a 21-gauge catheter connected to a 3 mL syringe containing protease inhibitors was
inserted and immobilized with a nylon string. Lungs were then flushed with 0.7 mL of
ice-cold PBS with protease inhibitors. This process was repeated once more. Following
BALF collection, lungs were harvested aseptically.

2.6. Lung Homogenates

Aseptically-removed lungs were collected in 1 mL sterile PBS with protease inhibitors
and put on ice. In a biosafety cabinet, samples were homogenized using a TH115 ho-
mogenizer (Omni International, Kennesaw, GA, USA) with sterile probes for 45 s on max
speed (35,000 rpm). Probes were washed in 70% ethanol and rinsed in sterile PBS between
samples. Once all lungs were homogenized, 20 µL was removed for CFU plating, described
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below, while the remainder was centrifuged at 16,000× g for 30 min at 4 ◦C then stored at
−80 ◦C for subsequent cytokine and Western blot analysis.

2.7. Measurements of Bacterial Load in BALF and Lung Tissue

The obtained BALF and homogenized lung samples were aliquoted and serially
diluted 1:10 in PBS. Lung homogenates were spot-plated on LB plates in 10 µL spots from
0 to 10−3 dilutions. Undiluted and 10−1 dilutions of BALF were spread-plated on LB
plates. Afterward, plates were incubated upside-down at 37 ◦C overnight, and bacterial
colonies were counted in the following morning. CFU was quantified using the following
calculation: CFU/mL = (colonies × dilution factor)/volume plated (mL).

2.8. Cytokine Analysis in Lung Tissue, BALF and Serum

The levels of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-
1β), and tumor necrosis factor-α (TNF), were assessed by enzyme-linked immunosorbent
assay (ELISA) according to the instructions provided by the manufacturer (R&D Systems,
Minneapolis, MN, USA). Lung samples were diluted at 1:5 (IL-6, TNF) or 1:20 (IL-1β), and
BALF and serum were diluted at 1:2.

2.9. Western Blotting

Western blotting analyses were performed as described previously [13]. Protein
content was quantified via BCA assay (PierceTM BCA Protein Assay kit, Thermo Fisher
Scientific, Waltham, MA, USA), and equal amounts of protein (40 µg/lane) for all samples
were separated by 12% SDS-PAGE and transferred onto a polyvinylidene fluoride mem-
brane (Millipore, Billerico, MA, USA). The primary antibody against NF-κBp65 (1:1000,
Cell Signaling Technology, Danvers, MA, USA) was added and incubated overnight. Blots
were then incubated with horse radish peroxidase-linked anti-rabbit immunoglobulin G
(diluted 1:3000) for 2 h. With an enhanced chemiluminescence system (Chemidoc, Bio-Rad,
Hercules, CA, USA), the protein of interest was detected, and the intensity of each band was
analyzed using Image J V1.8.0 (NIH, Bethesda, MD, USA). GAPDH (1:2000, Cell Signaling
Technology, Danvers, MA, USA) was defined as a loading control.

2.10. Histology

Mice were anesthetized by inhaled isoflurane 24 h post-infection as previously de-
scribed and sacrificed by cervical dislocation. Lungs were collected and fixed in 10%
neutral-buffered formalin (NBF) for 24 h and then washed and stored in 70% ethanol
until processing. The fixed lung samples were sent to the Department of Pathology, IWK
Health Centre, Halifax, NS, Canada, for further processing, including paraffin embedding,
sectioning, and staining with hematoxylin and eosin. A blinded histological analysis was
performed using an established lung injury score, including the presence of edema, hemor-
rhage, immune cell infiltration, cell wall thickening, and presence of vasculitis [15]. Repre-
sentative histology images were taken using Optika Microscopes (Ponteranica BG, Italy).

2.11. Statistical Analysis

All data were analyzed using the software Prism 10 (GraphPad Software, La Jolla,
CA, USA). To confirm the normal distribution of data, the Kolmogorov–Smirnov test was
used. Pairwise comparisons were performed using Student’s t-test. One-way ANOVA
or Kruskal–Wallis test was used to analyze multiple comparisons. Data were expressed
as mean ± standard deviation (SD). Significance was assumed at p values less than 0.05
(p < 0.05).

3. Results
3.1. Effect of DIBI on Clinical Scores and Body Weight of Mice Infected by PA14

We assessed the clinical scores of mice 4 and 24 h after PA14 administration to observe
the effects of DIBI treatment on the symptoms of infection at peak infection (4 h) and
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during the resolution phase (24 h). Lung infection with P. aeruginosa strain PA14 led to
a significant increase in clinical score compared to the Control + PBS group. However,
compared to the PA14 + PBS group, there was no difference in clinical scores with DIBI
X1 or DIBI X2 treatment, indicating that DIBI treatment did not significantly affect clinical
score (Figure 1B,C).
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Figure 1. Changes in clinical scores and body weight of mice suffering from lung infection with P.
aeruginosa PA14 over 24 h. (A–C) Representative of the change in clinical scores between groups
at 4 and 24 h post-infection with P. aeruginosa strain PA14. (D–F) Representative of the change in
body weight between groups at 4 and 24 h post-infection with P. aeruginosa strain PA14. Data were
expressed as mean ± standard deviation and compared by Kruskal–Wallis test (B,C) or one-way
ANOVA test (E,F). ** p < 0.01; *** p < 0.001; **** p < 0.0001. ns: no significant difference.

Body weight is considered an indicator of health, as mice experiencing symptoms
of acute illness are unable to ambulate to reach food or water and thus lose body weight
in a short period of time. Therefore, the impact of DIBI treatment on this read-out was
recorded. Compared with the Control + PBS group, the body weight in the PA14 + PBS
group decreased rapidly after infection. Although both groups of DIBI treatment mice lost
less body weight at 24 h after PA14 infection, no significance was detected compared to the
PA14 + PBS group (Figure 1E,F).
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3.2. Two Dose of DIBI, but Not One Dose, Significantly Reduced Bacterial Growth in Mice Infected
by PA14

To evaluate the antibacterial effect of the iron chelator DIBI, P. aeruginosa colony counts
from each group were performed on both lung homogenates and BALF (Figure 2). After a
single dose of DIBI (PA14 + DIBI X1 group), no difference was observed compared to the
PA14 + PBS group in both lung homogenates and BALF (Figure 2A,B). However, two doses
of DIBI treatment (PA14 + DIBI X2 group) significantly reduced P. aeruginosa counts in both
lung homogenates and BALF in comparison to the PA14 + PBS group (Figure 2A,B).
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Figure 2. Effect of DIBI treatment on bacterial counts in lung homogenates (A) and bronchoalveolar
lavage fluid (BALF, B) of mice suffering from P. aeruginosa PA14 infection. (A) Representative of the
change in P. aeruginosa strain PA14 colony counts in lung homogenates. (B) Representative of the
change in P. aeruginosa colony counts in BALF. Data were expressed as mean ± standard deviation
and compared by Kruskal–Wallis test. * p < 0.05; ** p < 0.01; ns: no significant difference.

3.3. Two Dose of DIBI, but Not One Dose, Significantly Restricted Inflammatory Cytokine
Production in the Lungs of Mice Infected by PA14

In order to evaluate the effect of DIBI on the inflammatory response after P. aeruginosa
strain PA14 infection, we quantified the levels of inflammatory cytokine production in
lung homogenates and BALF. As shown in Figure 3A–F, PA14 infection induced significant
increases in IL-6, TNF and IL-1β in the PA14 + PBS group compared to the Control + PBS
group in both lung and BALF. Single-dose DIBI treatment did not reduce the expression
levels of IL-6, TNF and IL-1β in lung homogenates (Figure 3A–C) or in BALF (Figure 3D,E).
However, two doses of DIBI treatment significantly decreased the levels of IL-6, TNF and
IL-1β in lung homogenates compared with the PA14 + PBS group (Figure 3A–C). Similarly,
IL-6 levels in BALF were significantly decreased in the PA14 + DIBI X2 group (Figure 3D).
Only inflammatory cytokine, IL-6, was detected in blood, but no significant differences
were observed (Figure 3G).

3.4. Effect of DIBI on Levels of NF-κBp65 in Mice Infected by PA14

To investigate the role of DIBI on levels of NF-κB after infection by P. aeruginosa PA14,
the protein expression levels of NF-κBp65 in lung homogenates were assessed. As shown
in Figure 4, compared with the Control + PBS group, PA14 infection induced increased
NF-κBp65 expression, and two doses of DIBI treatment reduced the levels of NF-κBp65 in
the PA14 + DIBI X2 group.
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infection. (A–C) Representative of changes in levels of inflammatory cytokines IL-6 (A), TNF (B),
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3.5. Effect of DIBI on Pulmonary Injury in Mice Infected by PA14

Finally, we performed histological studies to determine the effects of DIBI on lung
injury induced by P. aeruginosa PA14 infection. Compared to the Control + PBS group,
PA14 infection led to severe histological lung injuries, including marked, usually diffuse
and airway-centric, neutrophilic infiltration in the alveolar spaces and, to a lesser extent,
in the alveolar walls, bronchiolar epithelium, and peribronchiolar soft tissue, along with
moderate vasculitis in the associated vessels. In addition, we found some focal epithelial
changes at the site of adjacent inflammatory cells, thickening of the peribronchial soft tissue,
and reactive mesothelial cells in the PA14 + PBS group (Figure 5A,B). However, compared
to the PA14 + PBS group, two doses of DIBI treatment resulted in a significant mitigation of
the pulmonary histological changes following PA14 infection (Figure 5A,B). These findings
suggest that in the model of acute lung infection induced by P. aeruginosa, two doses of
DIBI administration can alleviate the severity of lung injury.
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4. Discussion

With the present study, we revealed the role of iron chelator DIBI treatment on relieving
some disease symptoms in an acute lung infection in the mouse model of P. aeruginosa.
Specifically, the systemic administration of DIBI decreased the bacterial load in lung tissue
and BALF, reduced pro-inflammatory cytokines production, and improved bacterial lung
injury in histology.

Based on the fact that weight loss in P. aeruginosa-infected mice was associated with
the inflammatory process, we also observed the effect of DIBI on weight change at 4 and
24 h after lung infection. Our results showed that the mice weight in the PA14 + PBS
group reduced about 10% at the point of 24 h, which is consistent with other reports [16,17],
thus suggesting that the mice suffered from an acute inflammatory response. In addition,
although there was no statistically significant difference in weight loss between DIBI
treatment and the PA14 + PBS group, our study found that DIBI-treated mice exhibited
a tendency of less body weight decrease at both 4 and 24 h (Figure 1). After P. aeruginosa
infection in mice, it was reported that weight loss was greatest at day 3 [17–19]. Rossi et al.
reported in a model of P. aeruginosa lung infection that the body weight of the mice was
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monitored continuously for 6 days, but until the 4th day, β-sitosterol treatment exhibited
significant faster body weight recovery [16]. Therefore, it would be of great interest to
study the potential effect of DIBI on weight loss after P. aeruginosa lung infection at later
time points.

In our experiment, we showed that after 24 h of lung infection induced by P. aeruginosa,
double dose i.p. DIBI treatment was efficient in reducing bacterial load in both lung
homogenate and BALF. In agreement with our findings on DIBI-restricted P. aeruginosa
growth, it has previously been demonstrated that iron-withdrawal chelator DIBI inhibited
the growth of S. aureus and alleviated the infection of mice caused by methicillin-resistant
S. aureus (MRSA) [20]. In previous studies published by our group, we found that in
sepsis induced by colon ascendens stent peritonitis (CASP), DIBI treatment significantly
decreased the bacterial count in blood and peritoneal lavage fluid [21]. Consistently, it
has been demonstrated that other iron chelators have the potential ability to combat P.
aeruginosa biofilms. For example, Houshmandyar et al. found that deferiprone (DFP) can be
inhibitory to the growth of P. aeruginosa with high concentration [22]. Similarly, gallium is
also under consideration as an anti-pseudomonal agent, because it can inhibit P. aeruginosa
growth and biofilm formation by disrupting bacterial iron homeostasis [23]. Taken together,
our results indicate that with the anti-bacterial activity, DIBI could be a potential adjunct
or alternative therapeutic approach for treating lung infections caused by P. aeruginosa by
effectively limiting bacterial growth in vivo.

Because inflammation is a hallmark of lung infection, we also investigated the effect of
DIBI administration on inflammatory mediators. The results demonstrated that treatment
with two doses of DIBI significantly reduced cytokine levels including IL-6, TNF, and IL-1β
in both lung homogenates and BALF. Similar to our results, other studies also showed
that iron chelators inhibit the production of inflammatory cytokines. For example, Cheon
et al. demonstrated that IL-6 and TNF production were completely decreased by i.p.
deferoxamine (DFO) injection in rats [24]. In the model of lung ischemia reperfusion, Liu
et al. showed that the levels of IL-6, TNF, and IL-1β were dramatically inhibited after DFO
administration [25]. Interestingly, DFO has also been proven to alleviate viral replication
and suppress consequent inflammatory cytokine storms, suggesting iron chelators can
attenuate complications related to iron overload in diabetic patients with COVID-19 [26,27].
In association with the anti-inflammatory activity of DIBI, our study also showed that
after treatment with two doses of DIBI, the protein abundance of NF-kB in lung tissues
was reduced significantly. Consistent with our research, it was reported in other studies
that LPS-induced NF-kB expression could also be inhibited by iron chelators, such as DFP
and DFO [28,29]. In our previous experiments in vivo, it was confirmed that the levels of
NF-κBp65 activation induced by LPS administration are reduced by DIBI treatment [13].
Therefore, as with DFO and other chelators, DIBI exhibited anti-inflammatory effects so as
to decrease the acute lung injury induced by P. aeruginosa.

However, this study did not demonstrate a significant decrease in bacterial load
and inflammatory mediator levels for treatment with one dose of DIBI. It is likely that our
protocol utilized a low dose of bacterial inoculum (5 × 105 CFU), as evidenced by our results
showing that the highest clinical scores peaked at 7 (with 12 being the humane endpoint
cutoff, for reference) at 4 h after P. aeruginosa administration. Therefore, the window for
DIBI treatment is narrow to demonstrate a beneficial effect. Moreover, different from
other reports [16,17,30], the P. aeruginosa inoculum was injected by way of the supraglottic
region in our experiment, which would lead to more variability in the response to maximal
inhalation of inoculum. Thirdly, the shorter half-life of DIBI has an effect on the duration of
action of the drug, so without monitoring the blood concentration of DIBI, a single dose of
DIBI may have limited efficacy.

For future studies, aerosolized or intravenous DIBI administration should be explored
which could potentially be more effective in lung infection. In addition, as suggested by
others [31,32], the effects of DIBI should be compared with standard antibiotics in lung
infection induced by P. aeruginosa. An increasing body of evidence showed that DIBI as an
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adjunct to ciprofloxacin and other antibiotics could significantly improve antibiotic efficacy
and reduce antibiotic resistance development [11,31,33]. Our current study demonstrated
great potential for using DIBI to reduce bacterial growth and host inflammation, so it is of
great interest to evaluate the benefits of combination therapy with other antibiotics in the
model of lung infection induced by P. aeruginosa.

5. Conclusions

The present study observed anti-bacterial and anti-inflammatory effects of the iron
chelator, DIBI, in an experimental model of lung infection induced by P. aeruginosa in mice.
We found that two doses of DIBI administration reduced bacterial load and decreased
NF-κB activation and inflammatory mediator release, so as to attenuate lung histological
injury. These results suggest that DIBI acts as a potent multi-targeting agent able to break
the vicious cycle of inflammation induced by pathogens and improve outcomes in P.
aeruginosa-related lung pathology and sequelae.
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