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Neurovascular compression syndromes (NVC) remains a challenging disorders result-
ing from the compression of cranial nerves at the transition zone. Their exact pathomecha-
nism remains not fully elucidated. To date, many factors associated with this phenomenon
have been described, encompassing the following: (1) anatomical and/or hemodynamic
variability; (2) nerve alterations; (3) nucleus hyperexcitability; (4) changes in brain white
and gray matter; (5) disturbances in ion channels; (6) inflammatory background; (7) altered
proteome and biochemical parameters; and (8) others, such as the transaxonal short circuits
theory [1–19]. In our previous paper, it was proposed that the most likely chain of events
leading to NVC begins with vascular compression at the transition zone. This is followed
by demyelination and increased nucleus excitability, which finally result in clinical symp-
toms [1]. This publication was a starting point for our research topic, in which we enhanced
efforts leading to better insights into the NVC pathogenesis and its possible link to new
therapeutic approaches. We encourage authors to submit papers related to the following
aspects of pathogenesis/treatment.

Two papers focused on the anatomical variability of the superior cerebellar artery
(SCA) and anterior inferior cerebral artery (AICA) in the context of neurovascular compres-
sion syndromes [20,21]. In the first of these studies, we assessed the anatomical variability
of SCA specifically in the context of trigeminal neuralgia (TN). Current studies showed
the following variability of this artery: duplication, single vessel origin from the posterior
cerebral artery, common trunk with the posterior cerebral artery, bifurcation, and origin
from the internal carotid artery [20]. Furthermore, we reviewed the AICA anatomical
variability in the hemifacial spasm (HFS) context. The observed variability encompasses
agenesis, duplication/triplication, fenestration, and different origin sites [21]. A single
study aiming to assess vascular pattern in HFS patterns showed three different culprits,
i.e., (1) a parabola-shaped loop that is vertex-oriented to the facial nerve’s REZ; (2) a large
dominant AICA segment proximal to the REZ; and (3) an anchor-shaped AICA bifurcation
that affects the cisternal portion of the facial nerve [22]. Nevertheless, there is no clear
evidence linking selected SCA/AICA variants to a higher risk of NVC incidence [20,21]. We
emphasize that neuroimaging in NVC patients should be conducted primarily for accurate
differential diagnosis—such as ruling out brain tumors or vascular anomalies—rather than
solely to visualize the precise site of neurovascular conflict [21]. The success rate of mi-
crovascular decompression for treating NVC largely depends on the accurate intraoperative
visualization of the nerve’s REZ. Many NVC cases that are identifiable and treatable during
surgery may not be visible on neuroimaging [20]. On the other hand, a radiological finding
indicating potential contact between a nerve and a vessel, when not accompanied by clini-
cal symptoms, does not justify initiating treatment for NVCs, whether pharmacological
or surgical.

Further threat concerned non-surgical treatment of TN. Lee et al. pointed out that
European Academy of Neurology guidelines recommend that medical management with
adequate doses and regular monitoring be required before considering surgery, without
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specifying the optimal number of nonsurgical interventions before surgical referral. There-
fore, this review covered pharmacotherapy based not only on widely used carbamazepine
but also on oxcarbazepine, lamotrigine, baclofen, pimozide, tizanidine, gabapentin, prega-
balin, and analgesics. In further paragraphs, the authors focused on minimally invasive
procedures, i.e., nerve blocks, nerve radiofrequency and ablation, Gasserian ganglion
block, Gasserian ganglion radiofrequency ablation, sphenopalatine ganglion block and
radiofrequency ablation, and the administration of botulinum toxin [23].

Finally, the last paper of Carrillo-Ruiz et al. is devoted to the surgical treatment of
TN. They assessed the clinical significance of the minimally invasive retrosigmoidal paras-
terional burr-hole approach among TN patients. Data derived from 22 patients showed
significant improvement in the VAS scale ranging from 9.5 ± 0.37 before to 1.32 ± 1.28 after
surgery (p < 0.001) and in the BNIPS scale ranging from 4.55 ± 0.25 before to 1.73 ± 0.54
after surgery (p < 0.001) [24].

In conclusion, we would like to express our deepest gratitude to the authors and
our excellent reviewers who contributed to this research topic. We greatly encourage
further efforts aiming at better understanding of NVC pathogenesis as a precondition for
improving both the diagnosis and management of those entities.
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Superior Cerebellar Artery: Variability and Clinical Significance. Biomedicines 2023, 11, 2009. [CrossRef]
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