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Abstract: To date, although several studies have investigated the circulating levels of brain-derived
neurotrophic factor (BDNF) in children with autism spectrum disorder (ASD), only a few authors
have addressed their evaluation in adults. Furthermore, an important limitation of these studies
lies in the fact that circulating BDNF is stored in platelets and released into the circulation when
needed. To the best of our knowledge, a very limited number of studies have related peripheral
BDNF values to platelet counts, and yet no study has evaluated intra-platelet BDNF levels in adults
with ASD. In this framework, the aim of the present work is to pave the way in this field and evaluate
platelet BNDF levels in adult ASD patients, as well as their correlation with autistic symptoms and
related psychopathological dimensions. We recruited 22 ASD and 22 healthy controls, evaluated
with the Adult autism subthreshold spectrum (AdAS Spectrum), the Social Anxiety Spectrum—
self report (SHY-SR), the Trauma and loss spectrum—self report (TALS-SR), the Work and Social
Adjustment Scale (WSAS), and the Mood Spectrum—self report for suicidality. Intra-platelet BDNF
levels were also assessed. The results highlighted lower BDNF levels in the ASD group; moreover,
AdAS Spectrum and WSAS total score as well as AdAS Spectrum Restricted interest and rumination,
WSAS Private leisure activities, TALS-SR Arousal, and SHY-SR Childhood domains were significant
negative predictors of platelet BDNF levels.

Keywords: autism spectrum disorder; platelet BDNF; social anxiety disorder; suicidality; autistic
traits; trauma related symptoms; BDNF

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by
a wide and heterogeneous range of manifestations. The core features of ASD are deficits
in social interactions as well as in verbal and non-verbal communication, stereotyped and
rigid behaviors, restricted interests, and altered reactivity to sensory stimuli [1]. This mani-
festation usually presents early in life and may or may not be accompanied by intellectual
impairment and difficulties in language development [1]. Despite the fact that the majority
of studies in the field of ASD have historically revolved around children, in recent years,
the evaluation of ASD presentations in adulthood has gained growing attention. Many
researchers particularly emphasized the significance of identifying milder forms of ASD
in adult populations that do not involve intellectual disability, as these forms frequently
go undiagnosed in childhood [2,3]. In fact, people with lighter forms of ASD frequently
present for professional assessment following the emergence of other psychiatric condi-
tions, the course of which is usually worsened by the co-occurring ASD [4,5]. Therefore,
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research in the field has recently emphasized the significance of assessing the presence of
subthreshold autistic traits as well as milder forms of ASD. This is also because a growing
body of research has linked these traits—even when they are below the threshold—to
important clinical correlates, such as increased susceptibility to the emergence of mental
illnesses, restricted ability to adjust to external stimuli and stressors, and suicidal ideation,
as well as a greater chance of experiencing social phobic manifestations and developing
trauma- and stress-related symptoms even from milder stressful life events [6–9]. In this
framework, subthreshold autistic traits were originally investigated in family members
of ASD subjects who were not clinically diagnosed with the disorder [10]. These rela-
tives were frequently reported to exhibit personality traits that were reminiscent of their
probands [11,12]. Recent reports have indicated that autistic traits are not exclusive to
relatives of ASD probands but appear to be distributed across a continuum from the general
to the clinical population [13–18], emphasizing the significance of examining the clinical
and biological correlates of various autistic spectrum phenotypes. To date, most of the
pathophysiological mechanisms related to ASD are yet unclear. A wide range of studies
have suggested a major role both for genetic heritability [19–21] and environmental factors
such as oxidative stress, maternal immunological dysregulation, and maternal diabetes
and obesity [22,23]. In more recent years, many authors have focused on the investigation
of possible biochemical mediators or markers of the disorder, mainly highlighting alter-
ations in the immune and inflammatory response [24–27]. Furthermore, several studies
have recently focused on the evaluation of circulating levels of brain-derived neurotrophic
factor (BDNF) in autistic subjects [28–30]. Because synaptic growth, plasticity, and function
depend on activity-dependent neuronal transmission, BDNF has become increasingly im-
portant due to its central role. Indeed, during postnatal brain development, BDNF plays
specific functions in glutamatergic and GABAergic transmission, synaptic connections,
synapse shape, neurotransmitter release, and synaptic plasticity.

Belonging to the neurotrophin family of secreted proteins, BDNF has a variety of
roles in the growth, survival, and functionality of both central and peripheral neurons
and is today recognized as the most prevalent and widely distributed neurotrophin in the
central nervous system [31]. Pro-domain and mature BDNF proteins are released when
the precursor protein proBDNF is broken down by either intracellular or extracellular
proteases. BDNF was initially found in the brain, but it is now recognized to be present
in the blood as well, where it is effectively kept in platelets. Platelets are the primary
peripheral source of BDNF, with BDNF levels in them up to 100–1000 times higher than
those in neurons. Like neurons, platelets mostly store BDNF in α-granules, which they
release into the circulation when activated. It is interesting to note that while stimulation
of platelets has been demonstrated to produce BDNF, the function of BDNF in platelets
and the reasons behind its alterations are yet unknown. BDNF appears to modulate a wide
variety of processes, including axon and dendritic guidance, growth, synapse formation,
and the survival and differentiation of neurons. Moreover, it appears that BNDF aids in
the differentiation and survival of dopaminergic neurons during neurodevelopment and
controls synaptic plasticity during adulthood [31,32]. Many studies have evaluated circu-
lating BDNF levels in both plasma and serum, assuming that they were correlated to BDNF
levels in the brain, and have reported altered levels in several neurological and psychiatric
disorders such as mood disorders, schizophrenia, and Alzheimer’s disease [33–36]. In par-
ticular, despite high heterogeneity, most of the studies that have investigated protein levels
in ASD subjects report increased levels of BDNF in children on the spectrum [28,33,35,36].
In this framework, various effects of BDNF have been suggested to be linked to autistic
symptomatology. For instance, changes in BDNF signaling in the central nervous system
could account for the acceleration of brain growth and greater brain size as observed in
children with ASD, as well as for the alterations in the connectivity, greater protein synthe-
sis at synapses, greater dendritic spine density, enhanced synaptic plasticity. and enhanced
sensory sensitivity [27,28,37]. However, such results have not always been confirmed,
with some authors failing to report differences in peripheral BDNF levels in adults with
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ASD [38] and others describing lower BDNF levels in ASD children without intellectual im-
pairment [27]. Some of the explanations proposed for those findings include the possibility
of the presence of an age-mediated effect in BDNF levels for which elevated BDNF levels
could be a compensating element in reaction to the brain’s delayed development [38] and
the fact that lower levels of BDNF may be associated with a pro-inflammatory state and
impaired neurogenesis in cortical regions [27].

Noticeably, an important limitation to the interpretation of these results is represented
by the fact that peripheral BDNF is known to be stored within platelets and released when
needed. Nonetheless, to our knowledge, to date, only one study has taken into account the
potential confounding effects of platelet quantity [39] and specifically evaluated platelet
BDNF in autistic subjects. In this context, the aim of our study was to evaluate intraplatelet
levels of BDNF in a sample of adult autistic subjects without intellectual impairment
and healthy controls. We also aimed to investigate possible correlations between platelet
BDNF levels and a range of specific psychopathological dimensions often associated with
ASD such as social phobic and trauma- and stress-related symptoms as well as social and
work impairment.

2. Materials and Methods
2.1. Study Sample and Procedures

The total sample was made up of 44 subjects belonging to two diagnostic groups:
22 subjects with a diagnosis of ASD and 22 healthy controls (HCs). Participants belonging
to the ASD group were recruited from in- and out-patients afferent to the Psychiatric
Department of the Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa,
while the HCs were recruited on a voluntary basis. For both groups, exclusion criteria
included age below 18 or over 65, the presence of an intellectual disability or language
impairment that could prevent the completion of the questionnaires and/or the psychiatric
evaluation, and a diagnosis of schizophrenia, substance use disorder, neurodegenerative
disease, and any other relevant medical or neurological disorder. Moreover, exclusively for
the HCs, another exclusion criterion regarded the presence of any psychiatric diagnosis
according to the Diagnostic and Statistical Manual of Mental Disorders—fifth edition.

Each participant was assessed using a standardized clinical interview and psychomet-
ric tests. Each participant had a blood sample drawn in order to perform the biochemical
evaluation. Before giving their written informed permission, all individuals were given
thorough information about the study and given the chance to ask questions. The cur-
rent study was conducted in compliance with the Helsinki Declaration, and the ethical
committee in the area authorized all methods.

2.2. Psychometric Instruments
2.2.1. Adult Autism Subthreshold Spectrum (AdAS Spectrum)

The AdAS Spectrum questionnaire is a self-report tool used to evaluate the spectrum
of autistic manifestations in subjects without intellectual or linguistic impairments. It is
made up of 160 dichotomous items divided into seven domains: Childhood and Adolescence,
Verbal communication, Non-verbal communication, Empathy, Inflexibility and Adherence to Rou-
tine, Restricted interests and rumination, and Hyper- and Hyporeactivity to Sensory Input. The
validation study revealed remarkable test–retest reliability (Kunder–Richiardson coeffi-
cient = 0.964, ICC = 0.976), great internal consistency, and convergent validity with other
dimensional measures of autism [40,41].

2.2.2. Work and Social Adjustment Scale (WSAS)

The WSAS is a questionnaire made of 5 items rated on a Likert scale ranging from 0 to
9, widely used to assess how symptoms affect one’s capacity for social and professional
functioning, including the ability to work, manage one’s home, engage in private or
social leisure activities, and establish and sustain close relationships. The instrument
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demonstrated strong internal consistency, with alpha coefficients ranging from 0.80 to
0.90 [42].

2.2.3. Trauma and Loss Spectrum—Self Report (TALS-SR)

The TALS-SR is a self-report instrument, made up of 116 dichotomous items, orga-
nized into nine domains: Loss events, Grief reactions, Potentially traumatic events, Reactions
to losses or upsetting events, Re-experiencing, Avoidance and numbing, Arousal, Maladaptive
coping, and Personal characteristics/risk factors. The questionnaire is used to evaluate the
lifetime incidence of different types of traumatic experiences in addition to personal traits,
behaviors, and symptoms that could point to the presence of manifestations or risk factors
for the development of a stress-related disorder. The questionnaire demonstrated good
psychometric characteristics [43].

2.2.4. Social Anxiety Spectrum—Self Report (SHY-SR)

The SHY-SR is a self-report questionnaire made up of 168 dichotomous items arranged
into 5 domains: Childhood and adolescence, Interpersonal sensitivity, Behavioral inhibition, Social
situations, and Substance Abuse. The questionnaire demonstrated good test–retest reliability,
convergent validity with other dimensional measures of social anxiety, and significant
internal consistency [44].

2.2.5. Mood Spectrum—Self Report (MOODS-SR)

The MOODS-SR is a questionnaire designed to assess symptoms, behaviors, and
lifestyle choices associated with different levels of mood dysregulation, including both
severe and mild affective abnormalities. It is intended to be used in the evaluation of
depression, mania, and hypomania. It consists of 160 items, divided into seven domains
of which three assess manic aspects such as energy, mood, and cognition and three assess
the same depressive characteristics. A further domain studies rhythmicity and vegetative
processes, including eating, sleeping, and sexual activity.

The MOODS-SR was used in this study, as well as in earlier research, to measure
suicidality or suicidal ideation and behaviors, as indicated by questions 102 through
107 [45–47].

2.3. Biochemical Evaluations

For each participant, after 12 h of fasting, 20 mL of peripheral venous blood was
collected and stored in either tripotassium ethylenediaminetetraacetic acid (K3EDTA) to
allow for the separation of the platelet-poor plasma (PPP) from the platelets, in a tube
containing lithium–heparin for plasma separation, or in a tube without an anticoagulant
and containing a coagulation activator for serum separation. Within 30 min of sample
collection, the peripheral blood was centrifuged at low speed (150× g) for 15 min at room
temperature to determine the precipitation of erythrocytes and leukocytes according to a
density gradient. Subsequently, the supernatants of each subject were divided into two
15 mL Falcon tubes and the PRPs obtained were centrifuged at 1500× g for 15 min, allowing
two Falcons to be obtained with the PPP and platelet precipitate (pellet) inside. At this
point, the PPP was aliquoted into different test tubes so that each platelet pellet could
be placed in the refrigerator at −80 ◦C while waiting to carry out the protein assay on
the sample. The participant code, content, and initial volume of PRP from which the
platelet sample was taken for subsequent intraplatelet BDNF calculations were indicated
on each tube. All of the samples were maintained at −80 ◦C until the day of the assay. The
intraplatelet content was determined using homogenization and fractionation techniques
on the day of the BDNF assay, using a slightly modified procedure from that described in a
previous study [48].

To measure the intraplatelet BDNF concentration in the samples, an Enzyme-Linked
Immuno-Sorbent Assay (ELISA)—Sandwich type was used. The minimum concentration
of mBDNF that the Biosensis kit used is able to detect is 7 pg/mL. In order to perform
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the competitive assay, the analyte as well as a first specific antibody were added to each
well. Subsequently, for the detection reaction, a second biotinylated antibody linked
to horseradish peroxidase (HRP) was added, followed by the HRP substrate, 3,3′,5,5′-
tetramethylbenzidine (TMB). The final step of the assay was carried out using a multi-
scan spectrophotometer to read the absorbance of the samples at 450 nm, as indicated
in the kit instructions. The calibration curve was created using a 4-parameter nonlinear
regression equation using Graph-Pad Prism Software (version 8.0, San Diego, CA, USA).
The BDNF values were interpolated in logarithmic form and subsequently transformed into
exponential form and multiplied by the dilution factors to obtain the final concentration of
intra-platelet BDNF in ng/mL.

We followed Bradford’s method [49] to prevent biases related to individual variations
in platelet count, adjusting the total protein values (mg/mL) that were achieved. The
protein concentrations were expressed as ng/mg after normalization.

2.4. Statistical Analysis

Every statistical evaluation was performed with SPSS version 26.0.
Since our sample did not adhere to variance homoscedasticity or normality tests, we

proceeded to use non-parametric techniques in the elaboration of our data.
In order to compare the socio-demographic variables, we used Chi-square and Mann–

Whitney U-tests.
Scores obtained by the two groups in the different psychometric instruments employed

as well as their BDNF levels were compared using the Mann–Whitney U-test.
Subsequently, in order to evaluate which psychometric measures were statistically

predictive of platelet BDNF levels, a linear regression analysis was performed with platelet
BDNF levels as the dependent variable and AdAS Spectrum, SHY-SR, TALS-SR total score,
and suicidality as independent variables and another one with WSAS as an independent
variable. Further linear regression analyses were performed using platelet BDNF levels
as the dependent variable and AdAS Spectrum, WSAS, SHY-SR, and TALS-SR domain
score as independent variables in order to investigate the presence of significant positive or
negative predictors of platelet BDNF levels.

3. Results

The total sample was made up of 44 subjects divided into two diagnostic groups:
22 subjects with ASD and 22 HCs. The ASD group was made up of 15 (68.2%) males and 7
(31.8%) females with a mean age of 28.36 years (±6.97), while the HCs group was made
up of 7 (31.8%) males and 15 (68.2%) females with a mean age of 33.91 years (±8.13). The
groups significantly differed both in age and gender composition, with the ASD group
being younger and with a higher prevalence of males (see Table 1).

Table 1. Age and sex in the overall sample and comparison between the diagnostic groups.

ASD
(n = 22)

(Mean ± SD,
Mean Rank)

HC
(n = 22)

(Mean ± SD,
Mean Rank)

H p *

Age 28.36 ± 6.97, 18.25 33.91 ± 8.13, 26.75 335.50 0.028 *

n (%) n (%) Chi-square p

Sex
M 15(68.2%) 7(31.8%)

5.82 0.016 *
F 7(31.8%) 15(68.2%)

*: statistically significant value (p < 0.05).

As reported in Table 2, the results from the comparison between platelet BDNF levels
between the two groups showed how ASD subjects had significantly lower levels of platelet
BDNF compared to the HCs.
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Table 2. Comparison of platelet BDNF levels among the groups.

ASD
(n = 22)

(Mean ± SD,
Mean Rank)

HC
(n = 22)

(Mean ± SD,
Mean Rank)

H p *

Platelet BDNF ng/mg prot 3.18 ± 1.25, 18.48 4.55 ± 2.46, 26.52 330.50 0.038 *
*: statistically significant value (p < 0.05).

Similarly, the results from the comparison of the scores obtained in the different
psychometric instruments between the ASD and HC groups showed how the ASD subjects
scored significantly higher in all AdAS Spectrum, WSAS, SHY-SR, and TALS-SR domains
and total score (see Tables 3–6), as well as in the suicidality measures (see Table 7).

Table 3. Comparison of AdAS Spectrum scores among the groups.

AdAS Spectrum

ASD
(n = 22)

(Mean ± SD,
Mean Rank)

HC
(n = 22)

(Mean ± SD,
Mean Rank)

H p *

Child./Adolesc. 10.77 ± 3.69, 31.32 3.48 ± 2.11, 12.24 26.00 <0.001 *
Verb. comm. 10.27 ± 5.08, 31.61 1.57 ± 1.69, 11.93 19.50 <0.001 *

Non-verb. comm. 12.73 ± 4.50, 32.05 3.33 ± 2.22, 11.48 10.00 <0.001 *
Empathy 5.36 ± 2.87,31.20 0.86 ± 1.06, 12.36 28.50 <0.001 *

Inflex. and routine 21.73 ± 6.70, 32.18 5.33 ± 3.40, 11.33 7.00 <0.001 *
Restrict. Interest and rum. 13.27 ± 3.90, 32.39 3.05 ± 1.93, 11.12 2.50 <0.001 *

Hyper-hyporeact. 6.64 ± 3.37, 31.70 0.81 ± 1.17, 11.83 17.50 <0.001 *
AdAS Spectr. total score 80.77 ± 21.37, 33.07 20.91 ± 14.00, 11.93 9.50 <0.001 *

*: statistically significant value (p < 0.05).

Table 4. Comparison of WSAS scores among the groups.

WSAS

ASD
(n = 22)

(Mean ± SD,
Mean Rank)

HC
(n = 22)

(Mean ± SD,
Mean Rank)

H p *

Work 5.39 ± 2.90, 28.69 0.45 ± 0.76, 11.23 14.50 <0.001 *
Home management 5.11 ± 2.56, 28.06 0.35 ± 0.67, 11.80 26.00 <0.001 *

Social leisure activities 5.17 ± 2.41, 28.67 0.25 ± 0.55, 11.25 15.00 <0.001 *
Private leisure activities 5.50 ± 2.75, 28.78 0.15 ± 0.37, 11.15 13.00 <0.001 *

Close relationships 4.06 ± 2.92, 27.56 0.10 ± 3.08, 12.25 35.00 <0.001 *
WSAS total score 25.22 ± 9.14, 28.78 1.30 ± 2.27, 11.15 13.00 <0.001 *

*: statistically significant value (p < 0.05).

Table 5. Comparison of SHY-SR scores among the groups.

SHY-SR

ASD
(n = 22)

(Mean ± SD,
Mean Rank)

HC
(n = 22)

(Mean ± SD,
Mean Rank)

H p *

Childhood 6.50 ± 3.46, 28.40 2.77 ± 2.11, 15.23 82.00 <0.001 *
Interpersonal sensitivity 18.42 ± 5.27, 31.16 4.50 ± 4.80, 12.23 16.00 <0.001 *

Behavioral inhibition 10.68 ± 4.92, 31.18 1.45 ± 1.74, 12.20 15.50 <0.001 *
Substance abuse 1.65 ± 1.75, 26.23 0.54 ± 1.01, 17.20 125.50 0.010 *
Social situations 53.58 ± 20.33, 31.16 10.41 ± 11.39, 12.23 16.00 <0.001 *

SHY-SR total score 88.78 ± 29.64, 30.61 19.68 ± 18.02, 12.23 16.00 <0.001 *
*: statistically significant value (p < 0.05).



Biomedicines 2024, 12, 1529 7 of 15

Table 6. Comparison of TALS-SR scores among the groups.

TALS-SR

ASD
(n = 22)

(Mean ± SD,
Mean Rank)

HC
(n = 22)

(Mean ± SD,
Mean Rank)

H p *

Loss 4.20 ± 1.88, 26.05 3.00 ± 1.45, 17.36 129.00 0.020 *
Grief Reactions 13.10 ± 6.56, 27.80 6.50 ± 4.69, 15.77 94.00 0.001 *

Potential Traumatic Events 7.40 ± 3.42, 31.48 1.50 ± 1.40, 12.43 20.50 <0.001 *
Reac. to Losses/Upset. Events 9.48 ± 3.34, 28.45 4.23 ± 4.65, 14.57 67.50 <0.001 *

Re-experiencing 6.20 ± 2.09, 30.20 1.95 ± 2.46, 13.59 46.00 <0.001 *
Avoidance/Numbing 6.80 ± 3.14, 28.45 1.20 ± 2.89, 12.55 41.00 <0.001 *
Maladaptive Coping 3.35 ± 2.25, 28.55 0.57 ± 1.83, 13.81 59.00 <0.001 *

Arousal 2.85 ± 1.42, 30.45 0.45 ± 1.14, 13.36 41.00 <0.001 *
Pers. charact.s/Risk Factors 2.75 ± 1.65, 29.68 0.54 ± 0.96, 14.07 56.50 <0.001 *

TALS-SR total score 57.05 ± 17.85, 28.55 19.40 ± 16.01,11.88 27.50 <0.001 *
*: statistically significant value (p < 0.05).

Table 7. Comparison of suicidality scores among the groups.

ASD
(n = 22)

(Mean ± SD,
Mean Rank)

HC
(n = 22)

(Mean ± SD,
Mean Rank)

H p *

Suicidality 2.85 ± 2.16, 30.38 0.14 ± 0.64, 13.43 42.50 <0.001 *
*: statistically significant value (p < 0.05).

As reported in Table 8, the results from the linear regression analysis, including AdAS
Spectrum, SHY-SR, TALS-SR and MOODS Suicidality score as independent variables, high-
lighted AdAS Spectrum as the only negative predictor of BDNF levels. A further regression
analysis, performed with WSAS total score as the independent variable, highlighted a
significant negative predictive effect on BDNF levels.

Table 8. Linear regression analyses with platelet BDNF levels as a dependent variable and AdAS
Spectrum, SHY-SR, TALS-SR, and MOODS suicidality total score as independent variables (regression
one) and WSAS total score (regression two) in the overall sample.

Linear Regression 1

b (SE) BETA t p

Constant 4.77 (0.53) 9.059 <0.001 *
AdAS Spectr. tot. score −0.018 (0.01) −0.306 −2.083 0.043 *

R square = 0.094; Adjusted R square = 0.072

Linear Regression 2

Constant 4.37 (0.41) 10.716 <0.001 *
WSAS tot. score −0.05 (0.02) −0.336 −2.142 0.039 *

R square = 0.113; Adjusted R square = 0.088
*: statistically significant value (p < 0.05).

Another regression analysis performed with AdAS Spectrum domain scores as the de-
pendent variable highlighted the AdAS Spectrum Restricted interest and rumination domain
scores as a significant negative predictor of intraplatelet BDNF levels (see Table 9).

Lastly, the results from further linear regression analyses highlighted TALS-SR Arousal
when including TALS-SR domains scores as the independent variable, SHY-SR Childhood
when including SHY-SR total scores as the independent variable, and WSAS Private leisure
activities when including WSAS items as the independent variable as significant negative
predictors of platelet BDNF levels (see Table 10).
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Table 9. Linear regression analysis with AdAS Spectrum domain scores as the independent variable
and platelet BDNF levels as the dependent variable.

b (SE) BETA t p

Constant 4.88 (0.51) 9519 0.001 *
AdAS Spectrum—Restrict. int. and rum. −0.12 (0.50) −0.354 −2428 0.020 *

R square = 0.126; adjusted R square = 0.104. *: statistically significant value (p < 0.05)

Table 10. Linear regression analyses with platelet BDNF levels as a dependent variable and TALS-SR
domains (regression one), SHY-SR domains (regression two), TALS-SR domains (regression three) as
independent variables.

b (SE) BETA t p

Constant 3.11 (0.88) 3.525 0.001 *
TALS-SR Arousal −1.04 (0.49) −0.888 −2.126 0.042 *

Constant 4.74 (0.53) 9.000 <0.001 *
SHY-SR Childhood −0.19 (0.09) −0.316 −2.053 0.047 *

Constant 4.47 (0.41) 11.006 <0.001 *
WSAS Private leisure activities −0.23 (0.10) −0.364 −2.347 0.025 *

*: statistically significant value (p < 0.05).

4. Discussion

According to our data, as expected, ASD subjects scored significantly higher in all
AdAS Spectrum and WSAS domains and total score. From our results, ASD subjects
also scored significantly higher in all SHY-SR domains and total scores. This evidence
is in line with the recent literature that describes higher levels of social phobic traits
in autistic subjects [50]. In fact, there are many similarities between ASD and social
anxiety when it comes to social skills and engagement, and a number of reasons have
been proposed as the causes of this convergence [51]. For instance, persistent difficulties in
social settings may eventually cause social anxiety in certain people with ASD or autistic
features [52]. Similarly, individuals with high-functioning ASD report low self-perceived
social competence and heightened awareness of their communication difficulties; this may
help explain why anxious symptoms appear in social settings [53]. Similarly, ASD subjects
reported significantly higher scores in all TALS-SR domains and total scores, in accordance
with the mounting data that suggest that not only ASD but also subthreshold autism
features, may operate as risk factors for the development of trauma- and stress-related
symptoms [5,54,55]. In particular, subjects with ASD are more vulnerable to bullying,
rejection, and other socially stressful or even traumatic events due to their social problems
and impaired socioemotional reciprocity, and this can lead to the development of trauma-
and stress-related symptoms [54]. Lastly, ASD subjects scored significantly higher than HCs
on suicidality measures. Still, this outcome is consistent with the wide body of literature
that, over the past few years, has investigated the presence and correlation of suicidal
thoughts and behaviors among autistic subjects [45,47,56–58]. Indeed, compared to their
neuro-typical peers, subjects with autism are twice as likely to die by suicide and six
times more likely to attempt suicide, sometimes at a far earlier age [59,60]. Furthermore,
researchers have reported that at least one in six children with autism will consider suicide
at some point in their childhood, even as young as six years old [61].

Interestingly, our results highlighted significantly lower levels of platelet BDNF in
autistic subjects compared to HCs. BDNF is the most prevalent member of the neurotrophin
family and is crucial for the growth and survival of neurons [62]. Mostly, it is widely
recognized that BDNF has a significant role in the development of synaptic connections,
including their creation, branching, and connectivity [63,64]. BDNF is distributed both
inside the central nervous system and peripherally [65], and it has been demonstrated that
circulating BDNF levels correspond to its levels in the brain [66,67]. Based on these premises,
BDNF has been studied in many psychiatric disorders [68], and its peripheric concentrations
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in patients with ASD have been studied in various research, primarily finding greater
levels of plasma BDNF, especially in children, with more controversial results among
adults [28,37,69–72]. However, considering that peripheral BDNF is mostly stored in
platelets and released after degranulation [73], a major limitation of these data arises
from the fact that only a few studies have taken platelet counts into consideration when
interpreting the results [39]. Although platelet-associated levels, receptors, and biomarkers
and their implications have sometimes been studied in psychiatric disorders [74,75], to
our knowledge, this is the first study that specifically aimed to evaluate platelet BNDF
in adult ASD subjects. In this framework, the detection of low levels of platelet BDNF,
hypothesizing greater platelet degranulation in autistic subjects [76], which on the one hand
leads to an increase in circulating BDNF levels and on the other reduces intraplatelet levels,
appears to be in line with the aforementioned data. Those results were confirmed by the
regression analyses that highlighted AdAS spectrum total score as a negative predictor of
platelet BDNF levels, implying that more severe pathology is related to greater alterations
in BDNF levels and that, among the other dimensions included as independent variables
(social anxiety, suicidality, and trauma- and stress-related symptoms) the autism spectrum
dimension was indeed the one most linked to BDNF.

The finding of the SHY-SR Childhood and Adolescence domain as a negative predictor of
BDNF levels can also be interpreted in light of the previous results. Indeed, the domain
investigates relational deficits, difficulties in understanding and carrying out verbal and
non-verbal communication, as well as difficulties in social interactions that manifest early in
childhood, which are also typical of ASD [77–80]. Moreover, not only is social anxiety one of
the most common co-occurrent disorders reported with ASD [81–83] but also, due to their
similar presentation, it can sometimes be challenging to distinguish between the two disor-
ders, specifically when they manifest in the earliest stages of life [84–86]. In this framework,
many authors have hypothesized the presence of a common neurodevelopmental alteration
in different psychiatric conditions, in particular for social anxiety, that could underpin the
relationship between BDNF levels and early social phobic manifestations [13,14,49,87].

Interestingly, among autism spectrum dimensions, platelet BDNF levels were found
to be negatively predicted by the AdAS Spectrum Restricted interest and rumination domain
scores, investigating the tendency toward ruminative thinking, which increases the focus on
feelings about problems rather than on problem-solving [40]. The most common definition
of rumination as a psychiatric symptom is the act of persistently thinking about one’s
own emotions and issues rather than thinking in terms of the specific content of one’s
thoughts [88]. While ruminative thinking can be recognized as a central pillar of the autistic
dimension, in recent years, many authors have focused on the study of this phenomenon
not only in ASD [89] but also in a wide variety of mental disorders, suggesting its role as a
trans-nosographic factor encompassing all psychopathology, with a detrimental role in the
course and outcome [45,90–92]. Among the WSAS dimensions, the Private leisure activities
domain score was a negative predictor of platelet BDNF levels. WSAS is a quick and
accurate way to gauge functioning impairment, allowing one to evaluate how a person’s
mental health issues affect their capacity to perform in a variety of situations and thus
the overall severity of the psychiatric symptomatology [42]. Thus, the link between the
WSAS score and BDNF levels reflects how more severe symptom pictures are associated
with greater alterations [93–95] and is consistent with the aforementioned finding of the
link between BDNF and ruminative thinking, as this in turn is frequently associated with
greater severity of the psychiatric condition [45,90–92]. Moreover, the WSAS Private leisure
activities domain explores the inability to experience pleasure in a variety of situations and
therefore the state of anhedonia. Anhedonia, which is defined as a diminished desire for or
ability to enjoy various activities, has been described in many psychiatric disorders such
as major depression, schizophrenia, and autism [96–100] and is indicative of anomalies in
the brain’s reward processing [101]. Interestingly, recent evidence has described how the
brain’s reward system, which is essential for processing rewards, motivation, and pleasure-
related actions, is greatly influenced by BDNF levels, which regulate brain plasticity in
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the mesolimbic dopamine system’s reward circuits [102–104]. Moreover, results from a
recent study highlighted BDNF peripheric levels as possible independent predictors of
consummatory anhedonia [102]. In this framework, it can be therefore hypothesized that
changes in BDNF levels may cause a reduction in the sense of reward and ultimately lead
to a state of anhedonia.

Interestingly, our results highlight TALS-SR Arousal domain score as a negative predic-
tor of platelet BDNF levels. As previously stated, BDNF is present in many structures of
the central nervous system and, in particular, the cortex, hypothalamus, hippocampus, and
amygdala, which are involved in synaptic plasticity mechanisms that underpin learning
and long-term memory [105]. In particular, between learning and memory processes, fear
memories have a critical role in some mental illnesses, such as PTSD [106]. In fact, the
primary feature of PTSD is the persistence of intensely painful memories associated with
the incident, which is often accompanied by hyperarousal symptoms [1]. In this framework,
altered peripheral BDNF levels have been reported in PTSD [107] and it has recently been
described how BDNF may have a role in fear extinction and combat impaired extinction
in anxiety disorders and PTSD [106]. Also, reduced peripheral BDNF has been reported
in PTSD patients, particularly in the presence of chronic stress or long-lasting symptoms
after exposure to the traumatic event as well as in relation to the type of encountered
traumatism [108]. Despite the specific association between peripheral concentrations of
BDNF and brain activity still being uncertain, some findings indicate that BDNF may play
a role in the amygdala for the acquisition of fear conditioning and the consolidation of
fear extinction; our results seem consistent with the evidence from BDNF studies, which
indicate that altered BDNF levels are linked to extinction learning impairments [109,110].

Our results should be considered in light of some important limitations. First of all, our
sample was small and with significant differences in sex and age, thus eventually affecting
our results. Indeed, the ASD group was significantly younger and had a higher prevalence
of male subjects compared to the HC group. The gender composition of our sample
reflects the historical male predominance in the diagnosis of ASD, usually established at
a 3:1 ratio in favor of males [111]. Moreover, we mostly used self-report questionnaires,
which exposed our data to bias related to under- or over-estimation of symptoms. Also,
the cross-sectional design of the study did not allow us to make inferences about causal
or temporal relationships among the investigated variables. Lastly, it is noteworthy that
platelets are essential suppliers of N-acetyl serotonin and serotonin [112]. ASD is classically
associated with increased circulating serotonin levels [113], whilst levels of melatonin
production across brain and systemic cells are decreased, including in platelets [114]. This
is proposed to be mediated by an increase in microRNAs, including miR-451, that prevent
the conversion of serotonin to N-acetyl serotonin and subsequently to melatonin [114].
Interestingly, N-acetyl serotonin is a BDNF mimic via the activation of the BDNF receptor,
tyrosine kinase receptor (Trk)B [115], whilst N-acetyl serotonin can also induce BDNF, as
shown in the hippocampal dentate gyrus [116]. How platelet BDNF interacts with the
platelet tryptophan–serotonin-N-acetyl serotonin–melatonin pathway will be important to
determine in future research, including how this is influenced by the gut microbiome [117].

In conclusion, despite these limitations, our study is not only one of the few taking
into account platelets in the evaluation of BDNF levels but is possibly the only one to
date to specifically address platelet BDNF levels in autistic subjects. Our results seem to
point out the presence of significantly lower platelet BDNF levels in adults with ASD, and
the possible association of BDNF reduction with specific psychopathological dimensions.
In particular, our results also support the suggestion of a common neurodevelopmental
alteration in different psychiatric conditions, and in particular for social anxiety, of a
trans-nosographic role of rumination encompassing all psychopathology and of a newly
suggested link between BDNF alterations and extinction learning impairments and the
development of anhedonia, paving the way for further studies.
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