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Abstract: Metformin (MTF) is the only biguanide included in the World Health Organization’s list
of essential medicines; representing a widespread drug in the management of diabetes mellitus.
With its accessibility and affordability being one of its biggest assets, it has become the target of
interest for many trying to find alternative treatments for varied pathologies. Over time, an increasing
body of evidence has shown additional roles of MTF, with unexpected interactions of benefit in
other diseases. Metformin (MTF) holds significant promise in mitigating ischemia-reperfusion injury
(IRI), particularly in the realm of organ transplantation. As acceptance criteria for organ transplants
expand, IRI during the preservation phase remain a major concern within the transplant community,
prompting a keen interest in MTF’s effects. Emerging evidence suggests that administering MTF
during reperfusion may activate the reperfusion injury salvage kinase (RISK) pathway. This pathway
is pivotal in alleviating IRI in transplant recipients, potentially leading to improved outcomes such as
reduced rates of organ rejection. This review aims to contextualize MTF historically, explore its current
uses, pharmacokinetics, and pharmacodynamics, and link these aspects to the pathophysiology of
IRI to illuminate its potential future role in transplantation. A comprehensive survey of the current
literature highlights MTF’s potential to recondition and protect against IRI by attenuating free radical
damage, activating AMP-activated protein kinase to preserve cellular energy and promote repair, as
well as directly reducing inflammation and enhancing microcirculation.

Keywords: metformin; ischemia-reperfusion injury; kidney transplant

1. Introduction

For more than half a century, metformin (MTF, 1,1-dimethylbiguanide hydrochloride)
has been, as a monotherapy or in combination with other drugs, a first-line regimen for
type 2 diabetes mellitus (T2DM) [1]. MTF represents the only biguanide included in the
World Health Organization (WHO)’s list of essential medicines [2], due to its efficacy and
high safety profile. Many health economic studies have evaluated and confirmed its cost-
effectiveness, making it a valuable tool in the management of diabetes mellitus [3]. Over
time, an increasing body of evidence has emerged regarding additional roles of MTF, with
benefits, not yet fully understood, in many pathologies including obesity, hepatopatholo-
gies [4], cardiovascular diseases [5], rheumatoid arthritis [6], different types of cancer [7]
(e.g., breast and colorectal), polycystic ovarian syndrome [8], and viral diseases such as
COVID-19 [9]. Additionally, MTF has been shown to be an anti-aging drug [10], and
last but not least, a potential therapy for ischemia-reperfusion injury (IRI), an inevitable
consequence of the transplantation process.

2. History and Uses of Metformin

MTF traces its roots back to the plant Galega officinalis, also known as “goat’s rue” or
“French lilac” [11]. G. officinalis is part of the Fabaceae family of perennial herbs, which
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ranks as the second most diverse among plant families globally, with its species spanning
across various regions. These plants boast a wealth of phytochemicals such as flavonoids,
lectins, saponins, alkaloids, carotenoids, and phenolic acids and thus offer numerous health
advantages [12]. Galega officinalis is considered to be native to Europe and southwest Asia
and since medieval times has been known mainly for its hypoglycemic properties [13].
These properties are attributable to the presence of guanidine which is a nitrogen-rich
chemical compound that occurs naturally in mollusks, marine sponges, earthworms, rice
hulls, and turnip juice [14].

Unlike carbonic acid, guanidine is fairly stable under normal conditions and does not
necessarily require being in solution or cryogenic temperatures to obtain this stability. It is
important to note that guanidine is distinct from guanine (Figure 1), a purine derivative
present in bat and bird feces [15]. Guanidine is widely recognized as one of the most potent
organic bases, with a pKa value of 13.6 [16].
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It was discovered in late 1800 by Adolph Strecker, a German chemist best known
for his valuable work specific to amino acids. Other discoveries attributable to him are
those of compounds such as choline and the first successful synthesis of an amino acid in a
laboratory, a fortunate blunder while he attempted to synthesize lactic acid [17]. The latter
is best known as the “Strecker Synthesis” which yielded alanine as the final product of
his reaction.

Guanidine-containing organic compounds are widespread in nature, appearing in
various forms such as the neurotransmitter agmatine, alkaloids such as tetrodotoxin,
and the amino acid arginine [18]. Due to their ability to form noncovalent interactions
with molecular agents and proteins, coupled with their adaptability to their environment
allowing them to vary in pKa value, they are viewed as a versatile group of compounds.
As mentioned previously, the guanidinium group is highly stable, a characteristic that can
be largely attributed to what is known as Y-aromaticity [19,20]. The hypoglycemic action of
guanidine was demonstrated in animal studies in 1918 [21]. Numerous drugs containing
guanide are effective in lowering blood sugar levels, yet many of them pose a significant
risk of toxicity. As a result, only metformin, among the guanide-based medications, has
maintained a widespread and long-term use in modern clinical settings [22].

When guanidine proved excessively toxic, research shifted focus to galegine (Figure 2),
an isoprepenyl derivative of guanidine, which underwent human trials in the 1920s, as
a potential hypoglycemic treatment. Additional studies have revealed that galegine also
possesses hypotensive effects, antifeedant properties, and body weight regulation ef-
fects [23,24]. The hypotensive effects of galegine are thought to be tied to its agonist
effect on H2-receptors, which are intracellular G-protein coupled receptors typically as-
sociated with gastric secretion. However, through research, it has been discovered that
numerous extra gastric H2-receptors can be found in the cardiovascular system, gastroin-
testinal muscles, endocrine and exocrine glands, brain, and pulmonary systems, amongst
many other unexpected sites [25]. The agonism of H2-receptors will result in a heightened
adenylate cyclase system activity which will cause a subsequent rise in intracellular cyclic
AMP levels. At the vascular level, this leads to vasodilation causing the hypotensive effects
previously discussed [26]. Despite the current data available, additional research must
be conducted including tests on drug receptor-specific interaction and chronic toxicity
assessments in order to validate the long-term safety of galegine as an antihypertensive
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therapy [24]. In light of the previous research and after guanide was abandoned due to
toxicity, two new galegine-derived compounds, metformin and phenformin (biguanides),
were synthesized [27]. Following studies assessing their hypoglycemic potential in animal
models and finding that any significant glucose-lowering effects necessitated exception-
ally high doses of the compound, these two were subsequently overlooked for over a
decade [28]. In the 1940s, guanidine-containing agents regained attention due to their
potential antimalarial effects, primarily with the antimalarial agent proguanil. Proguanil, a
guanidine-containing antimalarial agent, also demonstrated glucose-lowering effects in
animal trials. It should be noted that metformin’s antimalarial properties continue to be
studied to date. In 2019, Vera et al. demonstrated that MTF treatment decreases Plasmodium
falciparum growth in human hepatocytes and concluded that combining metformin treat-
ment with suboptimal doses of conventional antimalarials proves more effective in reducing
parasite load [29]. Furthermore, Eusebio Garcia found metformin to be effective in treating
a local influenza outbreak in the Philippines. This led to the emergence of metformin
hydrochloride’s application as an anti-influenza agent, referred to as Flumamine [30]. In
the process, metformin’s tendency to reduce blood sugar levels in some patients was ob-
served [8]. This marked a significant turning point in the narrative surrounding metformin.
However, a puzzling aspect of this claim is that no blood glucose levels were actually
documented for Garcia’s patients and there was a lack of experimental evidence supporting
his theory on the blood glucose-lowering effects of metformin. Despite this, metformin’s
fame endured, eventually leading French physician–scientist Jeane Sterne, who had been
trained in diabetology in Paris, to undertake further studies. Sterne’s work in 1957 was
the key to establishing metformin as a hypoglycemic medication definitively, marking a
pivotal moment in metformin’s clinical history [28]. His publication acknowledged the oral
hypoglycemic metformin in humans. Nevertheless, metformin continued to garner little
attention due to its lower potency compared to the biguanides of phenformin and buformin.
These two compounds were phased out in the late 1970’s due to the heightened risk of lactic
acidosis. As metformin faced an uncertain future, its association with these discontinued
medications tainted its reputation. Eventually, its ability to combat insulin resistance and
address adult-onset hyperglycemia without causing weight gain or increasing the risk of
hypoglycemic events gained recognition in Europe. Following Sterne’s report, metformin
was introduced in the United Kingdom in 1958 as a treatment for TDM2 under the trade
name Glucaphage®, meaning ‘glucose eater’. However, its approval by the Food and Drug
Administration (FDA) for use in the USA came much later in the mid 1990’s [31,32]. Again,
this delay likely attributed to the withdrawal of phenformin with a high incidence of lactic
acidosis and cardiovascular side effects. Today, metformin is considered the ‘gold standard’
and the preferred drug for managing patients with T2DM.
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Additionally, MTF has been suggested as an adjunct in the treatment of malignancy,
as research has shown that it has the potential to counteract the “Warburg Effect” at the
cellular level, a phenomenon in which cancer cells choose to utilize the glycolytic pathway,
converting glucose into lactate to meet their energy requirements, irrespective of oxygen
availability [33]. Metformin accomplishes this via the inhibition of the mTORC1 pathway,



Biomedicines 2024, 12, 1534 4 of 13

which supports cancer, through both AMPK-dependent and independent mechanisms [34],
thus inhibiting tumor growth.

Further research has demonstrated that metformin has anticancer effects both in vivo
and in vitro [35]. Evidence from in vivo studies has surfaced, demonstrating an antiprolif-
erative effect on breast cancer and there is some evidence to suggest that this effect might be
independent of its metabolic effects, directly inhibiting tumor growth [36]. Studies suggest
that the most significant advantages are observed in colorectal and prostate cancer patients,
especially those undergoing radical radiotherapy. However, randomized controlled trials
examining metformin dose, duration, and efficacy are strongly recommended.

3. Pharmacokinetics of Metformin

MTF is the most common orally administered drug for the treatment of T2DM [37]. Its
prescription rate is known to be as high as 45–50% of all prescriptions. Currently, more than
150 million people take metformin [38]. In the US, the amount of metformin prescriptions
doubled in 2021, accounting for 90 million prescriptions [39]. This trend can largely be
attributed to the significant rise in diabetes cases worldwide. In 2021, approximately
537 million people were living with diabetes globally, and projections suggest that by 2045,
this number will exceed 783 million [40].

MTF is available both as an immediate-release formulation, which is usually adminis-
tered twice daily (bid), and as extended-release formulations, which are administered once
(qd) or twice daily [41]. While both formulations have similar efficacy and significant dif-
ferences in side effects [42], some studies have shown that immediate-release formulations
have a superior glycated hemoglobin (HbA1c)-lowering capability, in addition to improv-
ing triglyceride levels and total cholesterol levels [43]. Considering that gastrointestinal
(GI) side effects are the primary cause of non-adherence to and the discontinuation of MTF
treatment, extended-release formulations offer significantly improved GI tolerability [44].
Other less commonly seen adverse effects of metformin include flushing, palpitations,
headaches, drug eruptions, and vitamin B12 deficiency, amongst others [45].

Initial dosages of immediate-release MTF are 500 mg qd or bid with meals and
should be increased gradually according to tolerance until a target dose of 1000 mg
bid is reached [41]. Metformin is contraindicated in patients with an eGFR below
30 mL/min/1.73 m2 [1]. Following oral intake, MTF is predominantly absorbed in the
small bowel, with a bioavailability (F) of 55–60% [46]. It is worth emphasizing that because
the liver receives blood directly from the portal vein, it can accumulate a significantly
higher concentration of orally administered metformin compared to the bloodstream and
other organs [47]. After absorption, it is distributed to tissues, such as the liver and kidneys,
where it is eliminated through both filtration and tubular secretion without undergoing
modification (half-life = 4–5 h) [46]. Its peak plasma concentration happens about 2–3 h
after a 500 mg dose of immediate-release formulation and 6–8 h of extended-release formu-
lation [48].

Appearing as a cationic species at a physiological pH (pKa = 11.5), its potential
passive diffusion across the lipid bilayer is highly improbable. Therefore, the absorption,
distribution, and excretion of the molecule are facilitated by specific transporters [46,49].
At the intestinal level, absorption is facilitated by the plasma membrane monoamine
transporter (PMAT) and organic cation transporter 3 (OCT3) [50]. These transporters are
situated on the brush-like surface of the enterocyte membrane. Subsequently, the drug
is transported into the bloodstream through OCT1, located on the basolateral side of the
enterocyte. OCT1 and OCT3 are expressed on the sinusoidal membrane of hepatocytes [51],
facilitating the transport of MTF into the hepatocyte. The excretion of MTF, which affects
Multidrug and Toxin Extrusion 1 (MATE1), occurs thereafter. MTF clearance primarily
occurs at the renal level, where OCT2, expressed in the basal cells, mediates the entry of
MTF. Subsequently, at the apical level, transporters MATE1 and MATE2 [50] complete the
elimination process. Notably, polymorphisms in OCT1 are likely to modify absorption,
potentially diminishing the efficacy of the molecule [52] (Figure 3).
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4. Pharmacodynamics

The target organ of MTF is the liver Within hepatocytes, MTF exerts its hypoglycemic
action by inhibiting the endogenous glucose production pathway [8]. This action is medi-
ated through the weak inhibition of complex 1 of the electron transport chain located at
the mitochondrial level [53]. Complex 1 (NADH: ubiquinone oxidoreductase or NADH
dehydrogenase) is a large L-shaped enzyme which facilitates the transfer of electrons
from NADH to the ubiquinone pool while concurrently transferring four protons from
the matrix to the intermembrane space [54]. One arm of the enzyme is embedded in the
inner mitochondrial membrane, while the other extends towards the matrix. It comprises
at least 45 distinct subunits, encoded by both nuclear and mitochondrial genes [55]. The
inhibition of complex 1 by MTF results in decreased ATP formation, which results in more
AMP than adenosyn triphosphate (ATP), leading to an elevation in the AMP/ATP ratio.
Subsequently, AMP triggers the activation of AMPK (adenosine monophosphate-activated
protein kinase) via LKB1 (liver kinase B1), a key regulator of cellular metabolism [56].
LKB1 is a serine/threonine kinase and tumor suppressor whose mutations have been
linked to various cancers. Specifically, LKB1 codes for serine-threonine kinase 11 which, as
mentioned previously, triggers the activation of AMPK and its 13 superfamily members.
This activation regulates processes such as cell cycle arrest, apoptosis, and other metabolic
processes related to energy production [57]. Additionally, LKB1 serves as a suppressor
of inflammatory responses, a property that research indicates arises from stimulating
AMPK in macrophages, suppressing the generation of pro-inflammatory mediators and
chemokines [58]. Furthermore, LKB1 might regulate endoplasmic reticulum stress and
macrophage autophagy through alternative pathways [59].

AMPK is responsible for various metabolic functions, including the inhibition of
gluconeogenic gene transcription by phosphorylating the CREB-binding protein [55,60].
Additionally, AMPK inhibits lipogenesis by phosphorylating and deactivating acetyl-CoA
carboxylase 1 (ACC1) and acetyl-CoA carboxylase 2 (ACC2), enzymes that regulate the
rate of fatty acid biosynthesis by controlling the formation of malonyl-CoA. Malonyl-CoA
serves as a critical precursor for fatty acid synthesis and acts as a potent allosteric inhibitor
of carnitine palmitoyl transferase 1 (CPT1), which facilitates the transport of acyl-CoA into
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mitochondria during the β-oxidation of fatty acids [61]. Consequently, the reduction in
intracellular levels of malonyl-CoA promotes fatty acid oxidation. Further contributing to
its effects, MTF suppresses the SREBP-1 factor [62], which is also involved in lipogenesis.
Additionally, the action of MTF seems to rely on an LKB1-AMPK-independent mechanism,
as evidenced by its ability to inhibit hepatic gluconeogenesis in mice lacking AMPK [63].
Moreover, MTF noncompetitively inhibits mitochondrial glycerol phosphate dehydroge-
nase (mGPD), a crucial enzyme in regulating hepatic gluconeogenesis [64]. Contrary to the
traditional perspective that primarily attributes MTF’s action to the liver, growing evidence
supports its potential extrahepatic effects [55], particularly in the intestinal tract [8]. MTF
stimulates the release of glucagon-like peptide 1 (GLP-1) [7], thereby reducing plasma
glucose levels both in the fasting and postprandial states. GLP-1 is an incretin hormone
composed of 30 amino acids that inhibits glucagon secretion and promotes insulin secretion,
further leading to decreased satiety and serum glucose levels [65]. It is produced in the
enteroendocrine L cells and secreted in response to food intake [66]. The mechanism by
which MTF induces the secretion of GLP-1 is thought to be closely tied to the incretin
axis; however, there is lacking evidence to support MTF’s direct effect on L cells. Another
proposed theory suggests that MTF might inhibit the apical sodium-dependent bile acid
transporter (ASBT) in the ileum. This inhibition could result in elevated concentrations
of bile acids in the luminal environment of the terminal ileum and colon. These excess
bile acids then trigger bile acid receptors, initiating a cascade that ultimately increases
circulating levels of GLP-1 [67]. Additionally, supporting evidence of gut microbiome
dysbiosis in patients with type 2 diabetes mellitus, MTF appears to modify the microbiome
composition, contributing to its therapeutic effects [68,69].

5. Metformin’s Role in Ischemia-Reperfusion Injury (IRI) in the Setting of
Organ Transplantation

The transplantation community has increasingly embraced the utilization of expanded
criteria donors (ECDs). Arising from a growing demand for organ transplantation and
a shortage of suitable organs available, transplant centers in the late 20th and early 21st
centuries developed criteria expanding the pool of donors, in the attempt to reduce waiting
times and increase the availability of viable organs [70,71]. ECD encompasses donors aged
60 years or older, or donors aged 50 years or older who meet two out of the following
three criteria: (1) a history of hypertension, (2) a serum creatinine level ≥1.5 mg/dL,
and (3) death resulting from a stroke [72]. In the United States, a new kidney allocation
system, implemented in 2014, introduced the Kidney Donor Profile Index (KDPI) as its
cornerstone. The KDPI is a numeric gauge that amalgamates ten factors and clinical
parameters to assess the quality of deceased donor kidneys relative to others procured.
This system strategically pairs kidneys with recipients predicted to have the longest post-
transplant survival rates, thereby optimizing organ utilization and curbing unnecessary
discards [73]. While this framework has predominantly superseded the Standard Criteria
Donor (SCD) and expanded criteria donor (ECD) classifications in the U.S., it is worth
noting that many other countries continue to use these terms. Conversely, lower KDPI
values correlate with enhanced donor quality and anticipated longevity, as could happen
with living donors [74,75].

Both recipients of high KDPI organs and ECD organs exhibit a higher rate of graft
failure and shorter survival [76–78]. ECDs have been known to be more vulnerable to and
have higher rates of IRI, prompting the adoption of diverse organ reconditioning strategies
employing ex vivo perfusion techniques [79,80]. MTF’s role at the mitochondrial level has
garnered interest as a potential therapeutic intervention against IRI in the perioperative
setting. Specifically, attention is shifting towards investigating the potential of MTF as
a component of a perfusate. An IRI is a complex and multifaceted process inherent to
transplantation procedures.

An IRI’s occurrence stems from the interruption of blood flow during donor organ
retrieval followed by subsequent reperfusion [81]. Though it is vital to reperfuse tissues



Biomedicines 2024, 12, 1534 7 of 13

via the restoration of blood flow, this step can often cause additional harm, jeopardizing
the function and survival of organs and grafts. Ischemia-reperfusion injury is not limited
to one organ or system, but rather can be observed in a multitude of organs and it can
even trigger systemic damage to distant organs, resulting in multiple system organ fail-
ure [82]. IRI has been known to possess several mechanisms by which it can compromise
endothelial and epithelial barriers and lead to said organ dysfunction and graft organ
failure (Figure 4) [83]. The initial event is marked by a decline in ATP levels during the
ischemic-hypoxic phase [84], leading to alterations in cellular pumps like the Na+/K+
ATPase and the Ca2+ ATPase pump. The accumulation of calcium ions subsequently
disrupts mitochondrial function, resulting in the generation of reactive oxygen species
(ROS), ensuing inflammation, and the opening of the mitochondrial permeability transition
pore (MPT), leading to membrane potential dissipation [85].
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Superoxide anions are primarily produced at complexes 1 and 3 [86] of the electron
transport chain, and it has long been recognized that electron transfer is not solely unidi-
rectional, but can also occur in the opposite direction [87,88]. Electrons originating from
complex 2 (succinate dehydrogenase) can retrogradely flow back to complex 1, resulting in
the generation of ROS. It has been reported that MTF selectively inhibits this process [89]
without increasing ROS formation in the forward direction. Studies have demonstrated
that MTF’s inhibition of complex 1 contributes to the mitigation of myocardial ischemia-
reperfusion injury (Figure 5) [90].
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Additionally, AMPK, a heterodimeric kinase activated by MTF, appears to play a
crucial role in attenuating IRIs [91–93]. Evidence suggests that the administration of
MTF during the reperfusion phase can activate kinases proper to the reperfusion injury
salvage kinase (RISK) pathway, which are strongly mediated by Protein kinase B (Akt)
and phosphodylinositol-3-kinase (PI3K). In doing so, a protective mechanism against IRI
is initiated by inhibiting the opening of the mitochondrial permeability transition pore
(mPTP) during reperfusion [94].

Notably, one of the pivotal research undertaken on the subject was that conducted in
2021 by Huijink et al. in which the impact of pre- and post-conditioning with MTF on rat
kidneys was studied. The rat models were subjected to 24 h of static cold storage, inducing
ischemic damage. Following this, the kidneys were subjected to 90 min of normothermic
machine perfusion (NMP), with or without the addition of MTF. In a separate experiment
with a porcine model, the kidneys underwent NMP after 30 min of warm ischemia (WI) and
3 h of hypothermic machine perfusion (HMP) [95]. Within Huijink et al.’s model, in terms
of cellular damage, rats preconditioned with MTF exhibited lower LDH values compared
to a control. Additionally, postconditioning with 300 mg/L MTF resulted in the reduced
necrosis and vacuolization of tubular cells. However, in porcine studies, there were no sig-
nificant differences in creatinine clearance between kidneys perfused with NMP with MTF
and those without the drug. Nonetheless, there was a trend towards lower creatinine levels
in the metformin-treated group. While this study was well designed, several limitations
should be mentioned and have been acknowledged by the authors. One limitation that
hinders its clinical translational aspect is the fact that the kidneys were not transplanted.
This highlights the need for future translational research, positioning the current study
as an initial step towards conducting transplantation experiments. Another limitation of
this particular study was the omission of measuring urinary markers of acute injury, such
as kidney injury molecule 1 (KIM-1). However, the study did assess indicators of renal
injury, such as lactate dehydrogenase (LDH) and aspartate aminotransferase (ASAT), which
revealed modest beneficial effects from MTF treatment. Subsequent research endeavors
should encompass these markers when investigating the effects of metformin IRIs.

Yu, H. et al. developed a model with male Lewis rats in which they examined the
effects of MTF on lung tissue apoptosis after lung transplantation. Their results showed an
attenuation in apoptosis in the metformin-treated group vs. the non-treated lung ischemia-
reperfusion injury group, along with a reduction in local and systemic inflammation [96].
Ming et al.’s work further supports the protective effects of metformin on acute lung
injuries in the setting of transplantation. Their work showed that metformin has the
potential to yield microvascular repair via the stimulation of AMPK-α1 which alleviates
pulmonary edema, decreases damage to the lung, and increases the PaO2/FiO2 ratio [97].
Several limitations in this study should be mentioned. First, brain death induction was not
performed in the donor animals, thus precluding an exact replication of clinical pulmonary
transplantation conditions. Secondly, technical constraints prevented the investigation of
respiratory mechanics and related data. Thirdly, the study primarily remained descriptive,
lacking in-depth in vitro experimental validation and molecular mechanism exploration.
Despite these limitations, the findings presented in this body of work served as an important
foundation for future experimental studies.

Westerkamp et al.’s work investigated the effects of MTF preconditioning on the inci-
dence of hepatobiliary injury and hepatobiliary function in rat liver transplantation models.
Their work showed that preconditioning with MTF lowers this incidence and improves
hepatobiliary function post-transplantation [98]. While their findings are promising, the
authors acknowledge that the experimental design needs further testing in animal models
with more severe hepatobiliary injuries to further evaluate the effectiveness of MTF in these
specific situations. Again, this study is a great foundation for further research investigating
the role of MTF in the setting of IRIs and organ transplantation.
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6. Conclusions

Overall, there is a growing body of evidence supporting the possibility of using MTF
in the transplantation setting, due to its potential to recondition and protect against IRI,
by attenuating free radical damage, activating AMP-activated protein kinase to preserve
cellular energy and promote repair, as well as directly reducing inflammation and enhanc-
ing microcirculation. Its role in the activation of the RISK pathways seems to be the most
notorious feature of all and one which merits further exploration. However, its actual
future impact on organ quality and viability still remains unclear and is difficult to predict.
The literature is still lacking and while strong foundational experimental studies have
been attempted, these have not been without limitations. Further studies are necessary to
better elucidate the effects of this pleiotropic drug, as well as studies to further translate
current findings.

MTF remains a mainstay of diabetes management. It is a cost-effective, accessible, and
overall well-tolerated drug. Should additional evidence emerge to endorse its utilization in
transplantation, whether as a constituent of a perfusate or as part of preoperative protocols
preceding the organ implant, the ramifications could be immense, yielding a decrease in
organ transplantation failures, decreasing morbidity and mortality and improving patient
outcomes globally with the implementation of a low-cost and already widely used drug.

With an increasing trend in the number of transplants being performed worldwide,
demonstrated by the 46,632 organ transplants performed solely in the US in 2023 and the
current high rates of IRI in transplantation, we must continue to explore methods to prevent
organ graft failure and enhance the success rate of organ transplantation and the mitigation
of IRIs.

Future directions related to MTF in organ transplantation should include additional
studies evaluating MTF preconditioning in animal models that can be replicated, evaluate
more severe forms of ischemia/pathology, and take into account additional markers of
injury for a more comprehensive understanding of the role of MTF in the mitigation of
IRI. Translational studies must also be conducted, followed by the evaluation of various
possible perfusates incorporating MTF as a main component to further design protocols
with specific dosing strategies and guidelines for implementation in the clinical setting.
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Abbreviations

ACC acetyl-CoA carboxylase
AMP adenosine monophosphate
AMPK adenosine monophosphate-activated protein kinase
ASBT sodium-dependent bile acid transporter
ATP adenosine triphosphate
CPT carnitine palmitoyl transferase
ECD extended criteria donor
FDA Food and Drug Administration
GI gastrointestinal
GLP glucagon-like peptide
HbA1c glycated hemoglobin
HMP hypothermic machine perfusion
IRI ischemia-reperfusion injury
LKB1 liver kinase B1
KDPI Kidney Donor Profile Index
mGPD glycerol phosphate dehydrogenase
MATE multidrug and toxin extrusion
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MPT mitochondrial permeability transition pore
MTF metformin
NADH nicotinamide adenine dinucleotide + hydrogen
NMP normothermic machine perfusion
mTORC1 mechanistic target of rapamycin complex 1
OCT organic cation transporter
PMAT plasma membrane monoamine transporter
RISK Reperfusion injury salvage kinase
ROS reactive oxygen species
SCD Standard Criteria Donor
T2DM type 2 diabetes mellitus
WHO World Health Organization
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