Spasmolytic Activity of 1,3-Disubstituted 3,4-Dihydroisoquinolines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocols and Spectral Data
2.2. In Silico Pharmacokinetic Profiling and Toxicity Analysis
2.2.1. Theoretical Prediction of Pharmacokinetic Parameters—Absorption, Distribution, Metabolism, and Excretion (ADME) Properties
2.2.2. Theoretical Prediction of Toxicity
2.2.3. PASS Online Predictions
2.3. Smooth Muscle Activity
2.3.1. Ex Vivo Experiments on Gastric Smooth Muscle Preparations (SMPs) from Wistar Rats
2.3.2. Method for Studying the Mechanical Activity of Isolated SMPs
2.4. Ethics Statement
2.5. DPPH Free Radical Scavenging Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Synthetic Method
3.2. In Silico Predictions
3.3. Spasmolytic Activity
3.4. DPPH Radical Scavenging Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, X.; Yang, C.; Morris-Natschke, S.L.; Li, J.; Yin, X.; Liu, Y.; Guo, X.; Peng, J.; Goto, M.; Zhang, J.; et al. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev. 2020, 40, 2212–2289. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-T.; Qin, L.-L.; Jing, C.-X.; Wang, G.-H.; Zhou, H.; Deng, P.; Zhang, S.-Y.; Wang, Y.-R.; Ding, Y.-Y.; Zhang, Z.-J.; et al. Biologically active isoquinoline alkaloids covering 2019–2022. Bioorganic Chem. 2024, 145, 107252. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–567. [Google Scholar]
- Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.A.; Joubert, A.M.; Visagie, M.H. The Biological Relevance of Papaverine in Cancer Cells. Cells 2022, 11, 3385. [Google Scholar] [CrossRef] [PubMed]
- Plazas, E.; Muñoz, D.R. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol. Res. 2022, 177, 106126. [Google Scholar] [CrossRef] [PubMed]
- Chulia, S.; Ivorra, M.D.; Martinez, S.; Elorriaga, M.; Valiente, M.; Noguera, M.A.; Lugnier, C.; Advenier, C.; D’Ocon, P. Relationships between structure and vascular activity in a series of benzylisoquinolines. Br. J. Pharmacol. 1997, 122, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, S.; Alam, S.; Sultana, A.; Raj, A.; Emon, N.U.; Richi, F.T.; Sharmin, T.; Moon, M.; Park, M.N.; Kim, B. Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application. Molecules 2023, 28, 3149. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med. 2020, 14, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; et al. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules 2021, 26, 7368. [Google Scholar] [CrossRef]
- Habtemariam, S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol. Res. 2020, 155, 104722. [Google Scholar] [CrossRef]
- Itoh, K.; Ishima, T.; Kehler, J.; Hashimoto, K. Potentiation of NGF-induced neurite outgrowth in PC12 cells by papaverine: Role played by PLC-γ, IP3 receptors. Brain Res. 2011, 1377, 32–40. [Google Scholar] [CrossRef]
- Guan, S.; Liu, Q.; Gu, H.; Zhang, Y.Y.; Wei, P.L.; Qi, Y.F.; Liu, J.; Wang, Z. Pluripotent anti-inflammatory immunomodulatory effects of papaverine against cerebral ischemic-reperfusion injury. J. Pharmacol. Sci. 2020, 144, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Benej, M.; Hong, X.; Vibhute, S.; Scott, S.; Wu, J.; Graves, E.; Le, Q.T.; Koong, A.C.; Giaccia, A.J.; Yu, B.; et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 10756–10761. [Google Scholar] [CrossRef]
- Gao, X.; Yang, Y.; Wang, J.; Zhang, L.; Sun, C.; Wang, Y.; Zhang, J.; Dong, H.; Zhang, H.; Gao, C.; et al. Inhibition of mitochondria NADH-Ubiquinone oxidoreductase (complex I) sensitizes the radioresistant glioma U87MG cells to radiation. Biomed. Pharmacother. 2020, 129, 110460. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, S.A.M.; Yosri, N.; El-Mallah, M.F.; Ghonaim, R.; Guo, Z.; Musharraf, S.G.; Du, M.; Khatib, A.; Xiao, J.; Saeed, A.; et al. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 2021, 85, 153311. [Google Scholar] [CrossRef]
- Milusheva, M.; Gledacheva, V.; Stefanova, I.; Pencheva, M.; Mihaylova, R.; Tumbarski, Y.; Nedialkov, P.; Cherneva, E.; Todorova, M.; Nikolova, S. In Silico, In Vitro, and Ex Vivo Biological Activity of Some Novel Mebeverine Precursors. Biomedicines 2023, 11, 605. [Google Scholar] [CrossRef]
- Heghes, S.C.; Vostinaru, S.C.; Rus, O.; Mogosan, L.M.; Iuga, C. Antispasmodic effect of essential oils and their constituents: A review. Molecules 2019, 24, 1675. [Google Scholar] [CrossRef]
- Isyaku, Y.; Uzairu, A.; Uba, S. Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon 2020, 6, e03724. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Mazumder, K.; Hossain, E.; Aktar, A.; Mohiuddin, M.; Sarkar, K.K.; Biswas, B.; Aziz, A.; Abid, A.; Fukase, K. In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity. Processes 2021, 9, 2221. [Google Scholar] [CrossRef]
- Anzali, S.; Barnickel, G.; Cezanne, B.; Krug, M.; Filimonov, D.; Poroikov, V. Discriminating between Drugs and Nondrugs by Prediction of Activity Spectra for Substances (PASS). J. Med. Chem. 2001, 44, 2432–2437. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Suresh, J.; Anbazhagan, S. Synthesis and PASS-assisted in silico approach of some novel 2-substituted benzimidazole bearing a pyrimidine-2,4,6(trione) system as mucomembranous protector. J. Pharm. Bioallied Sci. 2013, 5, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Olechno, J.; Williams, A.J. Dispensing Processes Impact Apparent Biological Activity as Determined by Computational and Statistical Analyses. PLoS ONE 2013, 8, e62325. [Google Scholar] [CrossRef] [PubMed]
- Milusheva, M.; Gledacheva, V.; Stefanova, I.; Feizi-Dehnayebi, M.; Mihaylova, R.; Nedialkov, P.; Cherneva, E.; Tumbarski, Y.; Tsoneva, S.; Todorova, M.; et al. Synthesis, Molecular Docking, and Biological Evaluation of Novel Anthranilic Acid Hybrid and Its Diamides as Antispasmodics. Int. J. Mol. Sci. 2023, 24, 13855. [Google Scholar] [CrossRef] [PubMed]
- Docheva, M.; Dagnon, S.; Statkova-Abeghe, S. Flavonoid content and radical scavenging potential of extracts prepared from tobacco cultivars and waste. Nat. Prod. Res. 2014, 28, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J. Drug therapy options for patients with irritable bowel syndrome. Am. J. Manag. Care 2001, 7, S261–S267. [Google Scholar] [PubMed]
- Milusheva, M.; Gledacheva, V.; Batmazyan, M.; Nikolova, S.; Stefanova, I.; Dimitrova, D.; Saracheva, K.; Tomov, D.; Chaova-Gizdakova, V. Ex Vivo and In Vivo Study of Some Isoquinoline Precursors. Sci. Pharm. 2022, 90, 37. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]
- Kevin, B.; Robert, W.; Iain, G.; Kevin, D. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist. Curr. Drug Metab. 2003, 4, 461–485. [Google Scholar] [CrossRef]
- Mishra, S.; Dahima, R. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using Swiss ADME predictor. J. Drug Deliv. Ther. 2019, 9, 366–369. [Google Scholar] [CrossRef]
- Itoh, T. Pharmacomechanical Coupling in Vascular Smooth Muscle Cells—An Overview. Jpn. J. Pharmacol. 1991, 55, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Somlyo, A.V.; Somlyo, A.P. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J. Pharmacol. Exp. Ther. 1968, 159, 129–145. [Google Scholar] [PubMed]
- Ito, M.; Nakano, T.; Erdodi, F.; Hartshorne, D.J. Myosin phosphatase: Structure, regulation and function. Mol. Cell. Biochem. 2004, 259, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Droogmans, G.; Casteels, R. Electromechanical and Pharmacomechanical Coupling in Vascular Smooth Muscle. In Physiology and Pathophysiology of the Heart Developments in Cardiovascular Medicine; Sperelakis, N., Ed.; Springer: Boston, MA, USA, 1989; Volume 90. [Google Scholar] [CrossRef]
- Daniluk, J.; Malecka-Wojciesko, E.; Skrzydlo-Radomanska, B.; Rydzewska, G. The Efficacy of Mebeverine in the Treatment of Irritable Bowel Syndrome—A Systematic Review. J. Clin. Med. 2022, 11, 1044. [Google Scholar] [CrossRef] [PubMed]
- Szymaszkiewicz, A.; Zieli’nska, M. Irritable bowel syndrome: Current therapies and future perspectives. In A ComprehensiveOverview of Irritable Bowel Syndrome; Fichna, J., Ed.; Elsevier: London, UK, 2020; pp. 129–144. ISBN 978-0-12-821324-7. [Google Scholar] [CrossRef]
- Mustafa, S.M.; Thulesius, O. Cooling-induced gastrointestinal smooth muscle contractions in the rat. Fundam. Clin. Pharmacol. 2001, 15, 349–354. [Google Scholar] [CrossRef]
- Bitar, K.N. Function of gastrointestinal smooth muscle: From signaling to contractile proteins. Am. J. Med. 2003, 115 (Suppl. 3A), 15–23. [Google Scholar] [CrossRef]
Compound | MW, g/mol | XLOGP3 | ESOL logS | Fraction Csp3 | RB | BA Score | SA Score | LD50, mg/kg |
---|---|---|---|---|---|---|---|---|
5a | 187.28 | 3.01 | −3.15 | 0.46 | 1 | 0.55 | 3.12 | 240 |
5b | 249.35 | 4.66 | −4.66 | 0.28 | 2 | 0.55 | 3.49 | 240 |
5c | 283.8 | 5.29 | −5.24 | 0.28 | 2 | 0.55 | 3.53 | 240 |
5d | 263.38 | 4.60 | −4.62 | 0.32 | 3 | 0.55 | 3.63 | 240 |
SCA Parameters | Control | 5a | 4a | 5b | 4b | 5c | 4c | 5d | 4d |
---|---|---|---|---|---|---|---|---|---|
tonus, mN | 0.91 ± 0.16 | −0.96 ± 0.11 | −0.50 ± 0.06 | −1.04 ± 0.19 | 0 | −0.91 ± 0.04 | 0.88 ± 0.08 | 3.53 ± 0.11 | −2.03 ± 0.13 |
frequency, min−1 | 5.07 ± 0.09 | 7.12 ± 0.05 | 4.98 ± 0.05 | 7.33 ± 0.03 | 0 | 6.88 ± 0.13 | 5.01 ± 0.24 | 5.78 ± 0.07 | 4.79 ± 0.08 |
amplitude, mN | 2.85 ± 0.22 | 2.77 ± 0.17 | 2.68 ± 0.18 | 4.18 ± 0.08 | 0 | 2.55 ± 0.16 | 2.50 ± 0.09 | 6.66 ± 0.04 | 1.45 ± 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milusheva, M.; Stoyanova, M.; Gledacheva, V.; Stefanova, I.; Todorova, M.; Nikolova, S. Spasmolytic Activity of 1,3-Disubstituted 3,4-Dihydroisoquinolines. Biomedicines 2024, 12, 1556. https://doi.org/10.3390/biomedicines12071556
Milusheva M, Stoyanova M, Gledacheva V, Stefanova I, Todorova M, Nikolova S. Spasmolytic Activity of 1,3-Disubstituted 3,4-Dihydroisoquinolines. Biomedicines. 2024; 12(7):1556. https://doi.org/10.3390/biomedicines12071556
Chicago/Turabian StyleMilusheva, Miglena, Mihaela Stoyanova, Vera Gledacheva, Iliyana Stefanova, Mina Todorova, and Stoyanka Nikolova. 2024. "Spasmolytic Activity of 1,3-Disubstituted 3,4-Dihydroisoquinolines" Biomedicines 12, no. 7: 1556. https://doi.org/10.3390/biomedicines12071556
APA StyleMilusheva, M., Stoyanova, M., Gledacheva, V., Stefanova, I., Todorova, M., & Nikolova, S. (2024). Spasmolytic Activity of 1,3-Disubstituted 3,4-Dihydroisoquinolines. Biomedicines, 12(7), 1556. https://doi.org/10.3390/biomedicines12071556