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Abstract: This review article delves into the intricate roles of reactive oxygen species (ROS) in the
pathogenesis of age-related macular degeneration (AMD). It presents a detailed analysis of the oxida-
tive stress mechanisms that contribute to the development and progression of these diseases. The
review systematically explores the dual nature of ROS in ocular physiology and pathology, under-
scoring their essential roles in cellular signaling and detrimental effects when in excess. In the context
of AMD, the focus is on the oxidative impairment in the retinal pigment epithelium and Bruch’s
membrane, culminating in the deterioration of macular health. Central to this review is the evaluation
of various antioxidant strategies in the prevention and management of AMD. It encompasses a wide
spectrum of antioxidants, ranging from dietary nutrients like vitamins C and E, lutein, and zeaxanthin
to pharmacological agents with antioxidative properties. The review also addresses novel therapeutic
approaches, including gene therapy and nanotechnology-based delivery systems, aiming to enhance
antioxidant defense mechanisms in ocular tissues. The article concludes by synthesizing current
research findings, clinical trial data, and meta-analyses to provide evidence-based recommendations.
It underscores the need for further research to optimize antioxidant therapies, considering individual
patient factors and disease stages. This comprehensive review thus serves as a valuable resource
for clinicians, researchers, and healthcare professionals in ophthalmology, offering insights into the
potential of antioxidants in mitigating the burden of AMD.
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1. Introduction

The posterior eye segment encompasses various ocular pathologies, with age-related
macular degeneration (AMD) being the most common. AMD is amongst the leading
causes of blindness globally [1]. AMD progression is highly dependent on oxidative stress.
AMD refers to macular degeneration with or without neovascularization. As the disease
progresses, it prevents the passage of light, therefore leading to blindness if left untreated.
The burden associated with this disease cannot go unnoticed; the disability-adjusted
life years (DALY), which represents the sum of the years of life lost due to premature
mortality and the years lived with a disability (World Health Organization), was shown
to have increased for AMD [2]. Although numerous efforts have been deployed in the
past decades to increase AMD treatment efficiency and outcomes, a significant disparity in
AMD therapies exists based on socioeconomic status and racial inequities [3–5].

Multiple risk factors are accountable for the development of AMD, the most well-
established cause being age-related modifications [6]. Other risk factors where an associ-
ation was shown over the years include genetic predispositions [7], dietary intakes (e.g.,
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a high Mediterranean diet decreases the risk of progression of AMD) [8], smoking [9,10],
alcohol [11,12], and the presence of cardiovascular disease [13]. However, the association
between AMD and sunlight exposure [6], the presence of cardiovascular disease [14,15],
alcohol [11,16], or diet [6] remains controversial.

A common landmark to these etiologies is the formation of reactive oxygen species
(ROS). Numerous studies have highlighted the importance and center role of ROS in
AMD [17,18]. Factors disrupting the redox balance, such as the depletion of antioxidants
and subsequent accumulation of ROS, contribute to disease progression (Figure 1). Dis-
ruptions in the cellular signaling pathways involved in cell proliferation and apoptosis,
therefore leading to inflammation, are the contributory factors in the pathogenesis of ocular
diseases. In this comprehensive literature review, we will review the pathogenesis of AMD,
with an emphasis on the crucial role of ROS, discuss the current and novel antioxidant
strategies for the prevention and management of this pathology with evidence-based rec-
ommendations, and finally, discuss the future perspectives of the clinical management
of AMD.
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Figure 1. Schematic illustration of the pivotal role of oxidative stress in age-related macular degen-
eration: from risk factors to disease progression. Numerous risk factors have shown a differential
association with the development or progression of age-related macular degeneration (AMD). Aging
is the most well-defined risk factor of AMD. The association of AMD progression with alcohol,
smoking, diet, and the presence of cardiovascular diseases remains, however, controversial. The
pro-oxidative environment leads to DNA damage, lipid peroxidation, and protein modifications,
which are the mediators of retinal changes (e.g., macular degeneration, retinal pigment epithelium
(RPE) degeneration, photoreceptor degeneration, and neovascularization (represented with the blood
vessels within the eye)). Altogether, these consequences can lead to vision impairment. Image created
with BioRender.com (accessed on 22 June 2024).

2. Physiology of the Retina and Its Redox Regulatory Mechanisms
2.1. Structure and Function of the Retina

The posterior eye segment compromises most of the eye and encompasses the vitreous
humor, the retina, the optic nerve, and the choroid. Vision can be divided into two
categories—peripheral and central vision—which are both mediated in part by the retina.
The retina, with a thickness of approximately 0.5 mm, is composed of 10 distinctive layers

https://www.biorender.com/
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encompassing interconnected neurons by synapses, such as photoreceptors (i.e., cones and
rods), and is the key player in the ability to see (Figure 2).
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Figure 2. Schematic illustration of the retinal structure. The human retina consists of 10 distinctive
layers, each encompassing crucial cells involved in phototransduction. Alterations to the retinal
structure form the backbone of retinal diseases. Reprinted from “Structure of the Retina”, by Bioren-
der.com (2024). Retrieved from https://app.biorender.com/biorender-templates and created from
BioRender.com (accessed on 22 June 2024).

Phototransduction (e.g., conversion of light to a chemical signal) is mediated by cones
and rods [19]. However, differences in light sensitivity in cones and rods exist; cones are
less sensitive to light, therefore producing a milder and less efficient phototransduction
cascade [19]. Structurally, rods and cones are highly similar (Figure 3). They are composed
of a ciliary body, located in the outer nuclear layer (ONL), which contains the cell nu-
cleus, and establish synapses with the bipolar cells in the outer plexiform layer (OPL) [20].
Orchestration of the phototransduction cascade occurs in the outer segment (OS) of pho-
toreceptors [20]. On a histological scale, the OSs of photoreceptors are considered to be a
modified sensory cilium [20]. The OS contains essential proteins and enzymes involved
in the phototransduction cascade, such as opsins, phosphoinositide-3-kinase (PI3K), and
protein kinase B (AKT) signaling components [21]. Nonetheless, the inner segment (IS)
of photoreceptors is crucial, given that it contains the machinery for protein synthesis
(e.g., endoplasmic reticulum, apparatus of golgi, and mitochondria) and is in dynamic
communication with the OS of photoreceptors [20]. The viability and structural function of
photoreceptors are dependent on the retinal pigment epithelium (RPE) layer and underly-
ing vasculature system, the choroid [22]. The transport of oxygen, nutrients, and ions from
the choroid to the photoreceptors is mediated through the RPE. The blood–retina barrier
(BRB) contributes to the robust antioxidative system of the retina by transporting vitamins
(e.g., vitamin E and ascorbate) and antioxidant enzymes (e.g., catalase, glutathione (GSH),
glutathione peroxidase (GPx), and glutathione-transferases) [23].
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Figure 3. Schematic illustration of photoreceptor structure. Human photoreceptors consist of cones
and rods. Their structure can be divided into three distinct compartments: the ciliary body, the inner
segment, and the outer segment. Abbreviation: RPE, retinal pigment epithelium. Image created with
BioRender.com (accessed on 22 June 2024).

As the human eye adapts to night- and day-vision, as well to peripheral and central
visions, the regional distribution of cones and rods varies according to task-specificity [24].
The central part of the retina, also known as the macula, is involved in central vision.
Pathologies disrupting the macular region, such as AMD, lead to central vision loss.

2.2. Metabolic Requirements and Regulation

Retinal metabolism is a highly regulated pathway that involves distinct key players.
The RPE is the backbone of photoreceptor cell viability; glucose transport from the choroid
to the photoreceptors through the BRB was shown to support photoreceptor cell viabil-
ity [25–27]. The transport of glucose molecules across the blood–retina barrier was shown
to be mediated by the glucose transporter 1 (GLUT1) receptor [28]. Glucose metabolism
in the retina occurs through the aerobic glycolysis pathway [29]. Aerobic glycolysis, also
known as the Warburg effect, is promoted in biological systems with a rapid cell turnover,
such as the retina. Longoni et al. have reviewed the importance of glucose metabolism
in retinal cells; photoreceptors require great levels of glucose to produce substrates for
lipid synthesis, given the high activity level in the OSs of cones and rods [30]. Glycoly-
sis end products, in particular lactate and pyruvate, were shown to promote oxidative
stress resistance through the unfolded protein response (UPR) and subsequent activation
of nuclear factor erythroid 2-related factor 2 (NRF2) [31]. Rods play a crucial role in the
regulation metabolic metabolism by secreting modified thioredoxin, which is a rod-derived
cone viability factor [32]. Modified thioredoxin is known to protect from ROS [32].

3. Ocular Damages Induced by Reactive Oxygen Species

The pivotal role of oxidative stress in the pathogenesis of numerous ocular pathologies
has been thoroughly discussed and reviewed [33–35]. A well-known mechanism involved
in AMD pathogenesis is the production of ROS, through oxidative stress-producing risk
factors (i.e., smoking and metabolic syndromes) and the maintenance of a pro-inflammatory
microenvironment within the retina through their positive feedback loop [36]. In this
section, we review the main hallmarks of ROS-mediated AMD pathogenesis, with a focus
on the most recent advances.

3.1. Pathogenesis of Age-Related Macular Degeneration

AMD can be divided into two subtypes: dry and wet AMD, also known as neovascular
AMD (nAMD). The presence of neovascularization in wet AMD is the key differentiating
factor between both subtypes. Additional key features of AMD involve the presence of

https://www.biorender.com/
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retinal deposits, known as drusens, and geographic atrophy sparing or not sparing the
macular region (Figure 4) [37].
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Figure 4. Schematic illustration of age-related macular degeneration pathogenesis. Age-related
macular degeneration (AMD) involves drusen deposits and/or geographic atrophy in its early stages.
As the disease progresses, the geographic atrophy enlarges. Wet AMD, also known as neovascular
AMD (nAMD), is characterized by angiogenesis of retinal blood vessels due to vascular endothelial
growth factor (VEGF) secretion by endothelial cells. The figure was created with BioRender.com
(accessed on 22 June 2024).

The first step in the pathogenesis of AMD involves the deposition of drusen at the level
of the retinal pigmented epithelium (RPE). Drusen consists of extracellular deposits encom-
passing proteins, cholesterol, apolipoproteins, and carbohydrates [38]. It is believed that
drusen result from a disrupted lipid metabolism pathway due to aging and a pro-oxidative
microenvironment. The pro-oxidative microenvironment due to chronic inflammation
has been shown to positively regulate pro-inflammatory factor secretion from endothelial
cells [39]. Retinal human tissue is rich in lipids; lipid composition analysis has shown a
high presence of membrane phospholipids within the human retina, phosphatidylcholine
being the primary form [40,41]. A recent comprehensive literature review from Longoni
et al. thoroughly reviewed the pathways involved in lipid-mediated ROS production [30].

Furthermore, the role of mitochondrial DNA damage by ROS and an impairment
in the autophagy pathway have been previously discussed as an essential element in the
early elements of AMD pathogenesis [42,43]. Using a human in vitro model of AMD, it
was shown that RPE cells underwent apoptosis, partially explained by their inability to
upregulate the expression of SOD1 under oxidative stress [44]. Furthermore, the expression
of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)—a key
regulator of mitochondrial biogenesis—was shown to be downregulated [44]. The second
hallmark of AMD is geographic atrophy of the retina. The role of acute complement cascade
activation in geographic atrophy development has been thoroughly reviewed in the past,
especially the activation of C1q [45,46]. It was shown that subretinal macrophages are
involved in the production of C1q [47]. Using a retinal ischemia/reperfusion (I/R) mice
model, it was shown that retinal I/R upregulated C1q expression, activated microglia,
and lead to retinal layer thinning [48]. Finally, basal linear and basal laminal deposits of
drusen decompensate the RPE–Bruch’s membrane–choroid complex and subsequently
lead to neovascularization [38]. Drusen deposition was shown to lead to hypoxia due to an
impairment in oxygen and glucose transport at the choriocapillaris and subsequent vascular
endothelial growth factor (VEGF) production within the retina [49]. VEGF activates Rac1
and NADPH in human choroidal endothelial cells, which in turn produces ROS [50].
It was recently shown that NADPH oxidases are activated by NOX4-p22phox, which is
under the regulation of the transcription factor PU.1 [51]. These ROS then upregulate
angiogenesis-promoting genes, thus contributing to AMD onset and progression.

https://www.biorender.com/
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3.2. The Role of Neuroinflammation

The abundance of lipids within the retina was shown to significantly contribute to the
pro-oxidative and pro-inflammatory environment due to ROS-mediated lipid peroxidation
processes [52]. Furthermore, a crucial role of oxidative stress in the pathogenesis of retinal
diseases involves alterations within the immune system, which forms the backbone of
neuroinflammation [53].

Dysregulations within the innate immune system are a major factor in AMD pathogen-
esis [54]. Using albino and pigmented mice strains, increasing age was shown to induce the
subretinal accumulation of macrophages [55]. Furthermore, using transgenic mice without
the expression of monocyte chemoattractant protein 1 (MCP-1), a team of researchers
observed greater microglial activation within the subretina, as well as hypertrophy of RPE
cells—a feature indicative of RPE cell death and retinal degeneration [56]. Macrophages
are key mediators of neuroinflammation. The activation of macrophages can lead to the
production of tumor necrosis factor (TNF) and interleukins (IL)-1, -6, -8, and -12 [57]. An
in vitro experiment designed to induce chronic exposure to TNF-α in primary porcine RPE
cells demonstrated the importance of TNF- α in neurodegenerative diseases such as AMD.
Porcine RPE cells exposed to TNF- α exhibited hypertrophy, a decrease in gene expression
involved in phototransduction, with an overall decrease in its immunomodulatory func-
tion [58]. Conversely, patients with geographic atrophy and AMD were shown to exhibit
greater concentration levels of IL-6 and IL-8 [59]. A positive correlation between IL-6
concentration and geographic atrophy size was reported, as well as IL-8 concentration and
neovascular AMD [59]. Furthermore, lL-1α, -1β, -4, -5, -10, -13, and -17 were also shown
to be increased in the peripheral blood of patients with advanced AMD in comparison to
healthy patients [60]. Expressions of these pro-inflammatory cytokines are known to be
under the action of the nuclear factor kB (NFkB) [61] and mitogen-activated protein kinases
(MAPK) [62]. Overall, these findings support the pivotal role of the innate immune system
in neuroinflammation and AMD pathogenesis.

4. Antioxidant Strategies for the Prevention and Management of AMD
4.1. Dietary Nutrients and Supplements
4.1.1. Vitamins C and E

Vitamins C and E are antioxidative vitamins present in the human lens. Vitamin C is a
water-soluble antioxidant that endogenously protects cellular materials against ROS and
free radicals [63]. Regarding dietary intake, it is found in many foods, such as citrus fruits,
potatoes, and tomatoes [64]. Vitamin E is a lipid-soluble antioxidant that inhibits ROS
production during fat oxidation and free radical reaction propagation [65]. It is present in
vegetable oils, nuts, seeds, and green leafy vegetables, among other sources [65].

The preventive role of vitamins C and E, mainly found in AREDS2 supplementation
in the prevention of late AMD progression, is well known [63,66,67]. A recent meta-
analysis, encompassing mostly results from the AREDS study, provided further evidence
that AREDS2—containing vitamins C and E—delays the progression of late AMD, as well
as geographic atrophy [68]. Furthermore, in a case–control study, low vitamin C and E
intake was shown to be associated with nAMD [69]. Outside of late-stage prevention,
it is important to note that studies have indicated that supplementary vitamins C and
E do not yield an appreciable preventative effect for AMD in its early stages, nor in the
prevention of AMD incidence in healthy subjects [70–74]. For example, in a randomized
placebo-controlled clinical trial, Taylor et al. (2002) found that consuming daily vitamin
E supplements did not have a significant effect on the development of early AMD [72].
Overall, these results endorse the use of vitamins C and E in individuals with moderate-to-
severe AMD, with the aim of preventing AMD progression to later stages of disease.

4.1.2. Lutein and Zeaxanthin

Lutein and zeaxanthin are structural isomers which act as potent scavengers of singlet
oxygens and other free radicals in the eye [75]. As such, they are appreciable attenuators of
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oxidative damage. In the context of AMD, it is established that oxidative damage initiated
by UVB penetration into the retina can have a detrimental effect on human retinal pigment
epithelial cells, leading to oxidative stress through the upregulation of ROS and dysregula-
tion of endogenous antioxidants, thus linking UVB to AMD [76,77]. The macula, which
contains the highest pigment concentration, is the area that is most resistant to degeneration.
Lutein and zeaxanthin are the only dietary carotenoids in the macula, and together, their
peak absorption spectra allow them to filter out ultraviolet and blue light, mitigating this
effect of light penetration [78]. They undergo oxidation and transformations to protect the
macula [79], and thus a lack of these carotenoids could worsen AMD progression. Epidemi-
ologically, lower macular pigment concentrations are a known risk factor for AMD, which
is likely credited to the lack of lutein and zeaxanthin [75,80]. In addition, pre-treatment of
ARPE-19 (a human retinal pigment epithelial cell type) cells with lutein or zeaxanthin has
been demonstrated to prompt a significant reduction in UVB-induced damage and cellular
ROS levels [81]. This observational and experimental evidence, in addition to their chemical
and biological properties, suggests a role for lutein and zeaxanthin in AMD prevention.

Dietary sources for lutein include chicken egg yolk, basil, parsley, spinach, and other
leafy green vegetables, as well as leeks, peas, and green peppers [82]. Zeaxanthin can
be found in red pepper, corn tortillas/chips, and chicken egg yolk [82]. Epidemiological
research has shown that the consumption of dietary lutein and zeaxanthin has an inverse
correlation with nAMD [83,84]. Serum carotenoid levels also exhibit a significant negative
association with AMD risk [85].

Clinical evidence points to better visual outcomes arising from lutein and zeaxanthin
consumption. Hammond et al. (2014) conducted a double-blind, placebo-controlled study
on visual outcomes from lutein and zeaxanthin supplementation [86]. They found that
daily supplementation of the two over a year caused significant increases in macular pig-
ment optical density (MPOD) and serum lutein and zeaxanthin levels compared to the
placebo treatment. Chromatic contrast and photo stress recovery also showed significant
improvement. Similarly, Loughman et al. (2021) conducted an 18-month, double-masked,
randomized, placebo-controlled clinical trial testing the effects of lutein, zeaxanthin, and
meso-zeaxanthin supplementation in participants with open-angle glaucoma [87]. They
found that supplementation with these three carotenoids caused significant increases in
MPOD and contrast sensitivity under glare conditions. In secondary analyses of a multi-
center, double-masked clinical trial, AREDS2 researchers found that the daily consumption
of supplements had a significant beneficial effect of lutein and zeaxanthin, in the low-
est intake quintile, in attenuating progression to late AMD when compared to the no
lutein/zeaxanthin group [88]. Other human studies have demonstrated similar effects of
lutein and zeaxanthin supplementation such as promoting significant improvements in
lutein serum concentration and various measures of visual performance [89,90].

However, there have been conflicting reports about the appreciability of lutein and
zeaxanthin consumption on visual and anatomical outcomes. In a randomized parallel
study of postmenopausal women, Olmedilla-Alonso et al. (2018) found that while lutein
and zeaxanthin supplementation significantly increased participants’ serum levels of the
two xanthophylls, there was no significant change in MPOD compared to the placebo [90].
This discrepancy in the significance of the carotenoids’ effect could be due to differences
in formulation and dosing. [90] utilized doses of 6 mg lutein/2 mg zeaxanthin per day.
Contrastingly, ref. [86,87] utilized larger daily doses of 10 mg lutein/2 mg zeaxanthin and
10 mg lutein/2 mg zeaxanthin/10 mg meso-zeaxanthin, respectively. Therefore, the lower
dosage tested by Olmedilla-Alonso et al. could be responsible for the lack of substantial
results. Overall, the current evidence points to a considerable preventative benefit of lutein
and zeaxanthin supplementation for ocular health.

4.1.3. The Age-Related Eye Disease Studies

The age-related eye disease studies (AREDS) 1 and 2 are landmark clinical trials that
were designed to evaluate the impact of formulations with antioxidative properties on
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the clinical progression of AMD and cataracts. Given their prospective, double-blind, and
randomized nature, they are considered to be amongst the most robust clinical trials aimed
to investigate the use of antioxidants on disease progression. Since the early 2000s, multiple
reports have been published.

The AREDS1 study’s first results came to light in the early 2000s [91]. The AREDS
formulation, consisting of vitamin C, vitamin E, beta-carotene, copper, and zinc, was shown
to reduce the risk of AMD progression by 34% over a median of 6.3 years in participants
with a high risk of disease progression (i.e., heavy smokers and ethnicity) [91,92]. They esti-
mated that if all patients with high-risk AMD would adhere to AREDS supplements, over
300,000 people (out of 8 million people) would avoid vision loss due to AMD progression
within 5 years [93]. However, given the association between heavy smokers and the use of
beta carotene on the incidence of lung cancer [94–97], that was also demonstrated in the
AREDS study—2.1% of patients taking the AREDS formulation developed lung cancer,
from which 91% were heavy smokers [88]—beta-carotone was substituted with lutein and
zeaxanthin in AREDS2. Furthermore, the AREDS2 study sought to investigate the impact
of omega-3 fatty acid supplementation (i.e., docosahexaenoic acid and eicosapentaenoic
acid) on AMD progression [98]. The supplementation of omega-3 fatty acids alongside
AREDS2 in individuals with intermediate AMD was shown to not have an impact on AMD
progression. Although primary analysis of AREDS2 did not show a further decrease in
AMD progression when compared to AREDS1 formulation, AREDS2 supplementation
is favored given the risk of lung cancer associated with AREDS1 [99]. Furthermore, the
clinical significance of AREDS was shown to be effective in patients with intermediate
(stage 3) or advanced (stage 4) AMD [100]. The supplementation was shown to have a 25%
risk reduction for disease progression over 5 years, in individuals with stage 3 and stage 4
AMD [91]. Furthermore, AREDS2 was shown to reduce the risk of moderate vision loss
by 19% at 5 years [101]. Therefore, AREDS is beneficial for individuals with stage 3 and 4
AMD but offers no benefit for healthy individuals or those with early-stage (stage 1 or 2)
AMD. Currently, the patent for AREDS2 is under the company Bausch + Lomb.

4.2. Pharmacological Anti-VEGF Treatments for Neovascular AMD

VEGF is an important regulator of ocular angiogenesis. VEGF levels in tears are
elevated in patients experiencing age-related macular degeneration [102]. In clinical stud-
ies, analysis of the effect of VEGF antagonists on neovascularization has demonstrated
their ability to suppress nAMD and improve visual function in nAMD patients [103,104].
Currently, anti-VEGF therapies are considered the gold standard for AMD treatment [105].
Drugs used to treat nAMD specifically include ranibizumab, brolucizumab, bevacizumab,
aflibercept, and pegaptanib sodium (Figure 5).
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4.2.1. Ranibizumab

Ranibizumab is an anti-VEGF immunoglobin antibody fragment that binds all VEGF-
A isoforms. Its recommended clinical dosage regimen is 0.5 mg every 4 weeks [106,107].
Although this is not as effective as maintaining a 4-week gap between treatments, less
frequent injections of once every 3 months after four initial monthly doses can be conducted
in conjunction with regular assessments [107]. Reports of its intraocular half-life vary, with
measurements ranging from 7.19 to 9 days [106].

4.2.2. Brolucizumab

Brolucizumab is a humanized single-chain anti-VEGF antibody fragment that binds all
VEGF-A isoforms. Due to its smaller molecular mass compared to other treatment options,
it has a more extended mode of action, is more soluble, allows for higher molar dosing,
and more effectively penetrates ocular tissue [106,108]. It has a clinical dosing regimen
of three 6 mg monthly intravitreal injections which then changes to one injection every
12 weeks [109]. As such, it is one of the more infrequent treatment options for AMD. Its
intraocular half-life is 4.3 days [110].

4.2.3. Bevacizumab

Bevacizumab is a full-length monoclonal anti-VEGF immunoglobin antibody bind-
ing all VEGF-A isoforms. While it was initially developed and approved for metastatic
colorectal cancer treatment, it also has an off-label use in treating nAMD [106]. Due to
its low cost and high availability, it is an accessible option for most nAMD patients [111].
Estimates of its intraocular half-life vary, ranging from 4.9 to 9.8 days in humans [112–114].
It is delivered via intravitreal injection at a dosage of 1.25 mg every 4 weeks [106].

4.2.4. Faricimab

Faricimab is a bispecific antibody binding VEGF-A as well as angiopoietin-2 (Ang2).
Ang2 enhances angiogenesis occurring through VEGF [115], making it a target for

inhibition in nAMD treatment. It is administered through intravitreal injection and has
been recently approved for nAMD treatment in the USA in January 2022 [116]. It has an
estimated mean apparent systemic half-life of 7.5 days [116]. Its normal dosage is 6 mg
every 4 weeks for the initial four doses, followed by more spaced-out injections. The
frequency of the injections can be extended up to 16 weeks based on visual acuity and
optical coherence tomography evaluations, allowing for a more personalized treatment
regimen [117]. Therefore, it is one of the most infrequent pharmacological injection options
for AMD treatment.

4.2.5. Aflibercept

Aflibercept is a recombinant fusion protein that forms VEGF traps targeting all iso-
forms of VEGF-A, VEGF-B, and placental growth factor, all of which are angiogenic [106].
It is delivered via a 2.0 mg intravitreal injection at an initial frequency of every 4 weeks for
the first three injections, which then changes to every 8 weeks [109]. It has a half-life of
11 days in the eye [118]. In a study comparing the efficacy of 2 mg aflibercept and 0.05 mg
bevacizumab delivered monthly via intravitreal injection for 3 months, aflibercept was
found to exhibit a more prompt and long-lasting effect on AMD symptoms [119].

4.2.6. Conbercept

Conbercept is a recombinant fusion protein composed of VEGF receptor 1 and 2 extra-
cellular domains and the Fc region of human immunoglobin. It binds all VEGF isoforms
and placental growth factor [120]. It has a demonstrated 4.2-day half-life in rabbits [121].
An effective dosing regimen for conbercept is three initial monthly intravitreal injections of
0.5 mg followed by injections every 3 months [122].
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4.2.7. Pegaptanib

Pegaptanib is an aptamer that acts as an inhibitor by binding VEGF165 specifically. It
was the first anti-VEGF treatment approved for nAMD. Its dosing regimen is 0.3 mg every
6 weeks via intravitreal injection, and its intraocular half-life is 4 days [123,124]. Due to its
specificity, it has a slower mechanism of action than other anti-VEGF treatments which are
unselective [123]. It provides superior visual outcomes in patients exhibiting early AMD
lesions [125].

4.3. Nanotechnology-Based Drug Delivery Systems for AMD Prevention and Treatment

Nanotechnology has been developed to enhance the delivery of common drugs used
to treat nAMD and explore other anti-VEGF treatment options. The proceeding section
will highlight some recently developed nanotechnologies formulated to improve AMD
treatment dose and longevity (Table 1).

Table 1. Summary of most recent nanotechnologies formulated to improve treatment outcomes for
age-related macular degeneration.

Drug Nanotechnology Used Outcomes Reference

Bevacizumab Bevacizumab encapsulated with
multivesicular liposomes

Exhibited stronger sustained release than
bevacizumab alone, attenuated the thickness of
laser-induced CNV lesions in rabbits.

[126]

Betamethasone
phosphate, anti-VEGF

Nanofiber hydrogel containing
CaCl2 and anti-VEGF drug
delivered via intravitreal injection

Increased effective treatment time of anti-VEGF
when compared to using anti-VEGF alone. [127]

Anti-VEGF and
anti-Ang2 aptamers RNA nanoparticles

Particles were internalized in retina and retinal
pigment epithelium cells. Particles exhibited
anti-VEGF effects and promising posterior
eye delivery.

[128]

Conbercept
Eye drops formulated as penetratin
hyaluronic acid-liposomes loaded
with conbercept

Allowed for non-invasive penetration of the
ocular barrier and targeting of product to the
retina, caused an 11.5-fold increase in peak
intraocular conbercept concentration compared
to conbercept alone, and matched the effect of
the intravitreal injection of conbercept on the
inhibition of laser-induced CNV.

[129]

2-deoxy-D-glucose RGD peptide-modified liposomes

Inhibited VEGFR-2 signaling, attenuated
laser-induced CNV, and decreased CNV lesion
size in mice. RDG-modified liposomes improved
cellular uptake.

[130]

Platinum nanoparticles Decreased retinal inflammation and enhanced
photoreceptor survival in rats with light damage. [131]

CeO2 Cerawafer Decreased VEGF expression and scavenged
retinal ROS. [132]

Highlighting some of these advancements, Mu et al. (2018) designed bevacizumab-
loaded multivesicular liposomes to improve the intravitreal retention time of the drug.
They found that in rabbit eyes, the bevacizumab-loaded liposomes had a stronger sustained
release effect than bevacizumab alone (over 56 days) and were still able to effectively inhibit
the thickness of laser-induced choroidal neovascularization (CNV) lesions [126].

In a similar vein, Gao et al. (2023) developed an injectable nanofiber hydrogel contain-
ing betamethasone phosphate (anti-inflammatory drug), CaCl2, and an anti-VEGF drug.
Their formulation, delivered via intravitreal injection to mice with laser-induced CNV,
increased the effective treatment time when compared to the anti-VEGF drug alone [127].
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In another study, Zhong et al. (2024) conjugated anti-VEGF and anti-Ang2 aptamers
to RNA nanoparticles, utilizing a mechanism of action similar in principle to that of
faricimab [128]. They found that the subconjunctival injection of the RNA nanoparticles re-
sulted in internalization of the particles by cells in the retina and retinal pigment epithelium.
Among the tested configurations of the particles, many exhibited sizeable antiangiogenic
effects, with the larger RNA square particles (SQR-VEGF-Ang2) exhibiting strong potential
as an effective anti-VEGF treatment suitable for posterior eye delivery.

Alternatively, testing a non-invasive mode of delivery, Sun et al. (2024), engineered
therapeutic protein eyedrops consisting of penetratin hyaluronic acid-liposomes loaded
with conbercept [129]. Penetratin is a cell-penetrating peptide, which was used to enhance
ocular penetration. Hyaluronic acid was used as a retina-targeting ligand. In conjunc-
tion, these two components of the liposome allow for non-invasive AMD therapy, as the
liposomes penetrate the ocular barrier and target conbercept to the retina. They found
that the peak intraocular concentrations of conbercept were 11.5 times higher with the
administration of the liposomes as compared to conbercept alone. Administration of the
liposome treatment had an equivalent effect to intravitreal conbercept injection in inhibiting
CNV formation in mice with laser-induced CNV.

Testing a novel treatment option, Chen et al. (2024) examined a nanomedicine de-
livery system composed of RGD peptide-modified liposomes loaded with 2-deoxy-D-
glucose (2DG) in an effort to target endothelial cell metabolism [130]. 2DG interferes with
N-glycosylation, which was sufficient to inhibit VEGF receptor 2 downstream signaling,
resulting in significant inhibition of laser-induced CNV and decreased CNV lesion size
in mice. In addition, the RGD-modified liposome vehicle was able to improve cellular
uptake in vascular endothelial cells both in vitro and in vivo without impacting the drug
release profile. In conjunction, these results suggest a promising therapeutic role for these
liposomes in the context of nAMD. In particular, there may be a strong benefit of this
treatment for patients who have been unresponsive to current anti-VEGF treatments.

In addition to other nanotechnologies, nanozymes, which are nanoscale-sized par-
ticles exhibiting catalytic activity, have also demonstrated an antioxidative role in AMD
treatment [133]. Cupini et al. (2023) demonstrated that the intravitreal injection of platinum
nanoparticles increased photoreceptor survival and attenuated retinal inflammation in
rats with light damage [131]. Additionally, Shin et al. (2022) developed a noninvasive
cerium oxide (CeO2) delivery wafer, called the Cerawafer, to attenuate oxidative stress
in the retina [132]. CeO2 is known to exhibit catalytic properties in oxidation–reduction
reactions and has been shown in previous studies to reduce neuroglial inflammation and
mitochondrial ROS levels [134]. Specifically, the cerium cycles between Ce3+ and Ce4+

oxidation states, allowing it to catalyze reactions with superoxide and hydrogen peroxide
to effectively eliminate ROS from the cell [135]. Shin et al. found that the nanoparticles de-
livered via Cerawafer downregulated VEGF and scavenged ROS in the retina, underscoring
another possible mode of treatment in patients unresponsive to anti-VEGF drugs [132].

4.4. Gene Therapy for Neovascular Age-Related Macular Degeneration Treatment

Clinical studies have shown that pharmaceutical nAMD treatments in the form of
VEGF antagonists yield strong improvements in visual acuity. However, in reality, clinical
practice shows less substantial results [136–138]. This is because injections in clinical
practice are more infrequent than in controlled clinical studies due to undertreatment
or being less often maintained [136–138]. Nanotechnology-based AMD treatment has
been tested in animal models to improve the longevity of these drugs. However, current
studies on nanotechnology-based AMD treatment, while promising, have been largely
experimental. Clinical trials testing gene silencing treatments targeting VEGF-A with small
interfering RNA have also been conducted but have not progressed past phase 3. This is
due to challenges such as RNA instability, non-specific targeting, limited bioavailability,
and the need for frequent treatment, hindering its successful application [105]. As such,
gene therapy in the form of ocular gene transfer may be a better option for the long-term
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treatment of nAMD, as it requires less frequent treatment and has shown a strong potential
for success in early-phase clinical trials. The proceeding section will provide an overview
of results from current gene therapy treatments in the clinical testing stage for nAMD
treatment (Table 2).

Table 2. Summary of current novel gene therapies for the treatment of neovascular age-related
macular degeneration.

Intervention
and Route Company Transgene

Product Vector Outcomes
Clinical Trial

Phase and
Reference

Ixo-vec,
intravitreal

Adverum
Biotechnologies Aflibercept AAV2

Doses of 2 × 1011 and 6 × 1011 vg/eye
caused 80 and 90% decreases,
respectively, in annualized
supplemental injections of aflibercept.
Intervention was well tolerated at
low doses.

[139]

ABBV-RGX-
314, subretinal

RegenxBio
AbbVie RGX-314 AAV8

Determined that the intervention was
well tolerated at doses of 3.0 × 109 to
1.6 × 1011 genome copies per eye,
with doses above 6 × 1010 genome
copies generating sustained RGX-314
expression for over 2 years
post-injection.

[140]

Retinostat,
subretinal

Oxford
BioMedica plc

Endostatin and
angiostatin EIAV

Intervention was well tolerated at
doses of 2.4 × 104, 2.4 × 105, and
8.0 × 105 transduction units.
Endostatin/angiostatin levels in the
aqueous humor were dose-dependent
and peaked 12–24 weeks
post-injection. Some participants
exhibited long-term sustained
expression of endostatin/angiostatin.

[141]

rAAV.sFLT-1,
subretinal

Adverum
Biotechnologies sFLT-1 AAV2

Intervention dose of 1 × 1011 vg
reduced the median amount of
ranibizumab retreatment following
vitrectomy from 4 to 2. No serious
ocular adverse events
from intervention.

[142]

AAV2-sFLT01,
intravitreous Genzyme sFLT-1 AAV2

Intervention was well tolerated and a
maximum tolerated dose was not
determined as all doses tested were
tolerated. 5/10 participants that
received the highest tested dose of
2 × 1010 vg exhibited sFLT01 protein
concentrations above the limit of
quantification.

[143]

AdPEDF.11,
intravitreous GenVec Pigment-derived

epithelial factor
Adenoviral
vector

Intervention doses of 108 to 109.5

particle units halted increases in
median nAMD lesion area and
mitigated neovascularization after
1 year.

[144]

KH631,
subretinal

Chengdu Origen
Biotechnology
Vanotech

Anti-VEGF
fusion protein AAV8

Intervention delivered at 3 × 108 vg
per eye causes sustained expression
for more than 96 weeks in non-human
primates. Intervention prevents the
progression and formation of grade IV
CNV lesions in non-human primates.

[145]
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4.4.1. Ixoberogene Soroparvovec

Ixoberogene soroparvovec (ixo-vec, also called ADVM-022) is an adeno-associated
virus vector encoding aflibercept, which, as previously discussed, is a widely utilized anti-
VEGF drug for nAMD treatment. In a phase 1, open-label, prospective two-year clinical
study, Khanani et al. (2024) tested the safety and efficacy of ixo-vec [139]. They provided a
single dose of ixo-vec via intravitreal administration in two different doses: 2 × 1011 and
6 × 1011 vector genomes (vg) per eye. They found that vision and central subfield thickness
were stable two years post ixo-vec injection. They also noted 80% and 98% reductions
in the low- and high-dose groups, respectively, in annualized supplemental injections of
aflibercept delivered at the investigators’ discretion (to maintain best corrected visual acuity
and avoid disease progression). In terms of the evaluation of ixo-vec safety, they found no
systemic adverse events in participants. They noted two serious ocular treatment-emergent
adverse effects that were likely related to ixo-vec: asymmetric progression of preexisting dry
AMD and recurrent uveitis, after corticosteroid therapy for inflammation was discontinued.
They also found mild-to-moderate ocular treatment-emergent adverse events that were
dose-dependent, the most common of which was anterior chamber inflammation in 7/15
of the low-dose group and 11/15 of the high-dose group participants and vitreal cell
inflammation in 3/15 of the low-dose group and 8/15 of the high-dose group participants.
However, this intraocular inflammation could be managed by topical corticosteroids, with
no anterior chamber or vitreous inflammation noted in low-dose participants by the end of
the study.

In conjunction, these results indicate the clinical benefit of ixo-vec for nAMD man-
agement, as it is well tolerated at low doses, provides less frequent need for injection,
and is able to maintain vision and improve anatomical outcomes compared to aflibercept
injection alone.

4.4.2. ABBV-RGX-314

ABBV-RGX-314 is an anti-VEGF-A antigen-binding fragment expressed by an adeno-
associated virus serotype 8 vector, that is currently being explored as a treatment for
nAMD. In preclinical studies, it has been shown to suppress nAMD symptoms in mice
in a dose-dependent fashion [146]. Campochiaro et al. (2024) conducted a phase 1/2a
dose-escalation clinical study of ABBV-RGX-314 to assess its safety and tolerability [140].
They found that the dose at which the subretinal injection of the vector was well tolerated
was 3.0 × 109 to 1.6 × 1011 genome copies per eye. Doses of 6 × 1010 genome copies and
higher caused sustained RGX-314 protein levels for at least 2 years in the aqueous humor
and best corrected visual acuity that was consistent with or improved from before treatment.
Of the 42 participants, 13 experienced serious adverse effects over the course of the study,
but only one event was possibly related to RGX-314. It was found in a participant who
was administered a large dose of 2.5 × 1011 genome copies per eye. They did not observe
any clinically recognizable immune responses in participants. In conjunction, these results
render ABBV-RGX-314 a strong candidate for future use in clinical practice. The current
research thus provides a guideline for the safe use of ABBV-RGX-314 in nAMD treatment.
However, it is limited by its novelty, as later phase clinical trials are required to confirm
this treatment’s efficacy and safety long term.

4.4.3. Angiostatin and Endostatin

Angiostatin and endostatin are angiogenesis-inhibiting proteins that counter VEGF
to help terminate neovascularization endogenously [147]. In mouse models, increased
expression of angiostatin and endostatin has caused the suppression of CNV [148,149].
Campochiaro et al. (2017) conducted an open-label, phase 1, dose escalation study of
RetinoStat®, which is an equine infectious anemia virus (EIAV)-based lentiviral vector co-
expressing angiostatin and endostatin [141]. They administered the vector via a subretinal
injection to participants with advanced nAMD in the following doses: 2.4 × 104, 2.4 × 105,
and 8.0 × 105 transduction units. They found that the doses were well tolerated with little
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ocular inflammation and that aqueous humor levels of angiostatin/endostatin increased
in a dose-related manner. Of the 21 participants, 8 exhibited sustained expression of
angiostatin/endostatin for 2.5 years, and 2 exhibited sustained expression for over 4 years.
Mean levels of angiostatin/endostatin peaked 12–24 weeks post-injection. They had one
serious procedure-related adverse effect, where the procedure caused a macular hole in
one participant, which was later resolved.

Overall, angiostatin and endostatin’s role as angiogenesis inhibitors and preclinical
research demonstrate their potential for nAMD treatment. Campochiaro and colleagues
provide a guideline for the safe use of this treatment and present lentiviral vectors as a
safe platform for ocular gene therapy. However, current research is limited by a lack of
advanced clinical studies exploring angiostatin/endostatin and its direct effect on nAMD
treatment and progression, which thus becomes an avenue for future exploration.

4.4.4. FTL-1

FTL-1 is a gene for a receptor that inhibits VEGF-A and prevents angiogenesis. It
has a demonstrated ability to significantly inhibit CNV in primate and rat models [150].
Constable et al. (2016) conducted a phase 2a randomized controlled clinical trial studying
rAAV.sFLT-1, which is a recombinant adeno-associated vector expressing sFLT-1 [142]. This
was following a phase 1 clinical trial where they found that rAAV.sFLT-1 was well tolerated
in patients 50 years and older with nAMD [151]. Participants received subretinal injections
with pars plana vitrectomy in two groups: one group received ranibizumab injections, and
the other received a subretinal injection of rAAV.sFLT-1 at a dose of 1 × 1011 vg (which was
determined in their phase 1 study) and ranibizumab retreatment injections as needed. They
noted no serious ocular adverse events and no systemic adverse events. However, they did
note 51 mild ocular adverse events in the gene therapy group (which had 21 participants),
with 26 of these being attributed to the study procedure. Of these, 2 were likely related
to rAAV.sFLT-1: eye inflammation and anterior chamber inflammation, both of which
were resolved. They found that rAAV.sFLT-1 injection resulted in the median number of
ranibizumab retreatments being reduced to 2.0, as compared to the control group value
of 4.0.

Another clinical study has also been conducted testing sFLT-1 gene transfer as a
treatment for nAMD. Heier et al. (2017) conducted a phase 1, open-label, clinical trial of the
intravitreous injection of AAV2-sFLT01, which is an AAV2 vector expressing sFLT-1 [143].
In terms of the dose-escalation portion of the study, they found no dose-limiting toxic
effects and thus used their highest tested dose, 2 × 1010 vg, as the maximum tolerated dose.
Two out of ten patients in the maximum dose group experienced adverse events: pyrexia
and intraocular inflammation (which was resolved with topical steroid prescription). In
lower-dose cohorts, zero participants exhibited detectable aqueous humor concentrations
of sFLT01 protein 52 weeks post-injection. Of the patients who received the maximum dose,
5 out of 10 had protein concentrations above the limit of quantification (mean 53.2 ng/mL).
Overall, [143] showed promising transgene expression in some patients and demonstrated
their treatment’s safety and tolerability for a range of doses. It would be beneficial for future
studies to explore larger tolerable doses of AAV2-sFLT01 during treatment, to maximize
post-treatment sFLT01 protein levels. Both Heier et al. and Constable et al. provide strong
guidelines for the safe dosage of the studied gene therapy products. However, due to the
early phase of these studies, more research on the efficacy of the treatments against nAMD
can further consolidate the validity of this treatment.

4.4.5. Pigment Epithelium-Derived Factor

Pigment epithelium-derived factor (PEDF), which is an endogenous anti-angiogenesis
factor, was tested in the first clinical trial for gene therapy of nAMD [144,152]. In a ran-
domized, phase 1 clinical trial, Campochiaro et al. (2006) gave 28 patients an intravitreous
injection of AdPEDF.11, which is a viral vector encoding human PEDF [144]. They found
that seven of the participants displayed mild intraocular inflammation and six had in-
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creased intraocular pressure (which was resolved with topical medication). They found
that the results were dose-related, with cohorts receiving the larger, 108 to 109.5 particle
unit dose exhibiting no increases in median nAMD lesion area along with significantly
decreased neovascularization after 12 months. Cohorts with lower doses, on the other hand,
had an increase in median lesion size. This research provides insight into the longevity
of AdPEDF.11 injections and defines a tolerable dose of the treatment that achieves the
attenuation of nAMD symptoms. However, it is limited by its early phase, as further clinical
research has not been conducted to assess its long-term efficacy.

4.4.6. KH631

KH631 encodes a human VEGF receptor fusion protein in a recombinant adeno-
associated virus 8 vector. Ke et al. (2023) developed this product and conducted a preclinical
evaluation of its efficacy in non-human primates [145]. They found that a single dose of
3 × 108 vg per eye delivered via subretinal injection was able to induce sustained transgene
expression in the retina for a duration of over 96 weeks. Additionally, it was able to
attenuate the progression and formation of grade IV CNV lesions. KH631 is currently in
the early stages of phase 1 and 2 clinical testing [153].

5. Challenges and Limitations of Antioxidants and Novel Therapeutic Approaches

While current treatments for AMD are effective and of a high caliber, there do exist
challenges for each mode of treatment. With regard to antioxidant dietary supplements
such as vitamins C and E, their ability to attenuate the late-stage progression of AMD is
well established. However, there is a lack of a consensus reflecting the preventative effects
of vitamins C and E for early AMD in particular [70–74]. In a similar vein, while lutein and
zeaxanthin have an established role in the improvement in visual and anatomical outcomes
in patients with ocular disease, their efficacy as a treatment for AMD is limited by a lack of
clinical research investigating the effect lutein and zeaxanthin alone on AMD pathogenesis.
Overall, there is not enough information to support the use of antioxidants in the prevention
of early-stage AMD, and thus this is an important direction for future research.

As aforementioned, anti-VEGF drugs exhibit strong efficacy and are the current gold
standard for nAMD treatment. However, clinical practice does not demonstrate as strong
of a positive effect on patients with nAMD due to lower adherence to injection schedules
and undertreatment [136–138]. Additionally, intravitreal injection, which is the most
common mode of delivery for anti-VEGF drugs, can result in ocular adverse events such as
increased intraocular pressure, endophthalmitis, and conjunctival hemorrhage [122]. While
nanotechnology-based drug delivery methods do work to improve the delivery of these
drugs, current research is largely preclinical. This lack of clinical research forms a barrier
to the understanding of the safety and toxicity of these nanotechnology-based treatments
when translating these advancements into clinical applications.

Gene therapy also helps to improve the longevity and dosage of AMD treatments
and is largely focused on anti-VEGF treatments specifically. However, it is important to
consider the implications of VEGF inhibition in the eye. For example, reports that the
continuous dosing of anti-VEGF drugs results in a higher incidence of macular atrophy
raises concern and exemplifies the importance of the critical assessment of current standards
of treatment [154,155]. In addition, treatment with anti-VEGF drugs has been demonstrated
to induce epithelial-mesenchymal transition in retinal pigment epithelium [156]. This can
be counteracted with an anti-fibrotic protein (CCN5), which may be considered in the
implementation of anti-VEGF treatments [156].

6. Recommendations and Future Directions

Given the aging population globally, the prevalence and incidence of AMD is facing a
shift in its trend. As studies underlying the role of oxidative stress in ocular pathologies
are growing at a spectacular rate, the possibility to use exogenous antioxidants for the
prevention and treatment of these diseases has gained interest. In the light of our literature
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review, no recommendations can be given for the use of vitamins C and E, lutein, and
zeaxanthin for the prevention of cataracts and AMD as independent agents; the results are
currently conflicting and further studies are necessary. However, the recommendations
suggest the use of AREDS2 for the prevention of AMD stage 3 and 4 progression. There-
fore, the evidence-based suggestions for clinicians are to recommend the use of AREDS2
formulation in patients with AMD to prevent disease progression. Major challenges exist
in the delivery methods of antioxidant agents to the posterior eye segment; the BRB limits
the bioavailability of drugs within the human eye [157]. Leveraging these challenges is the
next step in the management of ocular pathologies. Further studies to optimize antioxidant
delivery to the posterior eye segment are required. Nevertheless, a safe approach to delay
or prevent AMD progression or incidence is to act on risk factors: AMD patients are advised
to stop smoking. However, although the association with the other risk factors and AMD is
controversial, patients should be advised to be cautious with their diet and alcohol usage
as well.

7. Conclusions

The human eye is a complex organ, composed of several structural elements across
the anterior and posterior segments, and it faces daily environmental and endogenous
stress. AMD is amongst the leading causes of vision impairment in the posterior eye
segment. Exogenous and endogenous stressors are known to induce ROS production,
which is the backbone of disease initiation and progression. Numerous studies have
sought to investigate the potential of antioxidant treatments for the management of AMD.
However, given the physical challenges involved in drug delivery to the eye compartments,
further studies are required to establish the efficacity of antioxidants in AMD prevention in
clinical trials.
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