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Abstract: Stiffness and adhesions following rotator cuff tears (RCTs) are common complications that
negatively affect surgical outcomes and impede healing, thereby increasing the risk of morbidity
and failure of surgical interventions. Tissue engineering, particularly through the use of nanofiber
scaffolds, has emerged as a promising regenerative medicine strategy to address these complications.
This review critically assesses the efficacy and limitations of nanofiber-based methods in promoting
rotator cuff (RC) regeneration and managing postrepair stiffness and adhesions. It also discusses the
need for a multidisciplinary approach to advance this field and highlights important considerations
for future clinical trials.
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1. Introduction

Rotator cuff tears (RCTs) are a major cause of shoulder dysfunction and pain, affecting
approximately 21% of individuals. Arthroscopic rotator cuff repair (ARCR), commonly target-
ing the supraspinatus tendon, is a widespread procedure [1–3]. While it yields satisfactory
functional outcomes in about 90% of cases [4,5], complications such as rotator cuff (RC) reces-
sion and postoperative stiffness are notable. The variability in the incidence of RC re-tears
postsurgery, ranging from 20% to 90%, suggests a significant rate of healing failure, which is
often associated with postoperative adhesions and capsular contracture [6,7]. Additionally,
shoulder stiffness is a common issue following ARCR, with incidence rates between 2.3%
and 28.3% [8–10]. Patients experiencing this stiffness face difficulties in pain management
and in regaining shoulder range of motion (ROM). This condition, primarily resulting from
contracture of the shoulder capsule and adhesion formation, is linked to a dysregulated
fibrotic inflammatory response [11–13]. Notably, shoulder stiffness usually develops within
the first three months postsurgery, affecting 11% to 35.4% of patients [9,14]. Despite successful
surgical outcomes, this complication can lead to patient distress and dissatisfaction [15–17].

Shoulder stiffness is also frequently observed following RC surgical repair and notably im-
pairs surgical success and recovery [18]. This complication contributes significantly to morbidity
and can result in the failure of surgical interventions if not addressed. The underlying causes of
postoperative stiffness are complex and multifactorial, including bursal inflammation, muscle
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contracture, and atrophy, alongside pain and weakness from damaged RC tendons, particularly
in cases of adhesive capsulitis [19,20]. In patients with adhesive capsulitis, the likelihood of
developing postoperative stiffness is estimated at 15% [18]. Furthermore, fibrosis and adhesions
in the torn RC exacerbate pain, complicating postoperative rehabilitation and increasing the
risk of persistent stiffness, thereby challenging the success of surgical management [21,22].
Various techniques have been rigorously examined for their effectiveness in repairing torn
RC tendons and addressing the subsequent stiffness and adhesions. These include a range of
suturing methods, surgical interventions [23,24], and tissue transplantation using allografts,
xenografts, and autografts. Additionally, the use of decellularized constructs and tissue regener-
ation strategies has been explored [25,26]. Despite their widespread clinical use, current surgical
approaches such as suturing and tissue grafting show limited efficacy in managing large RCTs
and their associated complications. This limited success highlights the need for regenerative
tissue strategies to improve RC healing. Such approaches involve cell therapy, growth factors,
and biomaterial matrices, used either individually or in combination. Of particular interest
are biomimetic matrices that mimic the mechanical and physiological properties of RC ten-
dons, showing substantial potential in this field [27,28]. A schematic illustration of the normal
structure of the rotator cuff and the areas where problems occur is shown in Figure 1.
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Figure 1. Schematic illustration of the shoulder anatomy highlighting normal structures (left) and regions
affected by rotator cuff problems (right). The normal shoulder includes the supraspinatus tendon (rotator
cuff), supraspinatus muscle, scapula (shoulder blade), long head of the biceps tendon, long head of
the biceps muscle, and shoulder capsule. The problematic shoulder indicates tendon tears and the
inflammatory response commonly associated with rotator cuff injuries. Created with BioRender.com.

The literature review begins with an examination of the current strategies employed to
manage stiffness and adhesions following RCTs. It then details the roles and mechanisms
of nanofibers in modulating cellular responses, controlling inflammatory and fibrotic
reactions, remodeling the extracellular matrix (ECM), and providing physical barriers. The
review also covers design considerations for nanofiber-based methods, drawing on insights
from clinical trials and commercial applications. The primary focus of this discussion
was to evaluate the effectiveness and potential of nanofiber-based structures as matrices
that promote RC healing while effectively managing postrepair stiffness and adhesions.
Moreover, the challenges and considerations associated with clinical trials and regulatory
processes are discussed.

2. Mechanisms and Challenges in Managing Stiffness and Adhesions after Rotator
Cuff Repair
2.1. Mechanism of Stiffness and Adhesion Formation

Throughout the healing process of RCTs, several mechanisms contribute to the devel-
opment of stiffness and adhesions, underscoring the importance of understanding these
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processes to devise effective management strategies. Initially, an inflammatory response
occurs after injury, characterized by the release of cytokines and growth factors that stim-
ulate fibroblast proliferation and collagen deposition. However, prolonged or excessive
inflammation can lead to scar tissue formation and adhesions, thereby exacerbating stiff-
ness. Additionally, fibrosis plays a crucial role in tissue healing, with excessive collagen
deposition impeding the smooth sliding of the tendon within its sheath, thus promoting
ankylosis. Furthermore, tissue remodeling, essential for restoring structural integrity, can
become dysregulated, leading to the formation of scar tissue and adhesions, which further
impede shoulder joint mobility and increase stiffness [29,30]. Notably, adhesions and stiff-
ness reciprocally influence each other’s symptoms; abnormal tissue attachments disrupt
normal tendon glide, worsening stiffness [31]. Adhesions can be classified as congenital or
acquired (postinflammatory or postoperative) depending on their etiology. Postoperative
adhesion formation involves the inhibition of fibrinolysis and ECM decomposition systems,
triggering an inflammatory response associated with the production of cytokines and
transforming growth factor-beta (TGF-β1), and inducing tissue hypoxia through disrupted
blood delivery to fibroblasts, leading to the expression of hypoxia-inducible factor-1α and
vascular endothelial growth factor (VEGF) [32,33]. Understanding these complex and
interconnected mechanisms underlying stiffness and adhesion formation is critical for im-
plementing a comprehensive management approach, which includes surgical interventions,
rehabilitation protocols, and targeted strategies to address inflammation, promote tissue
remodeling, and prevent adhesion formation [34].

2.2. Current Treatment Techniques for Stiffness and Adhesions

Postoperative treatment options following RCTs repair involve a variety of interven-
tions tailored to meet individual patient needs. The primary approach for severe injuries is
surgical intervention, which includes reattaching the torn tendon to the bone, facilitating
tendon healing, and restoring shoulder function using techniques such as arthroscopic
repair or open surgery [34]. Complementary nonsurgical modalities enhance a structured
rehabilitation regimen focused on strengthening and flexibility. This includes the use of
pharmacological agents for pain and inflammation management, such as nonsteroidal
anti-inflammatory drugs (NSAIDs), and adjunctive methods like extracorporeal shock
wave therapy to optimize recovery and prevent re-injury [35,36]. Additional options in-
clude biological regeneration or augmentation strategies that utilize stem cell therapy and
allogeneic or autologous tendon transplantation techniques [37,38].

However, the management of stiffness and adhesions after RCTs faces several notable
limitations within current practices. These methods often do not replicate the natural tendon
healing process and neglect the crucial fusion zone where the four RC tendons converge
at the humeral insertion. Furthermore, they may lack the necessary mechanical strength
or face potential biological rejection postrepair. Current techniques predominantly rely on
sutures and bone anchors to connect tendons and bones. Although frequently addressing
adhesions and ankylosis, these methods can impede successful healing and rehabilitation,
thereby prolonging recovery times, reducing treatment effectiveness, and increasing the risk of
re-injury. Complications may include persistent pain, tendon compromise, and postoperative
dysfunction. Recognizing these challenges, there is growing interest in employing nanofiber-
based strategies to enhance the stiffness and adhesion properties of RC healing. By addressing
these issues, surgeons can improve the healing trajectory, restore shoulder function, and
ultimately enhance patient outcomes after RC reconstruction [39].

3. Characteristics and Mechanisms of Nanofiber-Based Approaches in Tissue Engineering
3.1. Characteristics of Nanofiber Scaffolds

Nanofiber-based approaches play several critical roles in tissue engineering. These
include providing a biomimetic structure for cell attachment [40], facilitating drug and
protein delivery [41], and enhancing the mechanical properties of the scaffolds [42]. Addi-
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tionally, they regulate cellular responses [43], manage inflammation [44], and guide tissue
organization and function during healing processes [45].

3.1.1. Structural and Morphological Properties

Polymeric nanofibers are essential in tissue engineering due to their unique properties.
The term “nanofiber” refers to fibers with diameters between 1 and 1000 nanometers [46].
Their small diameter, similar to that of ECM fibers, makes them excellent biomimetic
scaffolds [47–49]. Additionally, their high surface area-to-volume ratio enhances cell at-
tachment [50] and facilitates drug loading [51]. Notably, nanofibers are critical for cell
adhesion to biomaterial surfaces due to their rapid protein adsorption rates. For instance,
poly(l-lactic acid) (PLLA) surfaces with diameters between 50 and 500 nanometers have
been shown to adsorb proteins four times more effectively than porous PLLA structures [52].
Polymer nanofibers also exhibit distinct mechanical properties. Research has shown that
tensile modulus [53,54], tensile strength [55], and shear modulus [56] increase as the fiber
diameter decreases. This is attributed to enhanced alignment of macromolecular chains
within the fiber as the diameter reduces [57]. Smaller diameter nanofibers display increased
crystallinity, likely due to flow-induced crystallization during the electrospinning process.
These mechanical properties not only influence cell behavior but also provide the necessary
tension and strength to resist cytoskeletal forces [52].

3.1.2. Compositional Properties

The chemical composition of nanofibers is crucial for their suitability in tissue engineer-
ing. Polymers like PLLA, PCL, and collagen are commonly used due to their biodegradabil-
ity and biocompatibility. PLLA degrades into lactic acid, minimizing toxicity [58], while
PCL offers a slower degradation rate, providing prolonged support [59]. Collagen supports
cell adhesion and proliferation [60]. The mechanical properties, such as tensile strength and
elasticity, are influenced by the polymer choice; PLLA offers high tensile strength, PCL pro-
vides flexibility, and collagen mimics the extracellular matrix (ECM). The degradation rate
of nanofibers must match the application requirements to avoid residual inflammation [61].
The polymer’s chemical properties affect scaffold-cell interactions; collagen promotes cell
attachment, while synthetic polymers like PLLA and PCL can be functionalized to enhance
bioactivity. Surface modifications, such as plasma treatment, improve the bioactivity of syn-
thetic nanofibers [62]. Polymer blends and composites, like PLLA-PCL mixtures, balance
strength and flexibility [63], and adding bioactive materials like hydroxyapatite enhances
tissue regeneration [64]. In summary, careful selection and combination of polymers create
tailored nanofiber scaffolds that enhance tissue regeneration, ensure biocompatibility, and
provide mechanical support, broadening regenerative medicine possibilities.

3.1.3. Physico-Chemical Behavior

The physico-chemical behavior of nanofibers, including their hydrophilicity, porosity,
and surface charge, significantly impacts their performance in tissue engineering. Hy-
drophilicity can be tailored to enhance cell attachment and proliferation by modifying the
surface with bioactive molecules or coatings [65]. For example, introducing hydrophilic
groups or applying coatings of proteins like fibronectin and laminin can improve cell
adhesion and growth [66]. The porosity of nanofiber scaffolds influences nutrient diffusion
and waste removal, which are crucial for maintaining cell viability within the scaffold.
High porosity ensures effective mass transport, providing cells with sufficient nutrients
and oxygen while allowing for the removal of metabolic waste [67]. Additionally, the
pore size and distribution within the scaffold play a role in cell infiltration and tissue
integration, with optimal pore sizes varying depending on the specific tissue engineering
application [68]. Surface charge affects protein adsorption and cell behavior, with posi-
tively charged surfaces generally enhancing cell adhesion due to electrostatic interactions
with negatively charged cell membranes [69]. By manipulating these physico-chemical
properties, nanofiber scaffolds can be engineered to create a favorable microenvironment
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for tissue regeneration, promoting cell viability, proliferation, and differentiation. The key
physicochemical parameters for nanofiber scaffolds are shown in Table 1.

Table 1. Key Physicochemical parameters of Nanofiber Scaffolds.

Physicochemical
Parameters Optimal Range Importance

Fiber Diameter 10–500 nm [70] Influences surface area-to-volume ratio, cell
attachment, and mechanical properties.

Porosity 80–90 % [67,68] Affects nutrient diffusion, waste removal,
and cell infiltration.

Pore Size 6–20 µm [68,71] Essential for tissue integration and
cell migration.

Surface Hydrophilicity Water contact angle 35◦–60◦ [65,72,73] Enhances cell attachment and proliferation.

Mechanical Properties
Tensile Strength: 4.4–660 MPa [74,75]

Elastic Modulus: 200–1500 MPa [74–76]
Strain: ~35% [77]

Ensures scaffold integrity and mimics native
tissue mechanics.

Biocompatibility Nontoxic, nonimmunogenic [70] Ensures safe integration with host tissue.

3.1.4. Fabrication Techniques

Various methods for fabricating nanofibers have been explored, including phase sep-
aration, self-assembly, 3D printing, and electrospinning [52]. Electrospinning, in particular,
has gained significant attention for its simplicity, efficiency, and cost-effectiveness [78]. It
has expanded rapidly, benefiting from its ability to handle a wide range of materials such as
ceramics, polymers, and composites [79]. The technology encompasses several techniques
like solution electrospinning and other variants such as emulsification electrospinning, mixed
electrospinning, and coaxial/triaxial electrospinning, depending on the material state and
desired fiber properties [80]. This versatility allows for the integration of inorganic fibers,
bioactive agents, and polymer solutions, enabling the production of core-shell structures or
hollow fibers, or the functionalization of fibers through specific coatings [81,82].

3.2. Mechanism of Nanofiber Scaffolds for Rotator Cuff Healing
3.2.1. Regulation of Cell Response

Nanofibrous scaffolds are integral to regulating responses during RC healing, particu-
larly in directing tissue organization and function. The mechanisms involved are illustrated
in Figure 2. Tendons and ligaments experience unidirectional mechanical loads, leading
to highly anisotropic mechanical properties due to extensive ECM fiber alignment. This
anisotropy, which features tensile properties in the direction of fiber alignment significantly
surpassing those in the perpendicular direction, enhances cell attachment—especially of
mesenchymal stem cells and fibroblasts—and subsequently dictates cell alignment and
behavior. Aligned nanofiber structures have shown promise as scaffolds for tendon regen-
eration, facilitating the spatial organization of cells and ECM deposition, thus supporting
tissue maturation and functionality [52].

3.2.2. Controlled Release of Bioactive Factors and Regulation of Local Inflammatory Response

Additionally, nanofibrous scaffolds are critical in managing inflammatory and fibrotic
responses postRCTs. By enabling the controlled release of bioactive molecules and growth
factors, these scaffolds modulate the local inflammatory environment, fostering an immune
response that supports effective tissue healing. Anti-inflammatory cytokines mitigate exces-
sive inflammation, whereas growth factors such as TGF-β promote fibroblast activation and
collagen synthesis, which are vital for tissue repair. Moreover, nanofibrous scaffolds serve
as reservoirs for the release of therapeutic agents, further influencing the inflammatory and
fibrotic pathways to enhance healing outcomes [83].
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3.2.3. ECM Remodeling

Furthermore, nanofibrous scaffolds support ECM remodeling, which is essential for
restoring tissue mechanics and function following RC healing. Acting as structural tem-
plates for ECM deposition and organization, nanofibers direct collagen fiber alignment,
aiding in tissue maturation and improving biomechanical properties. This dynamic re-
modeling process, marked by the realignment of collagen fibers in response to mechanical
loads, plays a crucial role in reinstating tissue strength, elasticity, and functionality, thus
equipping the healed RC to endure physiological stresses [84,85].

3.2.4. Adhesion and Stiffness Management

Nanofibers present a promising approach to addressing stiffness and adhesion fol-
lowing RCTs, primarily due to their ability to form barriers and perform hemostatically.
By serving as physical barriers, nanofibers effectively prevent the formation of adhesions
during the healing process, critically inhibiting the development of fibrous adhesions
that are often linked with stiffness and restricted mobility postinjury. The engineered
surface properties of these nanofibers enhance their barrier function by promoting cell
repulsion and maintaining low surface energy, which further reduces the likelihood of
tissue adhesion. Additionally, the hemostatic properties of nanofibers play a crucial role
in controlling bleeding from damaged vessels, promoting hemostasis, and preventing
hematoma formation—a known precursor to stiffness and adhesion. Nanofibers also ab-
sorb excess fluid and blood, thereby creating an optimal healing environment that reduces
the accumulation of inflammatory exudates and fibrin, factors known to contribute to
the formation of adhesions. Furthermore, the biocompatibility and biodegradability of
nanofibers ensure their safe integration into the body over time, minimizing the risk of
long-term complications, including stiffness. In summary, nanofibrous scaffolds offer a
multifaceted approach to mitigate adhesions and stiffness after RCTs. They enhance cellular
responses, modulate inflammatory and fibrotic reactions, facilitate ECM remodeling, and
provide both physical barrier and hemostatic functions, establishing their significance in
tissue engineering and regenerative medicine [85,86].

3.3. Improvement of Rotator Cuff Adhesion through Preclinical Cases

Several studies have underscored the therapeutic potential of nanofiber scaffolds
in minimizing adhesions following RCTs. For instance, Romeo et al. [87] demonstrated
Sharpey fiber-like attachment—a marker of improved mechanical and histological quality at
the tendon-bone interface—in a sheep model of acute RCTs using electrospun polyglycolic
acid (PGA) and poly(L-lactide-co-3-caprolactone) (PLCL)-based nonwoven microporous
nanofiber matrices. Similarly, Han et al. [88] explored the impact of topical recombinant
human parathyroid hormone (rhPTH) on tendon-bone healing in a rabbit model, utiliz-
ing electrospun and 3D-printed polycaprolactone (PCL) and hyaluronic acid (HA)-based
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nanofiber sheets. Their findings indicated elevated levels of collagen type I alpha and
enhanced maturity of the tendon-bone junction. Additionally, Chen et al. [89] examined
the preventive capabilities of HA/ibuprofen (IBU) and 1,4-butanediol diglycidyl ether
(BDDE)-based multifunctional nanofibrous membranes on fibroblast adhesion and infiltra-
tion in a rabbit flexor tendon rupture model. These membranes served as effective physical
barriers to fibroblast invasion and showed efficacy in reducing local inflammation and
preventing tendon adhesions. Wei et al. [90] also investigated the hemostatic efficiency of
self-assembled RATEA16 peptide nanofibers in a rabbit bleeding model, attributing the
rapid hemostasis to the nanofiber network structure.

Collectively, these studies highlight the effectiveness of nanofiber-based scaffolds
in enhancing RC healing and reducing adhesion by modulating various cellular and
tissue responses. However, it is important to note that animal models do not completely
mirror the human injury condition. The rat shoulder model is commonly employed
to evaluate the initial safety, mechanisms, and efficacy of biological therapies aimed at
tendon-to-bone repair, while larger animal models are preferred for studying surgical
interventions. Ultimately, assessing the safety and efficacy of mechanical or combined
biological/mechanical strategies in human patients remains a critical step.

4. Nanofiber-Based Strategies for Managing Stiffness and Adhesions in Rotator
Cuff Healing
4.1. Design Considerations for Nanofiber Scaffolds
4.1.1. Overview of Design Considerations

Despite the biomimetic properties and ECM-like structures of electrospun nanofiber
scaffolds, their use in RC recovery and the management of stiffness and adhesions requires
careful consideration. Nanofibers must act as a physical barrier to minimize tendon adhe-
sion to the surrounding sheath, reduce tendon adhesion risk by delivering anti-adhesion
and anti-inflammatory agents locally, and maintain enough strength and adhesion to pro-
vide cohesion during RC recovery and mechanical support akin to that of the native tendon.
These considerations are summarized in Figure 3 [39,91].
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4.1.2. Anti-Adhesion Properties

In managing postoperative tendon adhesions, it is critical that the barrier not only
reduces fibroblast adhesion but also provides a lubricating effect to ensure smooth tendon
glide without hindering ligament cell proliferation. Excessive fibroblast proliferation and
protein synthesis can lead to dense connective tissue formation, which in turn causes
adhesions that restrict joint movement, resulting in tendon slippage and increased pain.
Materials known for their anti-surface adhesion properties, such as PLA, PCL, and HA, are
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beneficial [92,93]. Alternatively, developing a multilayer membrane with enhanced surface
anti-adhesion capabilities could further improve the efficacy of the physical barrier [94,95].

4.1.3. Piezoelectric Materials

Porous electrospun fibrous membranes serve as a versatile platform for the sustained
release of therapeutic agents, including anti-inflammatory and anti-adhesive agents, and
biological factors such as genes and growth factors, into the target tendon. Implementing a
core-shell structure, which segregates the membrane into outer and inner layers, facilitates
biological factor release while acting as a physical barrier against fibroblast invasion [91,96].
Additionally, materials like assembled metal-organic frameworks (MOFs), known for their
large pore volumes, high surface areas, and hydrophilicity, are promising for tendon
regeneration [97]. Piezoelectric materials, such as graphene and Mxene, provide motion-
driven mechanical stimulation [98], and their synergistic integration with materials like
MoS2 can reduce inflammation and adhesion formation and exhibit antibacterial effects by
suppressing reactive oxygen species (ROS) [99,100]. Exploring these material combinations
and integration strategies is essential for enhancing tendon regeneration and reducing
postoperative complications.

4.1.4. Based on Polymer Types

Nanofibers can be engineered to perform specific functions in tendon repair. Some
nanofibers are designed to form a physical barrier that reduces fibroblast adhesion, thereby
preventing the formation of adhesions and scar tissue that can limit tendon mobility [91].
This anti-adhesive property is particularly useful in maintaining the functional integrity
of the tendon during the healing process. On the other hand, natural polymer-based
nanofibers can enhance the adhesion and proliferation of tenocytes and stem cells [101].
These fibers serve as a scaffold that supports cellular activities essential for tissue regenera-
tion, promoting effective tendon repair. By tailoring the surface properties and composition
of nanofibers, it is possible to achieve the desired balance between preventing unwanted
adhesions and facilitating tissue regeneration.

4.1.5. Enhancing Mechanical Properties

Natural polymer-based fibers, which resemble native tendons, enhance cell adhesion,
proliferation, and differentiation. Despite their benefits, these fibers exhibit low mechanical
strength, which can be a significant limitation. To address this issue, mechanically robust
materials such as silk and insoluble collagen are often used either alone or in combination
with synthetic polymers. These enhancements improve both mechanical strength and
tissue regeneration [102–104]. Moreover, to mitigate mechanical weaknesses, integrat-
ing nanofibers with diverse structures—such as fabric or multiscale structures through
nanofiber strands and 3D printing techniques—can emulate natural collagen fibers and
bolster mechanical properties [105–107].

4.1.6. Alternative Fixation Methods

A possible reason for the high failure rate in tendon-bone repair surgeries might be
that the initial repair strength is insufficient to prevent gapping or rupture. Traditional
sutures tend to concentrate shear stresses at a few anchor points, which does not adequately
disperse the load across a broader attachment area. As a promising alternative, adhesive
film-based methods are attracting increased interest [108]. An illustrative example is
the bilayer Janus patch, characterized by anisotropic tissue adhesiveness. This patch
features an inner adhesive layer that serves as a factor delivery platform and an outer layer
that provides mechanical support while preventing the invasion of surrounding cells or
tissues [108,109]. Additionally, enhancing the adhesive interactions of polymers enables
easy application to moist tissues without sacrificing biocompatibility. These polymers can
also be endowed with thermoresponsive and injectable properties, which increase their field
applicability and potential to replace invasive mechanical fixation [110,111]. Ultimately, the
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effective design of nanofibers to prevent adhesions and stiffness following RCTs is crucial
for promoting successful recovery and minimizing postoperative complications.

4.2. Clinical Trials for Rotator Cuff Healing and Adhesion Management

Clinical studies and case series have explored the efficacy of various scaffold materials
in enhancing rotator cuff (RC) healing and managing adhesions postsurgery. A prospective,
multicenter clinical trial by Barbash et al. [112] evaluated the use of BioFiber, a bilayer
absorbable scaffold, in arthroscopic RC repair. The study demonstrated that BioFiber aug-
mentation improved repair integrity and functional outcomes, with a 96% repair success
rate observed via ultrasound at six months postoperation. Another randomized trial by
Ferreira De Barros [113] investigated the use of a bioinductive porcine collagen scaffold,
showing significant improvements in functional scores and a reduced retear rate compared
to standard repairs. Additionally, a study by Beleckas et al. [114] described the Rotium wick,
an FDA-approved interpositional nanofiber scaffold, which enhanced cellular organization
and tendon strength, resulting in a 91% tendon healing rate and notable improvements
in patient outcomes. A case series by Seetharam et al. [115] further supported the efficacy
of the Rotium wick, reporting significant improvements in functional outcomes and a
high rate of tendon healing in patients with small to medium RC tears. Another study
by Beleckas et al. [116] examined short-term radiographic and clinical outcomes of RC
repair augmented with an inter-positional nanofiber scaffold, showing improved outcomes
compared to standard repair methods. Lastly, Cai et al. [117] conducted a randomized
controlled study on the augmentation of arthroscopic RC repair using three-dimensional
biologic collagen for moderate to large tears and demonstrated significant improvement
in functional scores and a reduction in recurrence rate to 13.7%. These studies collectively
indicate that scaffold augmentation can provide mechanical support and biological en-
hancement, contributing to better RC repair outcomes and adhesion management. Figure 4
outlines the flow chart of the literature search process, documenting the identification and
selection of relevant studies. Table 2 shows examples of scaffold materials used in clinical
settings following rotator cuff tears.

Table 2. Clinical cases involving the use of scaffold materials for tendon repair.

Author Study Scaffold Material Study Type Main Findings

Barbash et al. [112]

Clinical Outcomes and
Structural Healing After

Arthroscopic Rotator Cuff
Repair Reinforced With A
Novel Absorbable Biologic

Scaffold

BioFiber, bi-layer
absorbable scaffold

Prospective, multicenter
clinical trial

Improved repair integrity
and functional outcomes,
96% repair success rate at

6 months

Ferreira De Barros [113]

Bioinductive Scaffold
Augmentation in Complete
and Massive Rotator Cuff

Tears

Bioinductive porcine
collagen scaffold Randomized trial

Significant improvements
in functional scores,
reduced retear rate

Beleckas et al. [114]

Rotator Cuff Repair
Augmented With

Interpositional Nanofiber
Scaffold

Rotium wick,
interpositional nanofiber

scaffold
Study with technical note

Enhanced cellular
organization and tendon

strength, 91% tendon
healing rate

Seetharam et al. [115]
Use of a Nanofiber

Resorbable Scaffold During
Rotator Cuff Repair

Rotium wick,
interpositional nanofiber

scaffold
Case series

Significant improvements
in functional outcomes,

high rate of tendon
healing in small to
medium RC tears

Beleckas et al. [116]

Short-Term Radiographic
and Clinical Outcomes of
Arthroscopic Rotator Cuff
Repair with and without
Augmentation with an

Interpositional Nanofiber
Scaffold

Interpositional nanofiber
scaffold Case series Improved radiographic

and clinical outcomes
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Table 2. Cont.

Author Study Scaffold Material Study Type Main Findings

Cai et al. [117]

Arthroscopic Rotator Cuff
Repair With Graft
Augmentation of

Three-Dimensional
Biological Collagen for

Moderate to Large Tears

3D biological collagen Randomized controlled
study

Significant improvements
in functional scores,

reduced retear rate to
13.7%, better tendon-bone

healing
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4.3. Commercialization Cases for Tendon Reconstruction and Adhesion Prevention

Table 3 highlights products that the FDA 510(k) has approved for tendon recon-
struction and adhesion prevention, emphasizing their efficacy in enhancing soft tissue
strength [118]. The scaffolds approved for commercial use primarily consist of type I colla-
gen, HA, and PLA, which offer structures that facilitate cell proliferation and tissue growth
while exhibiting bioactive, anti-adhesion, and bioabsorbable properties. Notable tendon
augmentation scaffolds featured in clinical trials include TAPESTRY® [119], GTR® [120],
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and TenoMedTM® [121]. Additionally, anti-adhesion films like Interceed® [122],
Seprafilm® [123], and DK-film® [124] have also received significant recognition. Scaffolds
produced via electrospinning mimic the ECM, enhancing cell adhesion, tissue regeneration,
and offering structural advantages and biocompatibility essential for tendon repair [124].
For instance, TAPESTRY®, developed by Embody, Inc., consists of collagen type I and
poly (D, L-lactide) (PDLA), promoting ligament tissue regeneration and forming colla-
gen connective tissues upon complete in vivo absorption [125]. Another notable product,
J&J MedTech’s Interceed®, is an absorbable anti-adhesion membrane made from oxidized
regenerated cellulose, noted for its bacteriostatic properties that effectively prevent adhesions by
forming a protective barrier for 5–7 days without causing an inflammatory response [122].

Table 3. Commercially available products for tendon augmentation and adhesion prevention.

Product Company Compositions Applications

TAPESTRY® [119] Embody, Inc. (Norfolk, VA, USA) Collagen and PDLA Tendon and ligament healing

GTR® [120]
GTR BioTech. Co., Ltd.

(Fuzhou, China)
Collagen separated from bovine

tendon tissue. Tendon healing

TenoMed® [121] Exactech, Inc. (Gainesville, FL, USA) Absorbable type I collagen matrix tendon healing and provide a
sliding surface

Interceed® [122]
Johnson & Johnson MedTech Co.

(New Brunswick, NJ, USA) Oxidized regenerated cellulose Tendon and abdominal adhesion
prevention and protective coating

Seprafilm® [123]
Baxter International Inc.

(Deerfield, IL, USA)
HA and carboxymethylcellulose

(CMC) based
Abdominal and pelvic adhesion

prevention

DK-film® [124]
Chengdu Dickon Pharmaceutical Co.

(Chengdu, China) PLA based Tendon and abdominal adhesion
prevention

The introduction of various products, primarily through clinical trials leading to
commercialization, offers promising prospects in tendon repair and adhesion prevention.
Products such as TAPESTRY®, GTR®, and TenoMed® are designed to support cell growth
and tissue regeneration. Complementing these are anti-adhesion films like Interceed®,
Seprafilm®, and DK-film®, which are recognized for their effectiveness in preventing
unwanted tissue adhesions and improving surgical outcomes. However, despite these
advancements, challenges remain. Some commercially available products have been linked
to complications, including inflammatory reactions, adhesion formations, and material
rejections. These issues underscore the ongoing necessity for innovative solutions to
enhance current methods and develop superior products for both tendon reconstruction
and adhesion prevention.

5. Challenges and Future Directions

Tissue engineering strategies that employ nanofiber-based scaffolds show potential
in enhancing tendon healing and reducing stiffness and adhesions following RC repair.
Preclinical studies highlight the ability of nanofibers to mimic native tendon properties
and effectively reduce adhesions, inflammation, and fibrosis, demonstrating the signifi-
cant promise of this technology in managing postoperative complications. Nonetheless,
our review of the current literature indicates an overreliance on simplistic models in the
postoperative management of RCTs. These models often focus on isolated factors and fail
to address the complex interactions involved in inflammatory responses, fibrosis, ECM
remodeling, and tissue hypoxia. Importantly, the multifactorial nature of postoperative
adhesions adds complexity to the development of consistent treatment or prevention strate-
gies [33]. Challenges remain in scaffold design, including ensuring mechanical strength,
managing inflammation and hemorrhage, optimizing tissue interactions, and maintaining
organ function after transplantation. The clinical efficacy and safety of these scaffolds in
humans remain uncertain, necessitating further research.

Efforts to apply nanofiber-based approaches to alleviate stiffness and adhesions in
RCTs face significant regulatory challenges that impede their clinical adoption. The U.S.
Food and Drug Administration (FDA) requires comprehensive preclinical testing, adher-
ence to good manufacturing practice (GMP) standards, and thorough evaluations of safety,
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efficacy, and biocompatibility prior to the approval of clinical trials [126]. Given the broad
range of applications and specific uses of tissue-engineered products, compliance with reg-
ulations is complex and depends on the components and configurations of these products.
Critical to this process are the interactions between cells and scaffolds, which significantly
affect the final product’s properties. It is crucial to understand the mechanisms of adhesion
formation and their varying expression across different anatomical sites [127]. Moreover,
balancing the physiological inflammatory responses within implanted scaffolds, assessing
immune reactions, performing extensive preclinical studies using large animal models,
and conducting detailed long-term in vivo safety evaluations are essential. Additionally,
establishing objective, standardized criteria for evaluating adhesion severity will enable
more meaningful comparisons and integration of research findings [32,33].

One of the key regulatory challenges involves the approval process for new tissue-
engineered products. The FDA requires a multiphase testing protocol, starting with in vitro
studies and progressing through animal models before human clinical trials. Each phase
must demonstrate safety and efficacy, which can be a time-consuming and costly process.
Furthermore, GMP compliance is essential to ensure product consistency and quality, but
it adds another layer of complexity and expense to the development pipeline. There is
also a need for standardization in evaluating the performance of these scaffolds. The
variability in the types of polymers used, fabrication methods, and application techniques
can lead to inconsistent results, making it difficult to draw definitive conclusions about
their effectiveness. Establishing standardized testing protocols and evaluation criteria is
crucial for advancing this field [128]. To successfully translate nanofiber-based strategies
into clinical practice for RC healing, it is essential to address these regulatory hurdles. This
involves not only meeting the stringent requirements set by regulatory bodies but also
advancing our understanding of the underlying biological mechanisms and developing
robust, reproducible methodologies. Collaborative efforts between researchers, clinicians,
and regulatory agencies will be vital in overcoming these challenges and bringing effective
new treatments to patients. Addressing these considerations is vital for the successful
clinical translation of nanofiber-based strategies for RC healing [91].

6. Conclusions

In conclusion, nanofiber-based strategies present a promising method for addressing the
challenges of stiffness and adhesion in RCTs. These strategies enhance therapeutic outcomes
by modulating cellular responses, regulating inflammation and fibrosis, remodeling the ECM,
and providing a physical barrier to achieve hemostasis. However, the complexity of these
applications requires a multidisciplinary approach that integrates basic science, materials
science, and clinical science. Successful scaffold design hinges on the integration of diverse
materials and technologies, with careful consideration of the clinical setting to optimize
tissue interactions and ensure long-term functional outcomes. Therefore, overcoming these
multifaceted challenges, navigating regulatory frameworks, thoroughly reviewing preclinical
results, and addressing in vivo safety concerns are critical steps toward the successful clinical
application of nanofiber-based strategies for healing RCTs.
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