Prognosis Prediction in Head and Neck Squamous Cell Carcinoma by Radiomics and Clinical Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Study Workflow
2.3. Feature Extraction
2.4. Machine Learning
2.5. Probability-Weighted Enhanced Model (PWEM)
2.6. Data Analysis
3. Results
3.1. Patient Demographics
3.2. Predictive Performance of Individual Machine-Learning Algorithm
3.3. Performance Evaluation for VEML Models and PWEM
3.4. Significance for Individual Clinical Factor
4. Discussion
4.1. Performance in Machine-Learning Algorithms
4.2. Importance of PWEM
4.3. Clinical Factors as Important Prognostic Markers
4.4. Future Development of Ensemble Machine Learning in HNSCC
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Fabbrizi, M.R.; Parsons, J.L. Radiotherapy and the cellular DNA damage response: Current and future perspectives on head and neck cancer treatment. Cancer Drug Resist. 2020, 3, 775–790. [Google Scholar] [CrossRef] [PubMed]
- Canning, M.; Guo, G.; Yu, M.; Myint, C.; Groves, M.W.; Byrd, J.K.; Cui, Y. Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front. Cell Dev. Biol. 2019, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Spielvogel, C.P.; Stoiber, S.; Papp, L.; Krajnc, D.; Grahovac, M.; Gurnhofer, E.; Trachtova, K.; Bystry, V.; Leisser, A.; Jank, B.; et al. Radiogenomic markers enable risk stratification and inference of mutational pathway states in head and neck cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 546–558. [Google Scholar] [CrossRef]
- Bruixola, G.; Remacha, E.; Jiménez-Pastor, A.; Dualde, D.; Viala, A.; Montón, J.V.; Ibarrola-Villava, M.; Alberich-Bayarri, Á.; Cervantes, A. Radiomics and radiogenomics in head and neck squamous cell carcinoma: Potential contribution to patient management and challenges. Cancer Treat. Rev. 2021, 99, 102263. [Google Scholar] [CrossRef]
- Machiels, J.P.; René Leemans, C.; Golusinski, W.; Grau, C.; Licitra, L.; Gregoire, V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Iancu, R.I.; Zara, A.D.; Mirestean, C.C.; Iancu, D.P.T. Radiomics in Head and Neck Cancers Radiotherapy. Promises and Challenges. Maedica 2021, 16, 482–488. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Diao, W.; Cheng, Y.; Jia, Z.; Peng, X. Radiomics-based prediction of survival in patients with head and neck squamous cell carcinoma based on pre- and post-treatment (18)F-PET/CT. Aging 2020, 12, 14593–14619. [Google Scholar] [CrossRef]
- Romeo, V.; Cuocolo, R.; Ricciardi, C.; Ugga, L.; Cocozza, S.; Verde, F.; Stanzione, A.; Napolitano, V.; Russo, D.; Improta, G.; et al. Prediction of Tumor Grade and Nodal Status in Oropharyngeal and Oral Cavity Squamous-cell Carcinoma Using a Radiomic Approach. Anticancer. Res. 2020, 40, 271–280. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Y.; Liu, D.; Lv, R.; Huang, Y.; Peng, C.; Jiang, S.; Wang, Y.; He, Y.; Lan, X.; et al. Predicting Progression-Free Survival Using MRI-Based Radiomics for Patients with Nonmetastatic Nasopharyngeal Carcinoma. Front. Oncol. 2020, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Yang, K.; Garneau, J.; Lu, C.; Li, L.; Lee, J.; Stock, S.; Braman, N.M.; Koyuncu, C.F.; Toro, P.; et al. Radiomic Features Associated with HPV Status on Pretreatment Computed Tomography in Oropharyngeal Squamous Cell Carcinoma Inform Clinical Prognosis. Front. Oncol. 2021, 11, 744250. [Google Scholar] [CrossRef]
- Long, Z.; Yi, M.; Qin, Y.; Ye, Q.; Che, X.; Wang, S.; Lei, M. Development and validation of an ensemble machine-learning model for predicting early mortality among patients with bone metastases of hepatocellular carcinoma. Front. Oncol. 2023, 13, 1144039. [Google Scholar] [CrossRef]
- Gangil, T.; Sharan, K.; Rao, B.D.; Palanisamy, K.; Chakrabarti, B.; Kadavigere, R. Utility of adding Radiomics to clinical features in predicting the outcomes of radiotherapy for head and neck cancer using machine learning. PLoS ONE 2022, 17, e0277168. [Google Scholar] [CrossRef]
- Tang, F.H.; Fong, Y.W.; Yung, S.H.; Wong, C.K.; Tu, C.L.; Chan, M.T. Radiomics-Clinical AI Model with Probability Weighted Strategy for Prognosis Prediction in Non-Small Cell Lung Cancer. Biomedicines 2023, 11, 2093. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Zhang, M.; Li, G.; Zhao, N.; Qiao, Q. Combining the radiomics signature and HPV status for the risk stratification of patients with OPC. Oral Dis. 2024, 30, 272–280. [Google Scholar] [CrossRef]
- Ou, D.; Blanchard, P.; Rosellini, S.; Levy, A.; Nguyen, F.; Leijenaar, R.T.H.; Garberis, I.; Gorphe, P.; Bidault, F.; Ferté, C.; et al. Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status. Oral Oncol. 2017, 71, 150–155. [Google Scholar] [CrossRef]
- Grossberg, A.; Elhalawani, H.; Mohamed, A.; Mulder, S.; Williams, B.; White, A.L.; Zafereo, J.; Wong, A.J.; Berends, J.E.; AboHashem, S.; et al. HNSCC Version 4 [Dataset]. The Cancer Imaging Archive. 2020. Available online: https://www.cancerimagingarchive.net/collection/hnscc/ (accessed on 1 June 2024). [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reason. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Amidi, A.; Amidi, S. Machine Learning with R. Available online: https://www.mit.edu/~amidi/teaching/modeling/study-guide/machine-learning-with-r/ (accessed on 21 May 2024).
- Yuan, Y.; Ren, J.; Shi, Y.; Tao, X. MRI-based radiomic signature as predictive marker for patients with head and neck squamous cell carcinoma. Eur. J. Radiol. 2019, 117, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.X.; Yibulayin, F.; Feng, L.; Wang, M.; Lu, M.M.; Luo, Y.; Liu, H.; Yang, Z.C.; Wushou, A. Clinicopathological characteristics, treatment and prognosis of head & neck small cell carcinoma: A SEER population-based study. BMC Cancer 2020, 20, 1208. [Google Scholar] [CrossRef]
- Zou, Z.M.; Chang, D.H.; Liu, H.; Xiao, Y.D. Current updates in machine learning in the prediction of therapeutic outcome of hepatocellular carcinoma: What should we know? Insights Imaging 2021, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Mes, S.W.; van Velden, F.H.P.; Peltenburg, B.; Peeters, C.F.W.; Te Beest, D.E.; van de Wiel, M.A.; Mekke, J.; Mulder, D.C.; Martens, R.M.; Castelijns, J.A.; et al. Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures. Eur. Radiol. 2020, 30, 6311–6321. [Google Scholar] [CrossRef] [PubMed]
- Ger, R.B.; Zhou, S.; Elgohari, B.; Elhalawani, H.; Mackin, D.M.; Meier, J.G.; Nguyen, C.M.; Anderson, B.M.; Gay, C.; Ning, J.; et al. Radiomics features of the primary tumor fail to improve prediction of overall survival in large cohorts of CT- and PET-imaged head and neck cancer patients. PLoS ONE 2019, 14, e0222509. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, S.; Romanò, R.; Bologna, M.; Calareso, G.; Corino, V.; Mirabile, A.; Ferri, A.; Bellanti, L.; Poli, T.; Marcantoni, A.; et al. Prognostic role of pre-treatment magnetic resonance imaging (MRI)-based radiomic analysis in effectively cured head and neck squamous cell carcinoma (HNSCC) patients. Acta Oncol. 2021, 60, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Large, J.; Lines, J.; Bagnall, A. A probabilistic classifier ensemble weighting scheme based on cross-validated accuracy estimates. Data Min. Knowl. Discov. 2019, 33, 1674–1709. [Google Scholar] [CrossRef]
- Howard, F.M.; Kochanny, S.; Koshy, M.; Spiotto, M.; Pearson, A.T. Machine Learning-Guided Adjuvant Treatment of Head and Neck Cancer. JAMA Netw. Open 2020, 3, e2025881. [Google Scholar] [CrossRef]
- Kotevski, D.P.; Smee, R.I.; Vajdic, C.M.; Field, M. Empirical comparison of routinely collected electronic health record data for head and neck cancer-specific survival in machine-learnt prognostic models. Head Neck 2023, 45, 365–379. [Google Scholar] [CrossRef]
- Sabatini, M.E.; Chiocca, S. Human papillomavirus as a driver of head and neck cancers. Br. J. Cancer 2020, 122, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. Sample Size and its Importance in Research. Indian J. Psychol. Med. 2020, 42, 102–103. [Google Scholar] [CrossRef] [PubMed]
Machine Learning Algorithm | Brief Introduction |
---|---|
Decision tree (DT) | A conditional tree algorithm with a recursive partitioning approach for data mining. It does not require normalization and scaling of data but is subject to the weakness of bias and variances. |
Extreme boost (EB) | This has a weight with each observation in the dataset and builds a series of models of decision trees by boosting the weight to the model that incorrectly classified the observation. It can handle complex data with high predictive accuracy. However, it could be easily affected by overfitting. |
Random forest (RF) | A collection of unpruned decision trees with available variable subsets. It is robust to noise, exhibiting less bias and variances than a single decision tree. However, it can suffer from overfitting and may lead to poor generalization on new data. |
Support vector machine (SVM) | Identifies data at the boundaries between classes and identifies the line that separated the classes in prediction. It can handle high-dimensional data but is sensitive to noise and outliers. |
Generalized linear model (GLM) | Fits a statistical model to data for a regression model in prediction. It can handle different target distributions but is sensitive to outliers. |
Category | No. of Subjects (%) | |
---|---|---|
Survival at endpoint | Yes | 238 (80%) |
No | 61 (20%) | |
Gender | Male | 250 (84%) |
Female | 49 (16%) | |
Age | <50 | 47 (16%) |
50–59 | 137 (46%) | |
60–69 | 45 (15%) | |
≥70 | 36 (12%) | |
Smoking status | Non-smoker | 114 (38%) |
Ex-smoker | 112 (37%) | |
Current smoker | 73 (25%) | |
Disease site | Base of tongue | 144 (48%) |
Tonsil | 119 (40%) | |
Glossopharyngeal sulcus | 9 (3%) | |
Soft palate | 4 (1%) | |
Glottis | 3 (1%) | |
Oral cavity | 2 (<1%) | |
Hypopharynx | 1 (<1%) | |
Not otherwise specified | 17 (6%) | |
Overall stage | I | 4 (1%) |
II | 8 (3%) | |
III | 46 (15%) | |
IV | 241 (81%) | |
T stage | Tis | 1 (<1%) |
T1 | 73 (24%) | |
T2 | 115 (38%) | |
T3 | 66 (22%) | |
T4 | 44 (15%) | |
N stage | N0 | 26 (9%) |
N1 | 36 (12%) | |
N2 | 231 (77%) | |
N3 | 6 (2%) | |
HPV status | Positive | 262 (88%) |
Negative | 37 (12%) | |
Use of surgery | Yes | 289 (97%) |
No | 10 (3%) | |
Use of chemotherapy | Yes | 253 (85%) |
No | 46 (15%) |
Machine-Learning Algorithm | Radiomic Model | Clinical Model | ||||||
---|---|---|---|---|---|---|---|---|
AUC | Sensitivity | Specificity | Accuracy | AUC | Sensitivity | Specificity | Accuracy | |
Decision tree (DT) | 0.67 ± 0.08 | 0.68 ± 0.15 | 0.52 ± 0.23 | 0.62 ± 0.02 | 0.63 ± 0.08 | 0.55 ± 0.15 | 0.60 ± 0.14 | 0.56 ± 0.10 |
Extreme boost (EB) | 0.73 ± 0.07 | 0.68 ± 0.08 | 0.74 ± 0.12 | 0.71 ± 0.07 | 0.74 ± 0.06 | 0.60 ± 0.11 | 0.67 ± 0.12 | 0.62 ± 0.02 |
Random forest (RF) | 0.79 ± 0.08 | 0.70 ± 0.14 | 0.76 ± 0.15 | 0.72 ± 0.06 | 0.76 ± 0.05 | 0.61 ± 0.11 | 0.78 ± 0.14 | 0.67 ± 0.04 |
Support vector machine (SVM) | 0.75 ± 0.08 | 0.57 ± 0.14 | 0.84 ± 0.11 | 0.67 ± 0.06 | 0.75 ± 0.06 | 0.54 ± 0.15 | 0.90 ± 0.10 | 0.66 ± 0.09 |
Generalized linear model (GLM) | 0.51 ± 0.06 | 0.51 ± 0.12 | 0.55 ± 0.15 | 0.52 ± 0.06 | 0.71 ± 0.07 | 0.65 ± 0.10 | 0.65 ± 0.10 | 0.64 ± 0.07 |
Predictive Model | AUC | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
VEML radiomic model (VRA) | 0.77 ± 0.11 | 0.69 ± 0.13 | 0.76 ± 0.18 | 0.72 ± 0.06 |
VEML clinical factor model (VCF) | 0.78 ± 0.05 | 0.60 ± 0.11 | 0.73 ± 0.10 | 0.64 ± 0.04 |
PWEM | 0.86 ± 0.07 | 0.73 ± 0.15 | 0.82 ± 0.15 | 0.76 ± 0.08 |
Clinical Factor | MDA | One-Sample Wilcoxon Test (MDA vs. 0) | MDG |
---|---|---|---|
T stage | 7.41 ± 4.09 | 0.043 | 4.16 ± 0.51 |
Age | 3.39 ± 3.98 | 0.14 | 4.34 ± 0.53 |
N stage | 2.16 ± 2.75 | 0.14 | 1.86 ± 0.35 |
Use of surgery | 1.47 ± 3.93 | 0.69 | 0.55 ± 0.25 |
HPV status | 1.37 ± 2.99 | 0.50 | 1.01 ± 0.30 |
Disease site | 0.63 ± 6.42 | 0.89 | 3.30 ± 0.28 |
Overall stage | 0.62 ± 2.65 | 0.89 | 1.21 ± 0.20 |
Use of chemotherapy | −0.32 ± 2.41 | 0.89 | 0.87 ± 0.16 |
Gender | −1.26 ± 2.40 | 0.35 | 0.90 ± 0.23 |
Smoking status | −3.56 ± 2.31 | 0.043 | 2.25 ± 0.11 |
Clinical Factor | Chi-Square Statistics () | p Value |
---|---|---|
T stage | 21.53 | 0.0002 |
Age | 6.93 | 0.14 |
N stage | 3.51 | 0.32 |
Use of surgery | 0.59 | 0.44 |
HPV status | 3.76 | 0.052 |
Disease site | 9.94 | 0.19 |
Overall stage | 3.64 | 0.30 |
Use of chemotherapy | 0.060 | 0.81 |
Gender | 0.15 | 0.70 |
Smoking status | 1.13 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, S.-Y.; Tang, F.-H.; Chan, M.-Y.; Lai, H.-C.; Cheung, S. Prognosis Prediction in Head and Neck Squamous Cell Carcinoma by Radiomics and Clinical Information. Biomedicines 2024, 12, 1646. https://doi.org/10.3390/biomedicines12081646
Tam S-Y, Tang F-H, Chan M-Y, Lai H-C, Cheung S. Prognosis Prediction in Head and Neck Squamous Cell Carcinoma by Radiomics and Clinical Information. Biomedicines. 2024; 12(8):1646. https://doi.org/10.3390/biomedicines12081646
Chicago/Turabian StyleTam, Shing-Yau, Fuk-Hay Tang, Mei-Yu Chan, Hiu-Ching Lai, and Shing Cheung. 2024. "Prognosis Prediction in Head and Neck Squamous Cell Carcinoma by Radiomics and Clinical Information" Biomedicines 12, no. 8: 1646. https://doi.org/10.3390/biomedicines12081646
APA StyleTam, S. -Y., Tang, F. -H., Chan, M. -Y., Lai, H. -C., & Cheung, S. (2024). Prognosis Prediction in Head and Neck Squamous Cell Carcinoma by Radiomics and Clinical Information. Biomedicines, 12(8), 1646. https://doi.org/10.3390/biomedicines12081646