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Abstract: (1) Background: head and neck squamous cell carcinoma (HNSCC) is a common cancer
whose prognosis is affected by its heterogeneous nature. We aim to predict 5-year overall survival
in HNSCC radiotherapy (RT) patients by integrating radiomic and clinical information in machine-
learning models; (2) Methods: HNSCC radiotherapy planning computed tomography (CT) images
with RT structures were obtained from The Cancer Imaging Archive. Radiomic features and clinical
data were independently analyzed by five machine-learning algorithms. The results were enhanced
through a voted ensembled approach. Subsequently, a probability-weighted enhanced model (PWEM)
was generated by incorporating both models; (3) Results: a total of 299 cases were included in the
analysis. By receiver operating characteristic (ROC) curve analysis, PWEM achieved an area under the
curve (AUC) of 0.86, which outperformed both radiomic and clinical factor models. Mean decrease
accuracy, mean decrease Gini, and a chi-square test identified T stage, age, and disease site as the most
important clinical factors in prognosis prediction; (4) Conclusions: our radiomic–clinical combined
model revealed superior performance when compared to radiomic and clinical factor models alone.
Further prospective research with a larger sample size is warranted to implement the model for
clinical use.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the seventh most prevalent
cancer worldwide, with about 890,000 new cases and 450,000 mortalities in 2020 [1]. HN-
SCCs occur in a wide range of primary sites in the head and neck region, ranging from
the oral cavity to the pharynx. Multi-model treatments are used as the first-line treatment
for HNSCC patients, including surgery, radiotherapy, chemotherapy, and immunotherapy,
depending on the particular tumor position and staging [2]. Radiotherapy is the elective
treatment for most HNSCC cases when the cancer is unresectable at a locally advanced
stage [3]. Despite the advancement of multi-modality treatment, the 5-year survival rate in
patients with HNSCC is still less than 50% due to late diagnosis and the high risk of disease
recurrence [4].

One important feature of HNSCCs is their high heterogeneity. This consists of anatomi-
cal, biological, and molecular heterogeneities [5]. This affects the treatment outcome among
patients treated with the same standard therapy [6]. This property undermines the devel-
opment of effective biomarkers and the effectiveness of conventional tumor biopsy [6]. To
date, only programmed death-ligand 1 (PD-L1) and human papillomavirus (HPV) expres-
sions are considered as useful biomarkers in HNSCC [7]. To tackle this situation, radiomics
has been suggested for the further development of personalized treatment of HNSCC [6].

Radiomics consists of extracting quantitative information from medical images, and
associating it with clinical features to construct models for prognosis prediction with
different machine-learning algorithms [8]. Radiomics can potentially identify previously
unknown tumor markers to improve prognosis prediction in large datasets [9]. Due to its
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ability to detect tumor heterogeneity by extracting and analyzing sub-visual features from
various imaging modalities, radiomics has been commonly studied in relation to HNSCC
for outcome prediction with promising results [10–12].

Different machine-learning algorithms have their strengths and limitations. It is
suggested that by combining the predictions from multiple machine-learning algorithms, a
more reliable prediction will be achieved by averaging and mitigating their limitations [13].
Long et al. [14] employed an ensembled machine-learning algorithm to predict survival
in patients with hepatocellular carcinoma (HCC) and bone metastasis. Their ensemble
model demonstrated the best performance as compared to individual machine-learning
algorithms, with an area under curve (AUC) of 0.779. This hints that the ensemble technique
can potentially improve prognosis prediction and facilitate clinical decision-making.

Apart from radiomic data, clinical information including tumor staging and patient
demographics provides valuable information for prognosis prediction. It is suggested that
combining radiomic and clinical features will produce a synergistic effect, which enhances
predictive performance and accuracy. Gangil et al. [15] compared the predictive capabilities
of machine-learning algorithms using clinical, radiomic, and radiomic–clinical datasets in
HNSCC. They revealed that the model that combined radiomic–clinical datasets exhibited
superior predictive power in comparison to the model which relied solely on clinical
features. Meanwhile, the model constructed with radiomic features alone demonstrated
poor performance in predicting clinical outcomes.

The ensemble technique may be combined with radiomic and clinical information
for further enhancing the predictive outcome. Tang et al. [16] integrated radiomic data
obtained from radiotherapy (RT) planning CT with clinical information for prognosis
prediction in patients with non-small cell lung cancer (NSCLC). Radiomic and clinical
features were first studied by five machine-learning algorithms with a voted ensemble
machine-learning (VEML) model. Then, a probability-weighted strategy was used to
incorporate radiomic and clinical features. The results showed that the combined model
had superior performance compared to the radiomic model. This demonstrated that the
combined model possesses the ability to improve prognosis prediction.

Since HPV status has been recognized as an important prognostic biomarker in HN-
SCC with a strong link to oropharyngeal carcinoma (OPC), there are some studies that
combined radiomic and HPV status for a prognosis prediction. Wang et al. [17] combined
radiomic features and HPV status to perform a risk classification in patients with OPC.
Meanwhile, Ou et al. [18] showed that combining HPV p16 status and radiomics could
outperform models using p16 status or radiomics alone in locally advanced HNSCC, with
the majority of cases being OPC (68%). Therefore, the addition of HPV status information
could be important for a prognosis prediction of HNSCC.

Heterogeneity remains a major concern affecting HNSCC prognosis and HPV infor-
mation has been emerging as an important biomarker in HNSCC. Meanwhile, the use of
an ensembled technique with both radiomic and clinical information may offer excellent
predictive capability compared to previous studies. In this study, we aimed to predict 5-
year overall survival in HNSCC radiotherapy patients by integrating radiomic and clinical
information in machine-learning models.

2. Materials and Methods
2.1. Data Acquisition

The datasets consisting of treatment planning CT and radiotherapy (RT) structures
sets were collected from The Cancer Imaging Archive (TCIA). This is an openly accessible
database providing collections of medical images from various imaging modalities and is
regulated by the Frederick National Laboratory for Cancer Research.

With permission granted from TCIA, a total of 627 datasets of HNSCC patients re-
ceiving radiotherapy at MD Anderson Cancer Center were acquired from TCIA’s ‘HNSCC’
collection [19]. The collection comprised head and neck cancer patients receiving radical
radiotherapy from 2003 to 2013, and oropharyngeal cancer patients receiving radiotherapy
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between 2005 and 2012. Pre-treatment planning CT images, along with RT structures and
gross tumor volumes (GTV) contoured by professional clinical oncologists in Digital Imag-
ing and Communications in Medicine (DICOM) format were obtained from the datasets.
Furthermore, patient demographic and pathological information, including gender, age,
smoking status, diagnostic site, tumor stage, HPV status, treatment modality, and 5-year
overall survival status were also collected.

2.2. Study Workflow

Patients who satisfied the following requirements were included in the study: (1) they
underwent treatment planning CT with gross tumor volume (GTV) delineated by clinical
oncologists, (2) they possessed complete pathologic information including HPV status, and
(3) they had a definite tumor staging. Initially, datasets comprising CT images, delineated
RT structures, and clinical information were collected from TCIA. After that, radiomic
feature extraction was conducted, and these features were subsequently inputted into the
predictive models.

In this study, the primary endpoint was defined as 5-year overall survival (OS). To
minimize the potential bias caused by imbalanced data and reduce the risk of overfitting, a
balanced sample consisting of the same number of individuals who were alive and dead
5 years after diagnosis was employed by random selection. Then, the selected sample
datasets were randomized to minimize selection bias and reduce the impact of confounding
variables. Eventually, the data were analyzed using 5 machine-learning algorithms. The
process from sample balancing was repeated 5 times to ensure that all samples were
studied at least once. The outcomes of each iteration were then averaged to obtain more
reliable results.

2.3. Feature Extraction

The extraction of radiomic features from GTV was employed utilizing the PyRadiomics
extension in 3D Slicer software (v. 4.10.2), developed by the Computational Imaging and
Bioinformatics Lab at Harvard Medical School [20,21]. The predictive model was devel-
oped by extracting 107 radiomic features from the planning CT images. These radiomic
features include tumor shape, gray-level co-occurrence matrix, gray-level dependence
matrix, first-order statistics, gray-level size zone matrix, gray-level run length matrix, and
neighboring gray-tone difference matrix features [21]. Subsequently, the extracted features
were analyzed by 5 machine-learning algorithms utilizing R software (v. 4.1.3) to predict
the prognosis of HNSCC.

2.4. Machine Learning

Five common machine-learning algorithms were utilized in this study, including
decision tree (DT), extreme boost (EB), random forest (RF), support vector machine (SVM),
and generalized linear model (GLM) algorithms. The brief introduction of the 5 machine-
learning algorithms is summarized in Table 1. For each algorithm, the targeted population
was randomly divided into three cohorts. 70% of the samples were inputted into a training
cohort to establish patterns, whereas both the validation cohort and the testing cohort
contained 15% of the data. To enhance the accuracy of predictive performance, voted
ensemble machine learning (VEML) was then employed by incorporating the probability
scores generated from 5 algorithms to achieve a more realistic prediction when there were
conflicts occurring between models. VEML was employed in our previous publication [16]
and the feature is summarized in Figure 1.
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Table 1. Brief introduction of the 5 machine-learning algorithms [22].

Machine Learning Algorithm Brief Introduction

Decision tree (DT)
A conditional tree algorithm with a recursive partitioning approach for data

mining. It does not require normalization and scaling of data but is subject to the
weakness of bias and variances.

Extreme boost (EB)

This has a weight with each observation in the dataset and builds a series of
models of decision trees by boosting the weight to the model that incorrectly
classified the observation. It can handle complex data with high predictive

accuracy. However, it could be easily affected by overfitting.

Random forest (RF)
A collection of unpruned decision trees with available variable subsets. It is robust
to noise, exhibiting less bias and variances than a single decision tree. However, it

can suffer from overfitting and may lead to poor generalization on new data.

Support vector machine (SVM)
Identifies data at the boundaries between classes and identifies the line that

separated the classes in prediction. It can handle high-dimensional data but is
sensitive to noise and outliers.

Generalized linear model (GLM) Fits a statistical model to data for a regression model in prediction. It can handle
different target distributions but is sensitive to outliers.
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2.5. Probability-Weighted Enhanced Model (PWEM)

Our previous studies have indicated that integrating radiomic features with clinical
factors could enhance the accuracy of predictive models of NSCLC [16]. Moreover, patient
demographic and pathological information also had a satisfactory performance in prognosis
prediction of HNSCC [18,23,24]. To improve the predictive performance of the VEML
model, we combined the results of VEML of radiomic and clinical factors by a probability-
weighted approach.

The PWEM was illustrated in our previous study [16]. Briefly, the model comprised
both hard voting and soft voting techniques (Figure 2). For hard voting, a VEML model
was utilized to generate a VEML score for the radiomic model and the clinical factor model.
These VEML scores represented the estimation and likelihood of the survival outcome from
solely considering radiomic (VRA) or clinical factors (VCF). For soft voting, a probability-
weighted enhanced approach was employed to assign each model’s weighting based on
their respective ability to predict prognosis in the validation cohort. Predictive weighting
is the factor that reflects the model’s probability of acquiring a correct prediction under a
conflicting situation. The weighting of each model is counted according to the probability of
getting a correct prediction by each model among the conflicted predictions. By multiplying
the VEML score of each model to its respective predictive weighting, the sum of two models
would be used as the final score ranging from 0 to 1. A score lower than 0.5 suggests that
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the patient is likely to survive at the study endpoint. Meanwhile, a weighted score of 0.5 or
higher indicates mortality prediction at the study endpoint.
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The weighted score was determined by using the following equation [16]:

PWEM Score = (VRA Score × Weighting of VRA) + (VCF Score × Weighting of VCF)

2.6. Data Analysis

The descriptive data were presented as mean ± standard deviation. To assess the
predictive performance of the radiomic and clinical factor model using a single machine-
learning algorithm, VEML and PWEM, the receiver operating characteristic (ROC) curve
was utilized to demonstrate the prognostic performance of the models in various metrics,
including area under the curve (AUC), accuracy, sensitivity, and specificity. Moreover, for
the clinical factor model using a random forest algorithm, the mean decrease accuracy and
mean decrease Gini were used to assess the importance of each clinical factor in prognosis
prediction. Additional evaluations by chi-square tests were employed to confirm the
significance of clinical factors in HNSCC survival. A p value of less than 0.05 is considered
as statistically significant for this study.

3. Results
3.1. Patient Demographics

The dataset consists of 627 patients diagnosed with HNSCC. Out of 627 datasets
obtained, 309 cases with missing data in their HPV status were excluded from this study.
Eighteen cases with missing data in radiotherapy structures were also excluded. Addition-
ally, one case was excluded due to unknown smoking status. A total of 299 cases were
eventually included in this study (Table 2). For the included subjects, 238 subjects were
alive at the study endpoint while 61 were dead. Their diseases were staged by the TNM
system of the American Joint Committee on Cancer (AJCC), with a majority of patients
(81%) who were diagnosed with stage IV disease. The database comprises 84% male and
16% female with a median age of 57. The majority of patients (88%) were detected positive
with HPV infection.
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Table 2. Summary of patient demographics and tumor characteristics.

Category No. of Subjects (%)

Survival at endpoint Yes 238 (80%)
No 61 (20%)

Gender
Male 250 (84%)

Female 49 (16%)

Age

<50 47 (16%)
50–59 137 (46%)
60–69 45 (15%)
≥70 36 (12%)

Smoking status
Non-smoker 114 (38%)
Ex-smoker 112 (37%)

Current smoker 73 (25%)

Disease site

Base of tongue 144 (48%)
Tonsil 119 (40%)

Glossopharyngeal sulcus 9 (3%)
Soft palate 4 (1%)

Glottis 3 (1%)
Oral cavity 2 (<1%)

Hypopharynx 1 (<1%)
Not otherwise specified 17 (6%)

Overall stage

I 4 (1%)
II 8 (3%)
III 46 (15%)
IV 241 (81%)

T stage

Tis 1 (<1%)
T1 73 (24%)
T2 115 (38%)
T3 66 (22%)
T4 44 (15%)

N stage

N0 26 (9%)
N1 36 (12%)
N2 231 (77%)
N3 6 (2%)

HPV status
Positive 262 (88%)

Negative 37 (12%)

Use of surgery Yes 289 (97%)
No 10 (3%)

Use of chemotherapy Yes 253 (85%)
No 46 (15%)

3.2. Predictive Performance of Individual Machine-Learning Algorithm

Five machine-learning algorithms were used in this study on radiomic and clinical
information. In terms of the average predictive performance for different machine-learning
algorithms, the RF algorithm demonstrated the best results across various metrics in
radiomic and clinical results (Table 3). Among the five randomized results, the RF model
achieved the highest AUC values in both radiomic and clinical results of 0.79 and 0.76,
respectively. For sensitivity, the RF model performed the best in the radiomic model while
GLM performed the best in the clinical model. The RF model also achieved highest accuracy
while SVM achieved the highest specificity.
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Table 3. Predictive performance of individual machine-learning algorithm.

Machine-Learning
Algorithm Radiomic Model Clinical Model

AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy

Decision tree (DT) 0.67 ± 0.08 0.68 ± 0.15 0.52 ± 0.23 0.62 ± 0.02 0.63 ± 0.08 0.55 ± 0.15 0.60 ± 0.14 0.56 ± 0.10

Extreme boost (EB) 0.73 ± 0.07 0.68 ± 0.08 0.74 ± 0.12 0.71 ± 0.07 0.74 ± 0.06 0.60 ± 0.11 0.67 ± 0.12 0.62 ± 0.02

Random forest (RF) 0.79 ± 0.08 0.70 ± 0.14 0.76 ± 0.15 0.72 ± 0.06 0.76 ± 0.05 0.61 ± 0.11 0.78 ± 0.14 0.67 ± 0.04

Support vector
machine (SVM) 0.75 ± 0.08 0.57 ± 0.14 0.84 ± 0.11 0.67 ± 0.06 0.75 ± 0.06 0.54 ± 0.15 0.90 ± 0.10 0.66 ± 0.09

Generalized linear
model (GLM) 0.51 ± 0.06 0.51 ± 0.12 0.55 ± 0.15 0.52 ± 0.06 0.71 ± 0.07 0.65 ± 0.10 0.65 ± 0.10 0.64 ± 0.07

3.3. Performance Evaluation for VEML Models and PWEM

Regarding the predictive performance for the VEML radiomic (VRA) model, the VEML
clinical factor (VCF) model, and PWEM in patients’ overall survival, they attained AUCs of
0.77, 0.78, and 0.86, respectively (Figure 3). The highest levels of sensitivity, specificity, and
accuracy were achieved by PWEM, with values of 0.73, 0.82 and 0.76, respectively. The VRA
model demonstrated slightly higher sensitivity, specificity, and accuracy compared to the
VCF model (Table 4). For the comparison in accuracy, PWEM was significantly higher than
the VCF model by the Kruskal–Wallis test (p = 0.031). There were no significant differences
in the AUC, sensitivity, and specificity between the three models.
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Table 4. Predictive performance of VEML models and PWEM.

Predictive Model AUC Sensitivity Specificity Accuracy

VEML radiomic model (VRA) 0.77 ± 0.11 0.69 ± 0.13 0.76 ± 0.18 0.72 ± 0.06

VEML clinical factor model (VCF) 0.78 ± 0.05 0.60 ± 0.11 0.73 ± 0.10 0.64 ± 0.04

PWEM 0.86 ± 0.07 0.73 ± 0.15 0.82 ± 0.15 0.76 ± 0.08
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3.4. Significance for Individual Clinical Factor

For the clinical factor model using the RF algorithm, the mean decrease accuracy
(MDA) and mean decrease Gini (MDG) are listed in Table 5. For MDA, only the T stage
has an MDA value of significantly greater than zero from the one-sample Wilcoxon test
results (average MDA: 7.41, p = 0.043). While for MDG, the Kruskal–Wallis test showed
that T stage, age, and disease site were significantly greater than other factors (p < 0.001).
The post-hoc Dunn test showed that the MDA of the T stage is significantly greater than
the use of surgery, the use of chemotherapy, and gender, while age was significantly greater
than the three mentioned factors and HPV status. In addition, disease site was significantly
greater than use of surgery.

Table 5. Mean decrease accuracy (MDA) and mean decrease Gini (MDG) of the clinical factor model
using a random forest algorithm.

Clinical Factor MDA One-Sample Wilcoxon Test
(MDA vs. 0) MDG

T stage 7.41 ± 4.09 0.043 4.16 ± 0.51

Age 3.39 ± 3.98 0.14 4.34 ± 0.53

N stage 2.16 ± 2.75 0.14 1.86 ± 0.35

Use of surgery 1.47 ± 3.93 0.69 0.55 ± 0.25

HPV status 1.37 ± 2.99 0.50 1.01 ± 0.30

Disease site 0.63 ± 6.42 0.89 3.30 ± 0.28

Overall stage 0.62 ± 2.65 0.89 1.21 ± 0.20

Use of chemotherapy −0.32 ± 2.41 0.89 0.87 ± 0.16

Gender −1.26 ± 2.40 0.35 0.90 ± 0.23

Smoking status −3.56 ± 2.31 0.043 2.25 ± 0.11

The chi-square test was employed to determine the presence of statistically significant
associations between clinical factor and survival outcome (Table 6). The only significant
association was found on T stage (x2 = 21.53, p = 0.0002), where T1 and T2 have significantly
more survival cases than T4 in Bonferroni-adjusted pairwise comparisons.

Table 6. Chi-square test for the association between clinical factor and survival outcome.

Clinical Factor Chi-Square Statistics (x2) p Value

T stage 21.53 0.0002

Age 6.93 0.14

N stage 3.51 0.32

Use of surgery 0.59 0.44

HPV status 3.76 0.052

Disease site 9.94 0.19

Overall stage 3.64 0.30

Use of chemotherapy 0.060 0.81

Gender 0.15 0.70

Smoking status 1.13 0.57

4. Discussion
4.1. Performance in Machine-Learning Algorithms

In our study, the data were randomly selected to have the same number of survival
and death cases in each comparison to reduce the risk of overfitting. The selected data
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were further randomized five times before the running of machine-learning algorithms.
The random selections of cases were performed five times, and all the included cases were
selected for study at least once. This approach minimizes selection bias, random fluctuation
during running of the machine-learning algorithm, and ensures good representation of all
the 299 included cases in the study results.

From the results of using a single machine-learning algorithm, the RF algorithm per-
formed generally the best among the five machine-learning algorithms in both radiomic
and clinical factor models. The RF model employs an ensemble technique that incorporates
the results of various decision trees to generate a consolidated outcome. It randomly selects
and observes features from a dataset, creating a collection of decision trees that guide deci-
sion making. This approach allows RF models to achieve superior predictive performance
compared to most other machine-learning models [25]. For the use of VEML approach in
both radiomic (VRA) and clinical factor (VCF) models, no significant improvement could be
found in AUC, sensitivity, specificity, and accuracy when compared with the RF model. The
possible reason for this is that the DT and GLM were performing poorly in both radiomic
and clinical factor models. Therefore, the VEML approach could not mitigate most of the
wrong predictions from the RF model, leading to a similar predictive performance as the
RF model.

4.2. Importance of PWEM

When we utilized both radiomic features and clinical factors with PWEM, the pre-
dictive performance on HNSCC prognosis could be improved. The PWEM achieved an
AUC of 0.86 with the accuracy significantly greater than the VCF model. This highlights
the complementary nature of radiomic and clinical factors, resulting in a more reliable and
precise prognosis prediction.

A comparable previous study by Mes et al. [26] combined radiomic signature, clinical
characteristics, and HPV status through Cox regression to predict overall survival in
HNSCC patients. Their combined model revealed an AUC of 0.75 and 0.81 in oral cavity
and oropharyngeal disease, respectively. Ger et al. [27] proposed a model using multivariate
Cox regression to determine the survival of patients with HNSCC and acquired AUCs
between 0.72–0.73 with radiomic features extracted from contrast CT images and PET
images. Meanwhile, Alfieri et al. [28] utilized the radiomic model of least absolute shrinkage
and selection operator (LASSO) with logistic regression to examine the prognostic role of
MRI radiomic features, obtaining AUCs ranging from 0.78 to 0.83. As PWEM considers
radiomic and clinical features as independent variables with distinct natures, they were
separately analyzed in machine learning [16]. By assigning greater weights to the more
important classifiers, the PWEM can achieve higher accuracy [29]. Therefore, our prediction
model of PWEM achieved a good AUC of 0.86 in predicting HNSCC prognosis with slightly
better performance than previous studies. It is anticipated that PWEM could be further
investigated for HNSCC prognosis prediction in clinical environments.

4.3. Clinical Factors as Important Prognostic Markers

We noticed that several clinical factors are more important for prognosis prediction
using MDA, MDG, and chi-square tests. These factors include T stage, age, and disease
site. When compared with previous studies, Howard et al. [30] utilized machine-learning
algorithms to predict survival in HNSCC patients and evaluated the association between
clinical factors and model accuracy. They revealed that age is the most significant factor
for accurate prediction, following by years of diagnosis, tumor (T) stage, HPV status, and
primary sites. Meanwhile, Kotevski et al. [31] investigated the role of machine learning in
predicting 2-year cancer-specific survival (CSS) in patients with HNSCC. They observed
that higher stage, T3 and T4 classification, and hypopharyngeal tumors were associated
with poor prognosis. However, due to largely missing data regarding HPV information, it
was excluded from their analysis.
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HPV status is recognized as a significant prognostic biomarker in HNSCC. Tumors
that test positive for HPV exhibit distinct characteristics and are highly vulnerable to
radiotherapy and chemotherapy, leading to a more favorable prognosis as compared to
tumors with negative HPV status [32]. While for our chi-square results (x2 = 3.76, p = 0.052),
HPV status was found to be a marginally insignificant factor in prognosis with an observed
survival rate of 81.3% and 67.6% for HPV-positive and HPV-negative cases, respectively.
The MDA and MDG analyses also showed that HPV status was not among the important
clinical factors for prognosis prediction. The reason for this is that our findings could
be affected by skewing of data as most of the selective patients belonged to stage 4 and
HPV-positive groups. Nevertheless, based on our findings, it is suggested that T stage,
age, and disease site were crucial for prognosis prediction and should be considered for
building future prediction models.

4.4. Future Development of Ensemble Machine Learning in HNSCC

Our study combined radiomic features and clinical information through a probability-
weighted approach to predict prognosis in HNSCC patients. Since HNSCC is characterized
by its extensive genomic profile, which leads to varying treatment response and prognosis
among patients [6], it is suggested that the prediction model can be enhanced by integrating
genomic information to guide risk classification and prognosis prediction. Spielvogel
et al. [5] evaluated the prognostic value of radiogenomic biomarkers and resulted in a good
performance with an AUC of 0.72. Therefore, the integration of genomic data into our
current model may further improve the prognosis prediction.

4.5. Study Limitations

Although our study has achieved an outstanding predictive performance of HNSCC
prognosis by the PWEM approach, there are some limitations in our study. First, the
sample size is limited after excluding subjects with incomplete information. Among the
627 patients in the selected database, only 299 patients contained complete information
and HPV status. Most of the selected cases were stage 4, oropharyngeal cancer site, and
HPV-positive. This limits the generalizability of the findings. Second, the data are in
retrospective format and the cases were collected between 2003 and 2013. The advancement
of treatment modalities and target delineation may impact the prognosis of new cases. This
may also affect the reliability of the findings. It is suggested that conducting a larger-scale
prospective study of various stages and disease sites will better predict the prognostic
outcome of HNSCC patients [33].

5. Conclusions

To conclude, we employed a probability-weighted approach integrating both radiomic
and clinical information to predict HNSCC survival. Our radiomic–clinical combined model
revealed superior performance (AUC = 0.86) when compared to radiomic and clinical factor
models (AUC = 0.77 and 0.78, respectively) alone. It is evident that the ensemble model
can improve prognosis prediction. Nevertheless, further prospective research with larger
sample sizes is required to implement the model for clinical use. Furthermore, we revealed
that T stage, age, and disease site were the most important prognostic factors in the clinical
factor model.
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