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Abstract: Background: New-onset diabetes (NOD) has been identified as a high-risk factor for
the early detection of pancreatic ductal adenocarcinoma (PDAC). The role of tumor volume and
remnant pancreas volume (RPV) in the progression from normal to NOD in PDAC patients is not
fully illustrated yet. Methods: In this cross-sectional study, glycemic metabolism traits of 95 PDAC
patients before pancreatic surgery were described and compared with chronic pancreatitis and type
2 diabetes mellitus patients based on the oral glucose tolerance test. The remnant RPV and tumor
volume, calculated by three-dimensional reconstruction of radiological images, were included in the
ordinal logistic regression models. Results: The prevalence of NOD was high among PDAC patients
(38.9%). However, normal glucose tolerance (NGT) or prediabetes mellitus status were present as
more than half (24/44) of advanced tumor stage patients. Indexes reflecting beta-cell function but
not insulin sensitivity gradually worsened from NGT to NOD patients (all p < 0.05). The remnant
pancreas volume (RPV) was identified as a potential protective factor for diabetes secondary to
PDAC (odds ratio 0.95, 95% CI [0.92, 0.97], p < 0.001). Conclusions: Reduced RPV causing beta-cell
dysfunction might be one of the mechanisms of NOD secondary to PDAC. Subjects with sufficient
pancreas volume could not be detected earlier when regarding patients with NOD as the population
at risk for PDAC.

Keywords: pancreatic ductal adenocarcinoma; diabetes mellitus; beta-cell function; remnant pancreas
volume; tumor stage

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis, as around 85%
of patients are unresectable at diagnosis [1,2]. Thus, early detection is likely to significantly
improve overall survival. New-onset diabetes (NOD) has been identified as one of the
high-risk factors for the early detection of PDAC [3]. Indeed, the association between
diabetes mellitus (DM) and PDAC has been known for over a century. Subjects with NOD
have a 6- to 8-fold higher risk of developing PDAC compared to the general population [4].
Furthermore, the incidence of cancer development related NOD in PDAC patients is much
higher than other malignancies, despite PDAC sharing canonical risk factors with diabetes
such as age and obesity [5,6].

The process from normal glucose tolerance (NGT) to prediabetes mellitus (preDM)
and then NOD in PDAC patients is associated with increasing tumor volume [7]. However,
in existing studies, the prevalence of new-onset impaired glucose homeostasis (including
preDM and NOD) secondary to PDAC has a huge range from 27% to 75%, despite being
based on the ascertainment method of glucose tolerance status [8–11]. Moreover, NOD sec-
ondary to PDAC could occur before the visible appearance of the tumor in the pancreas by
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CT scan, whereas it might not present in some patients with advanced tumor stage [10,12].
The latter could be neglected in the early detection of PDAC in the context of NOD.

The impaired β-cell function has been shown to be the underlying mechanism in
diabetes secondary to PDAC [8,13,14]. One hypothesis is that the local effects of tumor
infiltration and pancreatic ductal obstruction could result in the loss of pancreas volume
and then insulin deficiency [15]. Recent studies provide insight into the correlation between
pancreas volume and DM. Pancreas volume is recognized as a novel noninvasive biomarker
for predicting the progression of type 1 DM [16,17]. Related findings have also been
reported in a Mendelian randomization study that provides evidence for a causal effect
of pancreas volume in the decreased risk of type 2 DM (T2DM) [18]. Whether Pancreas
volume plays a critical role in NOD secondary to PDAC is unknown.

In the present study, the epidemiological characteristics of glucose tolerance status in
patients with PDAC have been investigated by oral glucose tolerance test (OGTT) prior to
pancreatic surgery. Furthermore, glycemic metabolism traits of PDAC were described by
demonstrating the changes of OGTT-based curves and glucose metabolic index in subjects
with different glucose tolerance statuses and the comparison with chronic pancreatitis
(CP) and T2DM patients. In addition, a novel indicator of new-onset impaired glucose
homeostasis secondary to PDAC were provided based on the remnant pancreas volume
(RPV) calculated by three-dimensional (3D) reconstruction of CT images to explain why
some PDAC patients might not develop NOD until an advanced stage.

2. Materials and Methods
2.1. Study Design

In this cross-sectional study, from January 2017 to December 2019, 258 patients with
clinically diagnosed pancreatic diseases for the first time were invited to participate in a
screen for abnormalities in glucose metabolism by OGTT before pancreatic surgery. The
clinical diagnosis was confirmed by pathological analysis after surgery or endoscopic
ultrasonography. The initial screening included medical history and physical examination
of all participating subjects. Weight and height were measured before the OGTT, and
body mass index (BMI) was subsequently calculated. Exclusion criteria included patients
with pancreatic tumors other than ductal adenocarcinoma, a history of renal, pulmonary,
heart disease, gastric bypass surgery, type 1 DM, or DM for more than 2 years. As shown
in Figure 1, 95 patients with PDAC (35 females, 60 males; mean age, 59.8 ± 11.6 years)
and 65 patients with CP were involved. The tumor stage of PDAC patients was classified
according to the 8th Edition American Joint Committee on Cancer staging system [19].
A total of 73 patients without pancreatic disease who were diagnosed with T2DM in the
endocrinology department of our hospital during the same period were also included in
further analysis. These T2DM patients were not treated with thiazolidinediones, incretin
mimetics, or dipeptidyl peptidase 4 inhibitors.

Biomedicines 2024, 12, x FOR PEER REVIEW 3 of 11 
 

 
Figure 1. Flow chart of the study. 

2.2. Biochemical Parameters 
A laboratory profile (hemoglobin, leukocytes, transaminases, total bilirubin, total bile 

acids, triglycerides, g-glutamyl transpeptidase, creatinine, estimated glomerular filtration 
rate [eGFR], CA19-9, and HbA1c) was performed in all subjects. After an overnight fast of 
at least 10 h, a 75 g OGTT was implemented at 8:30 a.m., with blood samples drawn at 0, 
30, 60, 120, and 180 min following glucose ingestion for the measurement of glucose, in-
sulin, and C-peptide concentrations. Glucose tolerance status was determined on the 
OGTT according to the American Diabetes Association recommendations criteria for 
preDM and diabetes [20]. When fasting plasma glucose ≥6.1 mmol/L and <7.0 mmol/L, or 
2 h plasma glucose ≥7.8 mmol/L and <11.1 mmol/L, preDM was diagnosed. DM was di-
agnosed if fasting plasma glucose ≥7.0 mmol/L or 2 h plasma glucose ≥11.1 mmol/L. NGT 
was diagnosed if fasting plasma glucose was <6.1 mmol/L and 2 h plasma glucose <7.8 
mmol/L. NOD secondary to PDAC was defined as diabetes less than 2 years in duration 
[10]. 

For the homeostatic model assessment (HOMA), beta cell function (HOMA2-%beta), 
insulin resistance (HOMA2-IR), and insulin sensitivity (HOMA2-S) were calculated using 
the HOMA2 Calculator (version 2.2.3) [21]. For the glucose metabolic indexes based on 
the OGTT test, the area under the curve (AUC) for glucose, insulin, and C-peptide was 
calculated using the trapezoidal rule. The insulinogenic index (IGI) was calculated as the 
ratio of the increment of plasma insulin to the increment in glucose during the first 30 min 
of OGTT to measure the first-phase insulin secretion and beta-cell function [22]. The 
Matsuda index was adopted as a measure of insulin sensitivity [23]. To evaluate β-cell 
function corrected for the degree of insulin sensitivity, insulin secretion–sensitivity index-
2 (ISSI-2, or disposition index) was calculated as the product of (i) insulin secretion meas-
ured by the ratio of the total area-under-the-insulin curve (AUCinsulin) to the area-under-
the-glucose curve (AUCglucose) and (ii) insulin sensitivity measured by the Matsuda in-
dex [24]. Hepatic insulin clearance (HIC) was calculated as the ratio of fasting C-peptide 
and fasting plasm insulin, and 3 h postprandial HIC was calculated from the ratio of C-
peptide AUC0–120 min and plasma insulinAUC0–180 min [25]. 

2.3. Calculation of Remnant Pancreas Volume 
We used the Medical Visualization Workstation to construct 3D images by integrat-

ing multidetector CT (MDCT) images (Version 1). This software offers a standardized 
analysis of organ or tumor anatomy and volume based on two-dimensional MDCT im-
ages. Serial transverse enhanced MDCT scans were performed before the OGTT test. CT 
images were first preprocessed by the Gaussian smoothing algorithm. Then, the organ or 
tumor was segmented by using spherical region growing, median smoothing, and con-
nectivity-based threshold algorithm methods and repaired by freehand tracing. Model 
reconstruction was carried out by the MarchingCubes 3D reconstruction algorithm, and 
the reconstructed 3D model was processed by the multilateral contour cutting tool and 

Figure 1. Flow chart of the study.



Biomedicines 2024, 12, 1653 3 of 11

2.2. Biochemical Parameters

A laboratory profile (hemoglobin, leukocytes, transaminases, total bilirubin, total bile
acids, triglycerides, g-glutamyl transpeptidase, creatinine, estimated glomerular filtration
rate [eGFR], CA19-9, and HbA1c) was performed in all subjects. After an overnight fast of
at least 10 h, a 75 g OGTT was implemented at 8:30 a.m., with blood samples drawn at 0, 30,
60, 120, and 180 min following glucose ingestion for the measurement of glucose, insulin,
and C-peptide concentrations. Glucose tolerance status was determined on the OGTT
according to the American Diabetes Association recommendations criteria for preDM and
diabetes [20]. When fasting plasma glucose ≥6.1 mmol/L and <7.0 mmol/L, or 2 h plasma
glucose ≥7.8 mmol/L and <11.1 mmol/L, preDM was diagnosed. DM was diagnosed
if fasting plasma glucose ≥7.0 mmol/L or 2 h plasma glucose ≥11.1 mmol/L. NGT was
diagnosed if fasting plasma glucose was <6.1 mmol/L and 2 h plasma glucose <7.8 mmol/L.
NOD secondary to PDAC was defined as diabetes less than 2 years in duration [10].

For the homeostatic model assessment (HOMA), beta cell function (HOMA2-%beta),
insulin resistance (HOMA2-IR), and insulin sensitivity (HOMA2-S) were calculated using
the HOMA2 Calculator (version 2.2.3) [21]. For the glucose metabolic indexes based on
the OGTT test, the area under the curve (AUC) for glucose, insulin, and C-peptide was
calculated using the trapezoidal rule. The insulinogenic index (IGI) was calculated as
the ratio of the increment of plasma insulin to the increment in glucose during the first
30 min of OGTT to measure the first-phase insulin secretion and beta-cell function [22].
The Matsuda index was adopted as a measure of insulin sensitivity [23]. To evaluate
β-cell function corrected for the degree of insulin sensitivity, insulin secretion–sensitivity
index-2 (ISSI-2, or disposition index) was calculated as the product of (i) insulin secretion
measured by the ratio of the total area-under-the-insulin curve (AUCinsulin) to the area-
under-the-glucose curve (AUCglucose) and (ii) insulin sensitivity measured by the Matsuda
index [24]. Hepatic insulin clearance (HIC) was calculated as the ratio of fasting C-peptide
and fasting plasm insulin, and 3 h postprandial HIC was calculated from the ratio of
C-peptide AUC0–120 min and plasma insulinAUC0–180 min [25].

2.3. Calculation of Remnant Pancreas Volume

We used the Medical Visualization Workstation to construct 3D images by integrating
multidetector CT (MDCT) images (Version 1). This software offers a standardized analysis
of organ or tumor anatomy and volume based on two-dimensional MDCT images. Serial
transverse enhanced MDCT scans were performed before the OGTT test. CT images were
first preprocessed by the Gaussian smoothing algorithm. Then, the organ or tumor was
segmented by using spherical region growing, median smoothing, and connectivity-based
threshold algorithm methods and repaired by freehand tracing. Model reconstruction was
carried out by the MarchingCubes 3D reconstruction algorithm, and the reconstructed 3D
model was processed by the multilateral contour cutting tool and other model optimization
tools. Finally, the volume of the target organ or tumor was calculated by quantitative
model analysis tools such as the 3D space length measurement tool and angle measurement
tool. The actual RPV was determined by extracting tumor volume and the volume of the
extended pancreatic duct, vascular structures, and bile duct. The volumetric analysis was
conducted by two senior physicians who were blinded to the outcomes. Tumor location
and the diameter of the main pancreatic duct in the neck and tail of the pancreas were also
recorded based on the CT images and the intraoperative findings.

2.4. Statistical Analysis

Data are presented as frequencies for categorical variables and analyzed by Pearson’s
chi-square test or Fisher’s exact test. Continuous variables were expressed as mean ±
standard deviation (SD) and were analyzed using the Student t-test or Mann–Whitney
U nonparametric test. The ordinal logistic regression models were used to compute the
odds ratio (OR) with a 95% confidence interval (CI) estimate of preDM and NOD versus
NGT. Relationships between RPV and other variables were estimated by linear regression
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analysis and Pearson correlation. A two-sided p value less than 0.05 was regarded as
statistically significant (*, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001). All the data
were analyzed by SPSS version 24.0 (IBM, New York, NY, USA) and GraphPad Prism
version 8.2.0 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Glycemic Traits of PDAC Patients

The clinical and metabolic characteristics of included PDAC patients are summarized
in Table 1. The prevalence of NGT, preDM, and NOD in those PDAC patients was 17.9%,
43.2%, and 38.9%. However, 54.5% (24/44) of patients with advanced tumor stage (III or IV)
presented as only NGT or preDM but not NOD. For early-stage (I or II) patients, only 33.3%
(17/51) could be diagnosed with DM. The characteristics and glucose tolerance status of
involved CP patients were listed in Table S1.

Table 1. Characteristics of PDAC patients with different glucose tolerance status.

Characteristics All Patients
(n = 95)

NGT
(n = 17)

preDM
(n = 41)

NOD
(n = 37) p Value 1 p Value 2 p Value 3

Sex (male) 60 7 30 23 0.035 0.338 0.238
Age (year) 59.8 ± 11.6 59.3 ± 11.5 56.9 ± 13.3 63.2 ± 8.6 0.519 0.014 0.169
BMI (kg/m2) 22.17 ± 2.97 22.84 ± 2.99 21.82 ± 2.64 22.28 ± 3.35 0.220 0.498 0.587
Smoking history 36 4 17 15 0.241 0.255 0.061
Drinking history 34 6 15 13 >0.999 >0.999 >0.999
Tumor location 0.765 0.815 >0.999

Head and neck 60 10 27 23
Body and tail 35 7 14 14

Diameter of the main pancreatic duct
In the pancreatic neck (mm) 4.7 ± 3.8 5.1 ± 4.3 4.1 ± 3.5 5.1 ± 3.9 0.388 0.267 0.998
In the pancreatic tail (mm) 3.0 ± 2.2 2.4 ± 1.3 2.8 ± 2.3 3.6 ± 2.4 0.458 0.146 0.016

Tumor poorly differentiated 33 7 11 15 0.354 0.235 >0.999
Tumor stage 0.022 0.824 0.017

I~II 51 14 20 17
III~IV 44 3 21 20

CA19-9 (U/mL) 385.8 ± 395.7 380.5 ±
397.3 361.5 ± 392.8 415.2 ± 407.0 0.868 0.555 0.771

Total bilirubin (µmol/L) 60.5 ± 95.2 52.5 ± 95.3 66.0 ± 96.3 57.9 ± 96.2 0.626 0.712 0.846
Total bile acids (µmol/L) 37.1 ± 76.5 9.3 ± 19.8 5.7 ± 5.2 5.7 ± 5.4 0.279 0.674 0.824
Creatine (µmol/L) 65.2 ± 13.3 62.7 ± 11.5 68.2 ± 14.6 62.9 ± 12.0 0.164 0.083 0.944
eGFR (mL/min/1.73m2) 96.8 ± 12.7 97.5 ± 10.8 97.4 ± 15.4 95.9 ± 10.3 0.970 0.622 0.602

PDAC, pancreatic ductal adenocarcinoma; NGT, normal glucose tolerance; NOD, new-onset diabetes; preDM,
prediabetes mellitus; BMI, body mass index; eGFR, estimated glomerular filtration rate; p value 1, NGT vs. preDM;
p value 2, preDM vs. NOD; p value 3, NGT vs. NOD.

3.2. Glucose Metabolism Traits of PDAC Patients with Different Glucose Tolerance Statuses

To investigate the glycemic traits of PDAC patients, we demonstrated the changes of
OGTT-based curves and glucose metabolic index in PDAC patients with different glucose
tolerance statuses and compared them with CP and T2DM patients. As plasma glucose
levels increased in PDAC patients (Figure S1A–C), the NOD group showed a simultaneous
decrease in insulin and C-peptide levels compared with the preDM group (Figure S1D–I).
This difference was not found in the comparison of the NGT and preDM groups. The
same trend was observed in CP patients. However, when compared with T2DM patients,
plasma insulin and C-peptide levels at each point of the OGTT curve from 0 to 120 min
were significantly lower in NOD secondary to PDAC (all p < 0.05, Figure S1F,I).

For the glucose metabolism indexes reflecting beta-cell function, the decrease of the
HOMA2-%beta index was also found in the comparison between preDM and NOD patients
(p < 0.0001, Figure 2A). With the decrease of glucose tolerance in PDAC patients (from
NGT to preDM and the NOD), IGI and ISSI-2 were also gradually decreased (all p < 0.05,
Figure 2B,C). These tendencies were also similar to CP patients with different glucose
tolerance statuses. Homeostatic model assessment of insulin resistance, insulin sensitivity
(HOMA2-IR and HOMA2-S), and Matsuda index showed no statistical difference between
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the three groups of PDAC patients (all p > 0.05, Figure 2D–F), whereas the Matsuda index
of T2DM patients was lower than that of NOD secondary to PDAC patients (p < 0.05).
This revealed that insulin resistance was not changed among PDAC patients with different
glucose tolerance statuses. Combined with the difference in HIC and 3 h postprandial HIC
that were also not observed (Figure S2A,B), the gradual decline of beta-cell function could
be one of the main reasons for the eventual development of NOD in PDAC patients.
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Figure 2. Glucose metabolism indexes in PDAC and CP patients with different glucose tolerance sta-
tuses (NGT, preDM, and NOD) and type 2 DM patients. (A) HOMA2-%beta, (B) insulinogenic index,
(C) insulin secretion–sensitivity index-2 (ISSI-2, or disposition index), (D) HOMA2-S, (E) HOMA2-IR,
(F) Matsuda index. * p value less than 0.05, ** p value less than 0.01, *** p value less than 0.001,
**** p value less than 0.0001; ns, no significance.

3.3. Risk Factors of preDM and NOD Secondary to PDAC

To investigate the risk factor for the decline of glucose tolerance in PDAC patients, tu-
mor volume and RPV were calculated and involved with further analysis (Figure 3A). RPV
gradually declined in patients with NGT (63.38 ± 19.96 cm3), preDM (52.07 ± 17.67 cm3),
and NOD (37.87 ± 13.02 cm3, all p < 0.05, Figure 3B and Table S2). Tumor volume showed
no statistical difference between PDAC patients with different glucose tolerance statuses
(NGT [13.61 ± 9.39 cm3], preDM [16.95 ± 16.41 cm3], and NOD [16.58 ± 15.94 cm3],
all P > 0.05, Figure 3C and Table S2). The ordinal logistic regression analysis showed that
for each additional cubic centimeter of RPV, the proportional odds of having impaired
glucose homeostasis (NOD versus preDM, preDM versus NGT) were 5% lower (odds
ratio 0.95, 95% CI [0.92, 0.97], p < 0.001, Table 2). Patients with advanced tumor stage
(IIB~IV) were more likely to develop preDM and NOD (odds ratio 2.65, 95% CI [1.05, 6.23],
p = 0.039). In addition, for patients with BMI lower than 18.5 or more than 23.9 kg/m2, the
proportional odds of having impaired glucose homeostasis were 2.54 times higher (odds
ratio 2.54, 95% CI [1.03, 6.23], p = 0.042).
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reconstruction of CT images. (A) Three-dimensional image of the pancreas and surrounding organs.
The yellow region represents the pancreas, the orange region represents the tumor, the red region
represents the duodenum, and the green region represents the bile and pancreatic ducts. The remnant
pancreas volume was determined by identifying the entire pancreatic region and subtracting the
tumor volume and the volume of the extended pancreatic duct and bile duct. Comparison of
(B) remnant pancreas volume and (C) tumor volume between PDAC patients with different glucose
tolerance statuses. * p value less than 0.05, *** p value less than 0.001, **** p value less than 0.0001; ns,
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Table 2. Ordinal logistic regression for risk factors to preDM and NOD in PDAC patients.

Variables
PDAC

p Value OR (95%CI)

Sex (male) 0.627 1.24 (0.52, 2.95)
Age (≥65 years) 0.550 1.32 (0.53, 3.33)
BMI (<18.5, >23.9 kg/m2) 0.042 2.54 (1.03, 6.23)
Remnant pancreas volume (cm3) <0.001 0.95 (0.92, 0.97)
Tumor volume (cm3) 0.231 1.03 (0.98, 1.09)
Tumor location (head and neck) 0.895 1.07 (0.40, 2.83)
MPD dilation 0.928 1.05 (0.39, 2.84)
Tumor well-differentiated 0.804 0.89 (0.37, 2.17)
Tumor stage (IIB~IV) 0.039 2.56 (1.05, 6.23)

PDAC, pancreatic ductal adenocarcinoma; OR, odds ratio; CI, confidence interval; BMI, body mass index; MPD,
main pancreatic duct; preDM, prediabetes mellitus; NOD, new-onset diabetes.

3.4. Correlation between RPV and Glucose Metabolism Indexes

To further verify the association between RPV and impaired glucose homeostasis in
PDAC patients, linear regression analysis was used to assess the relationship between
RPV and plasma glucose levels and glucose metabolism indexes reflecting the beta-cell
function. The analysis of all PDAC patients revealed strong inverse correlations between
RPV and both fasting glucose levels (r = −0.36, p < 0.001) and 2 h glucose levels following
OGTT (r = −0.47, p < 0.001, Figure 4A). Positive correlations were found between RPV and
HOMA2-%beta (r = 0.27, p = 0.008, Figure 4B), IGI (r = 0.36, p < 0.001, Figure 4C), and ISSI-2
(r = 0.46, p < 0.001, Figure 4D). No linear correlations were found between PRPV and age,
BMI, and tumor volume (all p > 0.05, Figure S3).
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4. Discussion

Our findings suggest that the prevalence of new-onset impaired glucose homeostasis
is high in PDAC patients (82.1%). However, more than half of patients with advanced
tumor stage (III or IV) present as only NGT or preDM but not NOD. To figure out the
mechanism underlying NOD secondary to PDAC, in comparison to CP, whose deficient
insulin production is caused by beta-cell destruction [26], the overall trend in the change of
the OGTT-based curves and beta-cell function indexes (HOMA2-%beta, IGI, ISSI-2) was
consistent between these two most commonly identified causes of type 3c DM. Moreover,
there was no difference in insulin resistance and sensitivity index (HOMA2-IR, MHOMA2-
S, Matsuda index) between PDAC patients with different glucose tolerance statuses, and
NOD patients secondary to PDAC have significantly lower insulin resistance levels than
T2DM patients. Thus, beta-cell dysfunction might be the primary reason for the new-
onset impaired glucose homeostasis in PDAC patients. Ordinal logistic regression analysis
showed that BMI, tumor stage, and RPV, but not tumor volume, were associated with the
severity of impaired glucose homeostasis. The strong inverse correlation between RPV and
plasma glucose levels and the positive correlation with beta-cell function indexes could
further verify this relevance.

The duration from NOD to the diagnosis of PDAC has been well elaborated. A
population-based epidemiologic study showed that impaired fasting glucose levels were
seen 36 to 30 months prior to the diagnosis of PDAC [7]. Data from a high-volume
pancreatic disease center also revealed that the median duration of NOD before PDAC
diagnosis was 0.5 to 35 months (20 of 24 patients with tumor stage IIb to IV) [11]. Despite
the specific period from the onset of PDAC to the development of NOD being hard to



Biomedicines 2024, 12, 1653 8 of 11

figure out, the RPV could disturb this time course. Given the potential protective efficacy
of RPV, when regarding patients with NOD as the risk population of PDAC, only early-
stage patients with insufficient RPV could be identified, while early-stage patients with
sufficient RPV might not develop NOD (Figure 5). When the PDAC progresses to a certain
degree (such as the advanced stage) and causes insufficient RPV, subjects could be detected
through NOD. However, some patients with advanced tumor stage who still have sufficient
pancreas volume only present as NGT or preDM but not NOD (more than half of the
patients in the present study). This weakens the value of NOD in the early diagnosis
of PDAC.
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regarding patients with NOD as the risk population of PDAC, only early-stage patients with insuffi-
cient RPV could be identified due to the decreased beta-cell function. While early-stage patients with
sufficient RPV might not develop NOD, when the PDAC progresses to a certain degree (such as the
advanced stage) and causes insufficient RPV, subjects could be detected through NOD.

Although no correlation was found between RPV and age in the context of PDAC,
previous work has shown that pancreas volume reaches a plateau at the age of around
50 years and then declines [27]. That might explain why NOD is currently most preva-
lent in the elderly (≥50 years) population [3]. Abnormal BMI (<18.5, >23.9 kg/m2) also
showed an increased risk of having impaired glucose homeostasis, since pancreatic fat
increased proportionately with obesity, and the pancreatic parenchyma volume decreased,
resulting in a proportionately higher fat content. Similar findings have been reported that
individuals with diabetes after acute pancreatitis have a significantly higher pancreatic fat
infiltration [28]. In a recent prospective pilot study involving patients with newly elevated
glycemic parameters to detect PDAC, 5 of 93 patients are identified with pancreatic fat infil-
tration [29]. On the other hand, studies have discussed the relationship between pancreatic
cancer associated diabetes mellitus and cachexia. The relatively high prevalence of cachexia
and percentage of weight loss were also related to patients with diabetes mellitus secondary
to PDAC [30]. This was consistent with our findings that low BMI (<18.5 kg/m2) was also
recognized as a risk factor of preDM and NOD in PDAC patients. The complex relationship
between pancreatic volume, BMI, and age also increases the difficulty of clarifying the
progression of NOD secondary to PDAC.

A confusing relationship exists between tumor volume and new-onset impaired
glucose homeostasis. In a comprehensive study by Sharma and colleagues, fasting plasma
glucose levels increased with tumor volume [7]. However, early insights into tumor volume
and glucose metabolism showed that impaired glucose tolerance or DM in PDAC patients
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occurs well before the visible appearance of the tumor in the pancreas [12,31]. In the
present cohort, tumor volume did not differ between PDAC patients with NGT, preDM, or
NOD. We are also deep into the relationship between tumor location, dilation of the main
pancreatic duct, and new-onset impaired glucose homeostasis. Although islet distribution
is over 2-fold higher in the pancreatic tail than in the head and body [32], and pancreatic
head and neck tumors could obstruct the main pancreatic duct and then lead to atrophy of
the distal pancreas, no significant manifestation was found.

Besides RPV, the intrinsic tumor factors could lead to impaired glucose homeostasis in
PDAC patients. The greater effect of the advanced tumor stages on glucose metabolism
might reflect the progression of the intrinsic tumor factors. For instance, higher lymph
node involvement was also found in PDAC patients with higher fasting plasma glucose
levels [7]. There is also evidence that the resection of tumors and effective chemotherapy
could improve glucose metabolic defects during the treatment of PDAC patients [7,10,33].
Indeed, studies have worked to find that adrenomedullin and exosomes derived from
PDAC cause paraneoplastic dysfunction of human beta-cells and suppress insulin secretion
thereby causing hyperglycemia [34–36]. Further investigations are needed to evaluate the
RPV combined with biomarkers to reflect the degree of impact on beta-cell function in
PDAC patients. Furthermore, the changes in the gut microbiome of PDAC patients may
also have a potential impact on beta-cell function [37]. In addition, the combined use of
multiple predictive methods, such as polygenic risk scores, can more accurately predict
PDAC in individuals with NOD [38].

For the limitations of the study, the specific period from the onset of PDAC to the
development of NOD secondary to PDAC could not be determined. Furthermore, the hy-
perglycemic clamp test was not used to further validate the beta-cell function. A multicenter
study with a larger sample size is needed to confirm this result.

5. Conclusions

Our study shows that one of the critical mechanisms of NOD secondary to PDAC is
the reduced RPV and consequent inadequate insulin secretion but not insulin resistance.
Subjects with sufficient pancreas volume could not be detected earlier when regarding
patients with NOD as the population at risk for PDAC.
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