From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Demographic and Clinical Variables
2.3. Clinical, Cognitive, and Functional Assessment
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comorbidities
3.3. Comorbidities PCA
3.4. Cluster Analysis
- -
- Cluster 1: predominantly characterized by extremely high obesity and diabetes;
- -
- Cluster 2: marked by a very high TBI;
- -
- Cluster 3: a mixed cluster with slight increases in several conditions but generally lower for others;
- -
- Cluster 4: notable for very high levels of hearing loss and depression.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Xiang, S.; Xu, Q.; Li, J.; Xiao, J.; Si, Y. Comorbidity among Inpatients with Dementia: A Preliminary Cross-Sectional Study in West China. Aging Clin. Exp. Res. 2023, 35, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yassi, N.; Raniga, P.; Bourgeat, P.; Desmond, P.; Doecke, J.; Ames, D.; Laws, S.M.; Fowler, C.; Rainey-Smith, S.R. Comorbidity of Cerebrovascular and Alzheimer’s Disease in Aging. J. Alzheimer’s Dis. 2020, 78, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, A.; Michalowsky, B.; Eichler, T.; Thyrian, J.R.; Wucherer, D.; Zwingmann, I.; Hoffmann, W. Comorbidity in Dementia Diseases and Associated Health Care Resources Utilization and Cost. J. Alzheimer’s Dis. 2019, 68, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Avitan, I.; Halperin, Y.; Saha, T.; Bloch, N.; Atrahimovich, D.; Polis, B.; Samson, A.O.; Braitbard, O. Towards a Consensus on Alzheimer’s Disease Comorbidity? J. Clin. Med. 2021, 10, 4360. [Google Scholar] [CrossRef] [PubMed]
- Rajamaki, B.; Hartikainen, S.; Tolppanen, A.-M. The Effect of Comorbidities on Survival in Persons with Alzheimer’s Disease: A Matched Cohort Study. BMC Geriatr. 2021, 21, 173. [Google Scholar] [CrossRef]
- Drew, L. An Age-Old Story of Dementia. Nature 2018, 559, S2–S3. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Shiri-Feshki, M. Temporal Trends in the Long Term Risk of Progression of Mild Cognitive Impairment: A Pooled Analysis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Jicha, G.A.; Parisi, J.E.; Dickson, D.W.; Johnson, K.; Cha, R.; Ivnik, R.J.; Tangalos, E.G.; Boeve, B.F.; Knopman, D.S.; Braak, H. Neuropathologic Outcome of Mild Cognitive Impairment Following Progression to Clinical Dementia. Arch. Neurol. 2006, 63, 674–681. [Google Scholar] [CrossRef]
- Bruscoli, M.; Lovestone, S. Is MCI Really Just Early Dementia? A Systematic Review of Conversion Studies. Int. Psychogeriatr. 2004, 16, 129–140. [Google Scholar] [CrossRef]
- Ward, A.; Tardiff, S.; Dye, C.; Arrighi, H.M. Rate of Conversion from Prodromal Alzheimer’s Disease to Alzheimer’s Dementia: A Systematic Review of the Literature. Dement. Geriatr. Cogn. Dis. Extra 2013, 3, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild Cognitive Impairment as a Diagnostic Entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Tifratene, K.; Robert, P.; Metelkina, A.; Pradier, C.; Dartigues, J.F. Progression of Mild Cognitive Impairment to Dementia due to AD in Clinical Settings. Neurology 2015, 85, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of Progression of Mild Cognitive Impairment to Dementia–Meta-analysis of 41 Robust Inception Cohort Studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Tondo, G.; Carli, G.; Santangelo, R.; Mattoli, M.V.; Presotto, L.; Filippi, M.; Magnani, G.; Iannaccone, S.; Cerami, C.; Perani, D. Biomarker-Based Stability in Limbic-Predominant Amnestic Mild Cognitive Impairment. Eur. J. Neurol. 2021, 28, 1123–1133. [Google Scholar] [CrossRef]
- Tondo, G.; De Marchi, F.; Bonardi, F.; Menegon, F.; Verrini, G.; Aprile, D.; Anselmi, M.; Mazzini, L.; Comi, C. Novel Therapeutic Strategies in Alzheimer’s Disease: Pitfalls and Challenges of Anti-Amyloid Therapies and Beyond. J. Clin. Med. 2024, 13, 3098. [Google Scholar] [CrossRef] [PubMed]
- Guiloff, A.E.; Rudge, P. Amyloid Antibody Therapy for Early-Stage Alzheimer’s Disease: A Critical Review of Three Recent Trials. J. Neurol. 2024, 271, 2914–2916. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Feldman, H.H.; Scheltens, P. The “Rights” of Precision Drug Development for Alzheimer’s Disease. Alzheimers Res. Ther. 2019, 11, 76. [Google Scholar] [CrossRef]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice Guideline Update Summary: Mild Cognitive Impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Tondo, G.; De Marchi, F.; Terazzi, E.; Prandi, P.; Sacchetti, M.; Comi, C.; Cantello, R. Chronic Obstructive Pulmonary Disease May Complicate Alzheimer’s Disease: A Comorbidity Problem. Neurol. Sci. 2018, 39, 1585–1589. [Google Scholar] [CrossRef]
- Campbell, N.L.; Unverzagt, F.; LaMantia, M.A.; Khan, B.A.; Boustani, M.A. Risk Factors for the Progression of Mild Cognitive Impairment to Dementia. Clin. Geriatr. Med. 2013, 29, 873–893. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.A.; Potashkin, J.A. The Impact of Disease Comorbidities in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 631770. [Google Scholar] [CrossRef]
- Qin, H.; Zhu, B.; Hu, C.; Zhao, X. Later-Onset Hypertension Is Associated with Higher Risk of Dementia in Mild Cognitive Impairment. Front. Neurol. 2020, 11, 557977. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Wu, T.; Miao, R.; Zhang, W.; Huang, G. Conversion of Mild Cognitive Impairment to Dementia among Subjects with Diabetes: A Population-Based Study of Incidence and Risk Factors with Five Years of Follow-Up. J. Alzheimer’s Dis. 2015, 43, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.; Gard, P.; Tabet, N. Hypertension and Inflammation in Alzheimer’s Disease: Close Partners in Disease Development and Progression! J. Alzheimer’s Dis. 2014, 41, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.A.; Barnes, J.; Nicholas, J.M.; Sudre, C.H.; Cash, D.M.; Parker, T.D.; Malone, I.B.; Lu, K.; James, S.-N.; Keshavan, A. Associations between Blood Pressure across Adulthood and Late-Life Brain Structure and Pathology in the Neuroscience Substudy of the 1946 British Birth Cohort (Insight 46): An Epidemiological Study. Lancet Neurol. 2019, 18, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.J.; Zhang, M.; Xu, Z.Q.; Gao, C.Y.; Fang, C.Q.; Yan, J.C.; Zhou, H.D. Vascular Risk Factors Promote Conversion from Mild Cognitive Impairment to Alzheimer Disease. Neurology 2011, 76, 1485–1491. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Liberating Older Adults from the Bonds of Vascular Risk Factors: What Is Their Impact on Financial Capacity in Amnestic Mild Cognitive Impairment? Psychiatry Clin. Neurosci. 2022, 76, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Keuss, S.E.; Coath, W.; Nicholas, J.M.; Poole, T.; Barnes, J.; Cash, D.M.; Lane, C.A.; Parker, T.D.; Keshavan, A.; Buchanan, S.M. Associations of β-Amyloid and Vascular Burden with Rates of Neurodegeneration in Cognitively Normal Members of the 1946 British Birth Cohort. Neurology 2022, 99, e129–e141. [Google Scholar] [CrossRef]
- Piras, F.; Banaj, N.; Porcari, D.E.; Spalletta, G. Later Life Depression as Risk Factor for Developing Dementia: Epidemiological Evidence, Predictive Models, Preventive Strategies and Future Trends. Minerva Med. 2021, 112, 456–466. [Google Scholar] [CrossRef]
- Maciejewska, K.; Czarnecka, K.; Szymański, P. A Review of the Mechanisms Underlying Selected Comorbidities in Alzheimer’s Disease. Pharmacol. Rep. 2021, 73, 1565–1581. [Google Scholar] [CrossRef]
- Mourao, R.J.; Mansur, G.; Malloy-Diniz, L.F.; Castro Costa, E.; Diniz, B.S. Depressive Symptoms Increase the Risk of Progression to Dementia in Subjects with Mild Cognitive Impairment: Systematic Review and Meta-analysis. Int. J. Geriatr. Psychiatry 2016, 31, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Zafar, J.; Malik, N.I.; Atta, M.; Makhdoom, I.F.; Ullah, I.; Manzar, M.D. Loneliness May Mediate the Relationship between Depression and the Quality of Life among Elderly with Mild Cognitive Impairment. Psychogeriatrics 2021, 21, 805–812. [Google Scholar] [CrossRef]
- Lee, G.J.; Lu, P.H.; Hua, X.; Lee, S.; Wu, S.; Nguyen, K.; Teng, E.; Leow, A.D.; Jack, C.R., Jr.; Toga, A.W. Depressive Symptoms in Mild Cognitive Impairment Predict Greater Atrophy in Alzheimer’s Disease-Related Regions. Biol. Psychiatry 2012, 71, 814–821. [Google Scholar] [CrossRef]
- Giannouli, V.; Stamovlasis, D.; Tsolaki, M. Longitudinal Study of Depression on Amnestic Mild Cognitive Impairment and Financial Capacity. Clin. Gerontol. 2022, 45, 708–714. [Google Scholar] [CrossRef]
- Smith, D.H.; Johnson, V.E.; Trojanowski, J.Q.; Stewart, W. Chronic Traumatic Encephalopathy—Confusion and Controversies. Nat. Rev. Neurol. 2019, 15, 179–183. [Google Scholar] [CrossRef] [PubMed]
- LoBue, C.; Denney, D.; Hynan, L.S.; Rossetti, H.C.; Lacritz, L.H.; Hart, J., Jr.; Womack, K.B.; Woon, F.L.; Cullum, C.M. Self-Reported Traumatic Brain Injury and Mild Cognitive Impairment: Increased Risk and Earlier Age of Diagnosis. J. Alzheimer’s Dis. 2016, 51, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Amieva, H.; Ouvrard, C.; Meillon, C.; Rullier, L.; Dartigues, J.-F. Death, Depression, Disability, and Dementia Associated with Self-Reported Hearing Problems: A 25-Year Study. J. Gerontol. Ser. A 2018, 73, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Bucholc, M.; Bauermeister, S.; Kaur, D.; McClean, P.L.; Todd, S. The Impact of Hearing Impairment and Hearing Aid Use on Progression to Mild Cognitive Impairment in Cognitively Healthy Adults: An Observational Cohort Study. Alzheimer’s Dement. Transl. Res. Clin. Intervig. 2022, 8, e12248. [Google Scholar] [CrossRef] [PubMed]
- Brotto, D.; Benvegnù, F.; Colombo, A.; de Filippis, C.; Martini, A.; Favaretto, N. Age-Related Changes in Auditory Perception. Hearing Loss in the Elderly: Aging Ear or Aging Brain? Aging Clin. Exp. Res. 2023, 35, 2349–2354. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T. A 2 Year Multidomain Intervention of Diet, Exercise, Cognitive Training, and Vascular Risk Monitoring versus Control to Prevent Cognitive Decline in at-Risk Elderly People (FINGER): A Randomised Controlled Trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.; Mangialasche, F.; Ngandu, T.; Solomon, A.; Kivipelto, M. Multidomain Interventions to Prevent Cognitive Impairment, Alzheimer’s Disease, and Dementia: From FINGER to World-Wide FINGERS. J. Prev. Alzheimers Dis. 2020, 7, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Gamberger, D.; Lavrač, N.; Srivatsa, S.; Tanzi, R.E.; Doraiswamy, P.M. Identification of Clusters of Rapid and Slow Decliners among Subjects at Risk for Alzheimer’s Disease. Sci. Rep. 2017, 7, 6763. [Google Scholar] [CrossRef] [PubMed]
- Nettiksimmons, J.; DeCarli, C.; Landau, S.; Beckett, L.; Initiative, A.D.N. Biological Heterogeneity in ADNI Amnestic Mild Cognitive Impairment. Alzheimer’s Dement. 2014, 10, 511–521. [Google Scholar] [CrossRef]
- Nezhadmoghadam, F.; Martinez-Torteya, A.; Treviño, V.; Martínez, E.; Santos, A.; Tamez-Peña, J.; Initiative, A.D.N. Robust Discovery of Mild Cognitive Impairment Subtypes and Their Risk of Alzheimer’s Disease Conversion Using Unsupervised Machine Learning and Gaussian Mixture Modeling. Curr. Alzheimer Res. 2021, 18, 595–606. [Google Scholar] [CrossRef]
- Katabathula, S.; Davis, P.B.; Xu, R. Comorbidity-driven Multi-modal Subtype Analysis in Mild Cognitive Impairment of Alzheimer’s Disease. Alzheimer’s Dement. 2023, 19, 1428–1439. [Google Scholar] [CrossRef]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild Cognitive Impairment: A Concept in Evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef]
- Tondo, G.; Aprile, D.; De Marchi, F.; Sarasso, B.; Serra, P.; Borasio, G.; Rojo, E.; Arenillas, J.F.; Comi, C. Investigating the Prognostic Role of Peripheral Inflammatory Markers in Mild Cognitive Impairment. J. Clin. Med. 2023, 12, 4298. [Google Scholar] [CrossRef]
- De Marchi, F.; Sarnelli, M.F.; Solara, V.; Bersano, E.; Cantello, R.; Mazzini, L. Depression and Risk of Cognitive Dysfunctions in Amyotrophic Lateral Sclerosis. Acta Neurol. Scand. 2019, 139. [Google Scholar] [CrossRef]
- Magni, E.; Binetti, G.; Bianchetti, A.; Rozzini, R.; Trabucchi, M. Mini-Mental State Examination: A Normative Study in Italian Elderly Population. Eur. J. Neurol. 1996, 3, 198–202. [Google Scholar] [CrossRef]
- Katz, S. The Index of ADL: A Standardized Measure of Biological and Psychosocial Function. J. Am. Med. Assoc. 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Raimo, S.; Maggi, G.; Ilardi, C.R.; Cavallo, N.D.; Torchia, V.; Pilgrom, M.A.; Cropano, M.; Roldán-Tapia, M.D.; Santangelo, G. The Relation between Cognitive Functioning and Activities of Daily Living in Normal Aging, Mild Cognitive Impairment, and Dementia: A Meta-Analysis. Neurol. Sci. 2024, 45, 2427–2443. [Google Scholar] [CrossRef] [PubMed]
- Tondo, G.; Sarasso, B.; Serra, P.; Tesser, F.; Comi, C. The Impact of the COVID-19 Pandemic on the Cognition of People with Dementia. Int. J. Environ. Res. Public Health 2021, 18, 4285. [Google Scholar] [CrossRef]
- Caroli, A.; Prestia, A.; Galluzzi, S.; Ferrari, C.; Van Der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.; Wall, A.E. Mild Cognitive Impairment with Suspected Nonamyloid Pathology (SNAP) Prediction of Progression. Neurology 2015, 84, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Fu, P.; Gao, M.; Yung, K.K.L. Association of Intestinal Disorders with Parkinson’s Disease and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. ACS Chem. Neurosci. 2019, 11, 395–405. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, J.-T.; Wang, H.-F.; Meng, X.-F.; Tan, C.-C.; Wang, J.; Wang, C.; Tan, L. Association between Stroke and Alzheimer’s Disease: Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2015, 43, 479–489. [Google Scholar] [CrossRef]
- LoBue, C.; Woon, F.L.; Rossetti, H.C.; Hynan, L.S.; Hart Jr, J.; Cullum, C.M. Traumatic Brain Injury History and Progression from Mild Cognitive Impairment to Alzheimer Disease. Neuropsychology 2018, 32, 401. [Google Scholar] [CrossRef]
- GBD 2019 Dementia Collaborators. The Burden of Dementia Due to Down Syndrome, Parkinson’s Disease, Stroke, and Traumatic Brain Injury: A Systematic Analysis for the Global Burden of Disease Study 2019. Neuroepidemiology 2021, 55, 286–296. [Google Scholar] [CrossRef]
- Tsai, C.; Pan, C.; Chen, F.; Huang, T.; Tsai, M.; Chuang, C. Differences in Neurocognitive Performance and Metabolic and Inflammatory Indices in Male Adults with Obesity as a Function of Regular Exercise. Exp. Physiol. 2019, 104, 1650–1660. [Google Scholar] [CrossRef] [PubMed]
- Singh-Manoux, A.; Dugravot, A.; Shipley, M.; Brunner, E.J.; Elbaz, A.; Sabia, S.; Kivimaki, M. Obesity Trajectories and Risk of Dementia: 28 Years of Follow-up in the Whitehall II Study. Alzheimer’s Dement. 2018, 14, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, E.; Batsis, J.A.; Germain, C.M.; Shaw, B.A. Impact of Obesity and Physical Activity on Functional Outcomes in the Elderly: Data from NHANES 2005-2010. J. Aging Health 2014, 26, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Emmerzaal, T.L.; Kiliaan, A.J.; Gustafson, D.R. 2003–2013: A Decade of Body Mass Index, Alzheimer’s Disease, and Dementia. J. Alzheimer’s Dis. 2015, 43, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Quaye, E.; Galecki, A.T.; Tilton, N.; Whitney, R.; Briceño, E.M.; Elkind, M.S.V.; Fitzpatrick, A.L.; Gottesman, R.F.; Griswold, M.; Gross, A.L. Association of Obesity with Cognitive Decline in Black and White Americans. Neurology 2023, 100, e220–e231. [Google Scholar] [CrossRef] [PubMed]
- Flores-Cordero, J.A.; Pérez-Pérez, A.; Jiménez-Cortegana, C.; Alba, G.; Flores-Barragán, A.; Sánchez-Margalet, V. Obesity as a Risk Factor for Dementia and Alzheimer’s Disease: The Role of Leptin. Int. J. Mol. Sci. 2022, 23, 5202. [Google Scholar] [CrossRef]
- De Marchi, F.; Vignaroli, F.; Mazzini, L.; Comi, C.; Tondo, G. New Insights into the Relationship between Nutrition and Neuroinflammation in Alzheimer’s Disease: Preventive and Therapeutic Perspectives. CNS Neurol. Disord.-Drug Targets 2024, 23, 614–627. [Google Scholar] [CrossRef]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of Dementia in Diabetes Mellitus: A Systematic Review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Geijselaers, S.L.C.; Sep, S.J.S.; Claessens, D.; Schram, M.T.; Van Boxtel, M.P.J.; Henry, R.M.A.; Verhey, F.R.J.; Kroon, A.A.; Dagnelie, P.C.; Schalkwijk, C.G. The Role of Hyperglycemia, Insulin Resistance, and Blood Pressure in Diabetes-Associated Differences in Cognitive Performance—The Maastricht Study. Diabetes Care 2017, 40, 1537–1547. [Google Scholar] [CrossRef]
- Xue, M.; Xu, W.; Ou, Y.-N.; Cao, X.-P.; Tan, M.-S.; Tan, L.; Yu, J.-T. Diabetes Mellitus and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 144 Prospective Studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef]
- Marseglia, A.; Fratiglioni, L.; Kalpouzos, G.; Wang, R.; Bäckman, L.; Xu, W. Prediabetes and Diabetes Accelerate Cognitive Decline and Predict Microvascular Lesions: A Population-Based Cohort Study. Alzheimer’s Dement. 2019, 15, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Akomolafe, A.; Beiser, A.; Meigs, J.B.; Au, R.; Green, R.C.; Farrer, L.A.; Wolf, P.A.; Seshadri, S. Diabetes Mellitus and Risk of Developing Alzheimer Disease: Results from the Framingham Study. Arch. Neurol. 2006, 63, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Hassing, L.B.; Johansson, B.; Nilsson, S.E.; Berg, S.; Pedersen, N.L.; Gatz, M.; McClearn, G. Diabetes Mellitus Is a Risk Factor for Vascular Dementia, but Not for Alzheimer’s Disease: A Population-Based Study of the Oldest Old. Int. Psychogeriatr. 2002, 14, 239–248. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mudher, A. Alzheimer’s Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front. Neurosci. 2018, 12, 359050. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Stephenson, M.D.; De Courten, B.; Chapman, I.; Bellman, S.M.; Aromataris, E. Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2018, 65, 1225–1236. [Google Scholar] [CrossRef]
- Koenig, A.M.; Mechanic-Hamilton, D.; Xie, S.X.; Combs, M.F.; Cappola, A.R.; Xie, L.; Detre, J.A.; Wolk, D.A.; Arnold, S.E. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data from a Randomized Placebo-Controlled Crossover Study. Alzheimer Dis. Assoc. Disord. 2017, 31, 107–113. [Google Scholar] [CrossRef]
- Wong, E.; Backholer, K.; Gearon, E.; Harding, J.; Freak-Poli, R.; Stevenson, C.; Peeters, A. Diabetes and Risk of Physical Disability in Adults: A Systematic Review and Meta-Analysis. Lancet Diabetes Endocrinol. 2013, 1, 106–114. [Google Scholar] [CrossRef]
- Liu, C.-M.; Lee, C.T.-C. Association of Hearing Loss with Dementia. JAMA Netw. Open 2019, 2, e198112. [Google Scholar] [CrossRef]
- Cantuaria, M.L.; Pedersen, E.R.; Waldorff, F.B.; Wermuth, L.; Pedersen, K.M.; Poulsen, A.H.; Raaschou-Nielsen, O.; Sørensen, M.; Schmidt, J.H. Hearing Loss, Hearing Aid Use, and Risk of Dementia in Older Adults. JAMA Otolaryngol.—Head Neck Surg. 2024, 150, 157–164. [Google Scholar] [CrossRef]
- Griffiths, T.D.; Lad, M.; Kumar, S.; Holmes, E.; McMurray, B.; Maguire, E.A.; Billig, A.J.; Sedley, W. How Can Hearing Loss Cause Dementia? Neuron 2020, 108, 401–412. [Google Scholar] [CrossRef]
- Babulal, G.M.; Chen, S.; Williams, M.M.; Trani, J.-F.; Bakhshi, P.; Chao, G.L.; Stout, S.H.; Fagan, A.M.; Benzinger, T.L.S.; Holtzman, D.M. Depression and Alzheimer’s Disease Biomarkers Predict Driving Decline. J. Alzheimer’s Dis. 2018, 66, 1213–1221. [Google Scholar] [CrossRef]
- Tondo, G.; Boccalini, C.; Vanoli, E.G.; Presotto, L.; Muscio, C.; Ciullo, V.; Banaj, N.; Piras, F.; Filippini, G.; Tiraboschi, P. Brain Metabolism and Amyloid Load in Individuals with Subjective Cognitive Decline or Pre–Mild Cognitive Impairment. Neurology 2022, 99, e258–e269. [Google Scholar] [CrossRef]
- Green, R.C.; Cupples, L.A.; Kurz, A.; Auerbach, S.; Go, R.; Sadovnick, D.; Duara, R.; Kukull, W.A.; Chui, H.; Edeki, T. Depression as a Risk Factor for Alzheimer Disease: The MIRAGE Study. Arch. Neurol. 2003, 60, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Dafsari, F.S.; Jessen, F. Depression—An Underrecognized Target for Prevention of Dementia in Alzheimer’s Disease. Transl. Psychiatry 2020, 10, 160. [Google Scholar] [CrossRef] [PubMed]
Sample Characteristics | MCI Cohort (n = 188) |
---|---|
Age at the first evaluation (years) | 76.00 (IQR: 72.00–79.00) |
Male/female | 91 (49%)/97 (51%) |
Years of education | 5.00 (IQR: 5.00–8.00) |
Symptoms onset (months) | 12.00 (IQR: 6.00–24.00) |
Follow-up duration (months) | 36.00 (IQR: 30.00–45.00) |
Baseline MMSE corrected score | 25.33 (SD: 2.60) |
Follow-up MMSE corrected score | 21.97 (SD: 4.94) |
Index of progression (loss of MMSE score/year) | −1.13 (SD: 1.45) |
Comorbidity | Number of Patients (%) |
---|---|
Hypertension | 120 (64%) |
Diabetes | 51 (27%) |
Hypercholesterolemia | 83 (44%) |
Hearing loss | 15 (8%) |
Depression | 43 (23%) |
Obesity | 6 (3%) |
Cardiovascular diseases | 55 (29%) |
Traumatic brain injury | 9 (5%) |
Comorbidity | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|
Hypertension | 0.06 | 0.29 | −0.06 | 0.45 |
Diabetes | 0.51 | −0.11 | 0.01 | −0.29 |
Hypercholesterolemia | −0.55 | 0.06 | 0.04 | −0.17 |
Hearing loss | 0.32 | −0.29 | −0.29 | 3.38 |
Depression | −0.15 | −0.28 | −0.04 | 0.64 |
Obesity | 5.49 | −0.18 | −0.18 | −0.18 |
Cardiovascular diseases | 0.09 | −0.15 | −0.01 | 0.14 |
Traumatic brain injury | −0.22 | 4.44 | −0.22 | −0.22 |
Cluster | N. of Cases | Age (Years) | Gender (M/F) | MMSE at Baseline | Follow-Up (Years) | ADL/ IADL | Index of Progression | % of Converters |
---|---|---|---|---|---|---|---|---|
1 | 6 | 79.33 | 1/5 | 25.58 | 2.54 | 2.83/0.83 | −3.48 | 90 |
2 | 9 | 72.11 | 4/5 | 24.62 | 3.28 | 5.33/3.75 | −0.73 | 33 |
3 | 159 | 75.83 | 81/78 | 25.25 | 3.16 | 4.38/3.47 | −1.01 | 51 |
4 | 14 | 76.36 | 5/9 | 25.32 | 2.92 | 4.78/3.67 | −1.64 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menegon, F.; De Marchi, F.; Aprile, D.; Zanelli, I.; Decaroli, G.; Comi, C.; Tondo, G. From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion. Biomedicines 2024, 12, 1675. https://doi.org/10.3390/biomedicines12081675
Menegon F, De Marchi F, Aprile D, Zanelli I, Decaroli G, Comi C, Tondo G. From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion. Biomedicines. 2024; 12(8):1675. https://doi.org/10.3390/biomedicines12081675
Chicago/Turabian StyleMenegon, Federico, Fabiola De Marchi, Davide Aprile, Iacopo Zanelli, Greta Decaroli, Cristoforo Comi, and Giacomo Tondo. 2024. "From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion" Biomedicines 12, no. 8: 1675. https://doi.org/10.3390/biomedicines12081675
APA StyleMenegon, F., De Marchi, F., Aprile, D., Zanelli, I., Decaroli, G., Comi, C., & Tondo, G. (2024). From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion. Biomedicines, 12(8), 1675. https://doi.org/10.3390/biomedicines12081675