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Abstract: This study explored the link between different types of glaucoma and cognitive function in
a cohort of 620 Japanese patients. Participants were categorized into primary open-angle glaucoma
(PG), exfoliation glaucoma (EG), and non-glaucomatous control groups. The findings revealed a
significant decline in cognitive function as indicated by the Mini-Cog test in the EG group (mean ± SD:
4.0 ± 1, 95% CI: 3.9 to 4.2) compared to the PG group (4.4 ± 0.1, 4.3 to 4.5, p < 0.0001). Levels of
fingertip measured advanced glycation end-products (AGEs) were significantly higher in the EG
group (mean ± SD: 0.45 ± 0.006, 95% CI: 0.44 to 0.46) compared to the PG group (0.43 ± 0.004,
0.42 to 0.44, p = 0.0014). Although the multivariate analysis initially showed no direct association
between glaucoma types and Mini-Cog scores, the EG group exhibited higher age and intraocular
pressure (IOP) compared to the PG group. Further analysis revealed that high levels of AGEs were
associated with cognitive decline and decreased mean visual fields in the EG group. Age was
identified as a cofounding factor in these associations. An inverse correlation was observed between
the accumulation of AGEs and skin carotenoid levels. Early detection of cognitive decline in glaucoma
patients could enable timely intervention to preserve visual fields. Fingertip measurements of skin
carotenoids and AGEs offer promising potential as non-invasive, straightforward diagnostic tools
that could be widely adopted for monitoring ophthalmic and cognitive health in glaucoma patients.

Keywords: glaucoma; visual field; cognitive impairment; advanced glycation end products (AGEs);
skin autofluorescence; skin carotenoids; Mini-Cog; AGEs sensor; Veggie Meter

1. Introduction

Glaucoma is an irreversible degenerative disease of the optic nerve and is one of the
major causes of low vision and blindness [1]. A decline in the visual field can impair informa-
tion processing speed and spatial perception, potentially leading to a decrease in cognitive
function [2]. A meta-analysis of 18 cohort studies concluded that glaucoma is associated
with a higher risk of dementia, including Alzheimer’s and Parkinson’s diseases, in the adult
population [3]. A meta-analysis of cohort studies found that glaucoma is an independent
risk factor for developing Alzheimer’s disease (AD) or all-cause dementia in adults [4]. A
systematic review and meta-analysis of observational studies suggested that individuals with
glaucoma have an increased risk of AD, although further cohort studies are needed to confirm
this finding [5]. While the meta-analysis studies offer significant insights into the relationship
between glaucoma and dementia [6,7], the other meta-analysis studies did not support the
idea that glaucoma is an independent risk factor for dementia [8]. This discrepancy indicates
the need for further detailed research. These reports focused on PG, primary angle-closure
glaucoma (PACG), and normal-tension glaucoma (NTG), but there are a few reports investi-
gating the relationship between different types of glaucoma, including EG, and dementia. A
recent report indicated that mid- to late-onset glaucoma, including EG, was associated with
an increased risk of developing dementia [9]. EG is prevalent among the elderly, and given its
high risk of causing blindness and low vision, investigating its relationship with cognitive
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function is crucial. The progression of dementia is known to compromise the reliability of
visual field tests [10] and diminish adherence to pharmacological treatments for glaucoma [11].
Therefore, it is essential to incorporate cognitive function evaluation into the management of
glaucoma patients. Here, we report on the association between dementia and different types
of glaucoma, specifically PG and EG.

Research on neurodegeneration, cognitive impairment, and mood disorders empha-
sizes symptom alleviation and highlights the necessity of a preventive medical perspective.
This involves identifying shared mechanisms, biomarkers, and therapeutic targets across
various subtypes, stages, and populations [12]. Physical activity can influence cognitive
function, delay disease progression, and improve quality of life [13]. Translational research
focusing on cognitive impairment, stroke, AD, schizophrenia, and depression is advancing.
This research integrates novel approaches and interdisciplinary methods to enhance our
understanding and treatment of these complex neurological and psychiatric conditions [14].
Antioxidants and other interventions in reducing oxidative damage prevent cognitive
decline and neurodegenerative diseases like Alzheimer’s and Parkinson’s [15]. A report
discusses the potential of targeting cortisol in therapy, promising notable advancements
in the treatment of anxiety and mood disorders, along with improvements in emotional
well-being [16].

AGEs can contribute to various ocular diseases by exacerbating oxidative stress and
precipitating neurodegenerative processes [17]. AGEs accumulate in ocular tissues, causing
aberrant crosslinking of extracellular matrix proteins and disrupting endothelial junctional
complexes. This affects cell permeability, angiogenesis, and the integrity of the inner blood-
retinal barrier. In glaucoma, AGEs contribute to oxidative stress and neurodegeneration,
leading to the progressive damage of retinal ganglion cells and optic nerve degenera-
tion [18]. Our group has previously reported that the accumulation of AGEs was higher
in the EG group compared to the PG group [19,20]. AGEs also play an important role in
the development and progression of dementia through a mechanism involving oxidative
stress [21,22]. It is reported that AGEs are associated with glaucoma, including EG, and de-
mentia, and they suggest that AGEs may represent a common risk factor for both glaucoma
and dementia [9]. Carotenoids, antioxidants obtained from vegetables and fruits, are gain-
ing attention for their potential to mitigate cellular damage caused by AGEs [23]. Our group
previously reported an inverse correlation between skin carotenoids and AGEs [10]. AGEs
and skin carotenoids can be easily assessed using finger-tip measurement devices [9,24];
therefore, they can be suitable for early disease screening and monitoring progression.

Our group has studied the correlation between types of glaucoma and dementia as a
part of our research program, which investigates the association between markers measured
using finger-tip devices and ocular diseases. We also investigated the associations between
visual field and cognitive function, AGEs, skin carotenoids, and other ocular parameters
in glaucoma patients. Additionally, we explored the relationship between AGEs and skin
carotenoids.

2. Materials and Methods
2.1. Subject

This research was conducted in accordance with the principles outlined in the Decla-
ration of Helsinki. Approval for this study was granted by the institutional review board at
Shimane University Hospital (No. 20200228-2, revised version issued on 3 March 2024).
Written informed consent was obtained from all study participants. Participants were
systematically enlisted from the Department of Ophthalmology at Shimane University
Hospital from March 2020 to March 2023. The study included 620 eyes from an equal
number of Japanese participants (339 males and 281 females, mean age ± standard devi-
ation (SD); 70.4 ± 12.3 years). The subjects were categorized into three groups: 372 with
primary open-angle glaucoma (PG), 168 with exfoliation glaucoma (EG), and 137 who
were non-glaucomatous controls. Eyes with ocular conditions other than glaucoma and
age-related cataracts were excluded from all groups. Angle-closure glaucoma (AC) and
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other secondary glaucomas were excluded. Exclusion was not based on the related systemic
lesions or the use of other medications. Even if one eye had diseases other than glaucoma,
the patient was included in the analysis if the other eye had only glaucoma. The study
involved comprehensive ophthalmologic assessments of participants, which included
the best-corrected visual acuity (BCVA) and IOP using Goldman applanation tonometry,
along with examinations through slitlamp biomicroscopy and fundoscopy. Visual field
defects, specifically mean deviation (MD), were assessed using an automated visual field
tester, the Humphrey Visual Field Analyzer (Carl Zeiss Meditec, Dublin, CA, USA). Infor-
mation about the lens condition (phakic or pseudophakic) and the number of glaucoma
medications taken, where each combination ophthalmologic drug was counted as two
medications, was collected from medical records. Participants also provided information
regarding their current smoking status, histories of diabetes, and systemic hypertension.
PG was diagnosed by the presence of open iridocorneal angles bilaterally, typical signs of
glaucomatous optic neuropathy such as expanded optic disc cups or localized thinning of
the neuroretinal rim, corresponding visual field impairments in at least one eye, and the
absence of secondary glaucoma bilaterally. EG was determined through the detection of an
open iridocorneal angle and visible deposits of pseudoexfoliation material on the anterior
capsule or pupillary edge in at least one eye. In cases where both eyes qualified, the one
with the worst mean deviation was selected for inclusion in the PG or EG category. Control
subjects were selected from individuals visiting the ophthalmology outpatient clinics at
Shimane University Hospital, Japan. This control group consisted of patients who showed
no signs of glaucoma and had no ocular diseases other than cataracts. Lens status was not
a factor. In cases where one eye had better BCVA, that eye was chosen for the analysis. If
BCVA was equivalent in both eyes, the right eye was selected. Due to the well-established
link between diabetes and AGEs, individuals with severe diabetes necessitating insulin use
and those showing signs of diabetic retinopathy were not included in the study.

2.2. Measurement of Mini-Cog Score

The Mini-Cog test [25] is a brief, effective tool widely utilized to screen for cognitive
impairment, particularly dementia, with sensitivity and specificity comparable to the Mini-
Mental State Examination (MMSE) [26]. This test comprises two components: the word
recall test and the clock drawing test. In the word recall test, participants are presented with
three randomly selected words. After completing another task, participants are prompted
to recall and reproduce the three words. One point is awarded for each accurately recalled
word, up to three points. In the clock drawing test, participants are provided with paper and
a pencil and instructed to draw the face of a clock showing a specific time. An additional
two points are granted if the clock drawing test is accurately completed. The word recall
test score and the clock drawing test score are combined for a total score of five points. A
total score below three points suggests the potential for cognitive impairment. The test is a
simple screening test that is unlikely to produce variations due to the examiner, so it was
administered only once.

2.3. Measurement of AGEs in the Fingertip Skin

To assess AGEs, the participants had their skin autofluorescence (sAF) levels measured
using the AGEs sensor (Air Water Biodesign Inc., Kobe, Japan). The sAF readings, captured
at excitation and emission wavelengths of 365 and 440 nm, respectively, served as indicators
of AGE accumulation. sAF levels correlate with hyperglycemia-linked AGEs such as
Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (MG-H1) and with collagen-linked
fluorescence, reflecting both fluorescent and non-fluorescent AGEs like Nε-(carboxymethyl)-
lysine (CML), making sAF a reliable indicator of tissue AGE accumulation [19]. The device’s
finger clip measures fluorescence from the middle finger of the non-dominant hand, which
has minimal melanin. Veins have higher autofluorescence but do not affect sAF readings
at the fingertips; they only contain capillaries, making them an ideal site for accurate
measurements. All sAF measurements were performed by trained technicians. AGE levels



Biomedicines 2024, 12, 1706 4 of 12

were quantified in arbitrary units. In a preliminary study, the coefficient of variation and
intraclass correlation coefficient (Cronbach’s α) for three repeated sAF measurements were
noted to be 6.7 ± 7.3% and 0.938, respectively.

2.4. Measurement of Carotenoids in the Fingertip Skin

Carotenoid levels in the skin at the fingertip were assessed using a Veggie Meter®

(Longevity Link Corporation, Salt Lake City, UT, USA), which utilizes pressure-mediated
reflectance spectroscopy (RS) with a white LED light range of 350–850 nm [14]. Skin
carotenoid levels, as measured by this method, are indicative of serum carotenoid concen-
trations and, by extension, vegetable consumption. The influence of skin melanin on skin
carotenoid levels is minimally correlated., as evidenced by a high p-value, suggesting that
melanin absorption does not significantly affect skin carotenoid measurements. Calibration
of the device was conducted daily using reference materials provided by the manufacturer
before the morning and afternoon sessions. During skin carotenoid measurement, partic-
ipants placed their left middle finger into the device’s cradle. The skin carotenoid index
was calculated from the average of two consecutive readings for 602 participants and three
readings for 8 participants.

2.5. Statistical Analysis

Data are presented as mean ± SD for continuous variables and percentages for cat-
egorical variables. Decimal BCVA was transformed into the logarithm of the minimum
angle of resolution for statistical evaluation. One-way analysis of variance was utilized to
assess differences in continuous variables like age, Mini-Cog score (word recall test, clock
drawing test, and total score), AGEs score and carotenoids score, BCVA, IOP, MD, and
number of glaucoma medications among the three groups, followed by post hoc unpaired
t-tests. Categorical variables such as sex, lens condition, smoking status, diabetes, and
hypertension were analyzed using the G-test with subsequent post hoc Fisher’s exact tests.
We considered a significance level of less than 5% to be statistically significant. p values
of 0.0167 and 0.0033 for the t-tests or Fisher’s exact tests were deemed significant at the
5% and 1% levels, respectively, using Bonferroni’s correction for multiple comparisons.
Linear regression and Pearson’s correlation were used to explore correlations between MD
and other variables for continuous data and unpaired t-tests for categorical data. Multiple
regression analyses were conducted to further investigate associations between MD and
various parameters, accounting for differences among groups. All statistical analyses were
performed using JMP Pro version 17.1.0 (SAS Institute Inc., Cary, NC, USA).

3. Results

The participants’ demographic data of age, sex, Mini-Cog score (total, word recall
test, clock drawing test, AGEs, skin carotenoid, BCVA, IOP, MD, number of glaucoma
medications, pseudophakia, current smoking, diabetes, and hypertension) are presented
in Table 1, divided into control, PG, and EG groups. Age, Mini-Cog score (total and word
recall test), BCVA, IOP, MD, number of glaucoma medications, and pseudophakia showed
significant differences, while the other categories did not differ. The Mini-Cog score (total)
of EG (4.0 ± 0.1) was significantly lower than that of PG (4.4 ± 0.1) (Figure 1), whereas there
were no significant differences between control vs. PG and control vs. EG. The AGE score
was significantly higher in EG compared to PG, and there were no significant differences
in comparisons between other groups. Conversely, there were no significant differences
among the three groups for skin carotenoids. BCVA was significantly lower in EG (0.35 ±
0.03) compared to control (0.14 ± 0.06) and PG (0.16 ± 0.02). IOP was highest in the order
of EG (19.0 ± 0.5 mmHg), PG (16.1 ± 0.3 mmHg), and control (14.0 ± 0.8 mmHg), with
significant differences observed between each of the three groups. MD was significantly
lower in the two glaucoma groups (PG: –10.9 ± 0.3 dB, EG: –10.6 ± 0.5 dB) compared to
the control group (–4.7 ± 0.9 dB). There was no significant difference in the number of
glaucoma medications between the two glaucoma groups (PG: 2.3 ± 0.1, EG: 2.4 ± 0.2).
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Table 1. Demographic subject data.

Group Control PG EG p-Value a

n 57 372 191

Age (years)
n 57 372 191

Mean ± SD 65.6 ± 1.5 67.7 ± 0.6 77.1 ± 0.8 <0.0001 **
95% CI 62.6 to 68.6 66.5 to 68.8 75.5 to 78.8

vs. control, p = 0.2049 b vs. control, p < 0.0001 b ##
vs. PG, p < 0.0001 b ##

Sex
Male, n (%) 27 (47) 210 (56) 102 (53) 0.4012

Female, n (%) 30 (53) 162 (44) 89 (47)

Mini-Cog Score (Total)
n 57 372 191

Mean ± SD 4.3 ± 0.1 4.4 ± 0.1 4.0 ± 0.1 0.0003 **
95% CI 4.0 to 4.6 4.3 to 4.5 3.9 to 4.2

vs. control, p = 0.4984 b vs. control, p = 0.0801 b

vs. PG, p < 0.0001 b ##

Mini-Cog Score
(Word Recall Test)

n 57 372 191
Mean ± SD 2.4 ± 0.1 2.6 ± 0.04 2.3 ± 0.1 <0.0001 **

95% CI 2.2 to 2.6 2.5 to 2.6 2.1 to 2.4
vs. control, p = 0.2650 b vs. control, p = 0.1263 b

vs. PG, p < 0.0001 b ##

Mini-Cog Score
(Clock Drawing Test)

n 57 372 191
Mean ± SD 1.9 ± 0.1 1.9 ± 0.03 1.8 ± 0.04 0.2622

95% CI 1.7 to 2.0 1.8 to 1.9 1.7 to 1.9

AGEs (AU)
n 54 364 178

Mean ± SD 0.44 ± 0.01 0.43 ± 0.004 0.45 ± 0.006
95% CI 0.42 to 0.46 0.42 to 0.44 0.44 to 0.46 0.0372 *

vs. control, p = 0.6530 b vs. control, p = 0.2754 b

vs. PG, p = 0.0104 b #

Skin Carotenoids (OD)
n 54 363 178

Mean ± SD 341 ± 17 336 ± 7 347 ± 10 0.6569
95% CI 307 to 376 323 to 349 328 to 365

BCVA (logMAR)
n 57 369 188

Mean ± SD 0.14 ± 0.06 0.16 ± 0.02 0.35 ± 0.03 <0.0001 **
95% CI 0.02 to 0.25 0.11 to 0.20 0.29 to 0.42

vs. control, p = 0.7449 b vs. control, p = 0.0016 b ##
vs. PG, p < 0.0001 b ##

IOP (mmHg)
n 57 369 185

Mean ± SD 14.0 ± 0.8 16.1 ± 0.3 19.0 ± 0.5 <0.0001 **
95% CI 12.3 to 15.6 15.5 to 16.8 18.1 to 19.9

vs. control, p = 0.0172 b vs. control, p = 0.0016 b ##
vs. PG, p < 0.0001 b ##
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Table 1. Cont.

MD (dB)
n 39 322 133

Mean ± SD –4.7 ± 0.9 –10.9 ± 0.3 –10.6 ± 0.5 <0.0001 **
95% CI –6.5 to −3.0 –11.6 to −10.3 –11.6 to −9.7

vs. control, p < 0.0001 b ## vs. control, p < 0.0001 b ##
vs. PG, p = 0.5817 b

No. of glaucoma
medications

n 57 372 191
Mean ± SD 0.0 ± 0.0 2.3 ± 0.1 2.4 ± 0.1 <0.0001 **

95% CI 0.0 to 0.0 2.2 to 2.5 2.2 to 2.7
vs. PG, p = 0.5614 b

Pseudophakia
Yes, n (%) 19 (33) 207 (56) 74 (39) <0.0001 **
No, n (%) 38 (67) 165 (44) 117 (61)

Current smoking
Yes, n (%) 5 (13) 28 (11) 15 (12) 0.8782
No, n (%) 34 (87) 236 (89) 111 (88)

Diabetes
Yes, n (%) 12 (44) 63 (30) 40 (34) 0.3133
No, n (%) 15 (56) 145 (70) 78 (66)

Hypertension
Yes, n (%) 18 (56) 166 (66) 109 (76) 0.0350 *
No, n (%) 14 (44) 84 (34) 34 (24)

a p-values were calculated using ANOVA for continuous variables and the G-test for categorical variables.
b Post hoc tests were conducted using the t-test or Fisher’s exact test. The * and ** denote significant levels of 5%
(p < 0.05) and 1% (p < 0.01) for ANOVA or the G-test, respectively. The # and ## indicate significant levels of 5%
(p < 0.0167) or 1% (p < 0.0033), respectively, for the t-test or Fisher’s exact test among the three groups. PG: primary
open-angle glaucoma; EG: exfoliation glaucoma.
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Multivariate analysis was conducted to compare parameters among PG vs. control,
EG vs. control, and PG vs. EG (Table 2). Even after adjustment using multivariate
analysis, significant differences in IOP and MD were observed between PG and control.
Correspondingly, significant differences in age, BCVA, IOP, and MD remained between
EG and control. In the comparison of PG vs. EG, after adjusting for confounding factors
through multivariate analysis, significant differences remained for age and IOP; however,
they were canceled for Mini-Cog (total) and AGEs.

Table 2. Multivariate Analysis among Three Groups.

PG vs. Control EG vs. Control PG vs. EG

Parameters Estimate SD p-Value Estimate SD p-Value Estimate SD p-Value

Age (years) 0.02 0.02 0.1483 0.11 0.03 0.0007 ** 0.10 0.02 <0.0001 **
Sex (Male) –0.38 0.21 0.0708 –0.22 0.28 0.4134 0.20 0.13 0.1204

Mini-Cog (total) 0.29 0.26 0.2556 0.29 0.28 0.2998 −0.04 0.13 0.7380
BCVA (logMAR) –0.45 0.81 0.5747 0.24 1.05 0.8233 0.11 0.39 0.7741

IOP (mmHg) 0.11 0.05 0.0367 * 0.16 0.05 0.0016 ** 0.10 0.02 <0.0001 **
MD (dB) –0.28 0.05 <0.0001 ** –0.24 0.05 <0.0001 ** 0.002 0.02 0.9253

AGEs (AU) –4.97 2.86 0.0824 –0.84 3.39 0.8047 2.30 1.46 0.1145
Carotenoids (OD) 0.0007 0.002 0.6860 0.002 0.002 0.5138 0.0006 0.001 0.9560

p-values were estimated by a multiple regression model. The * indicates <1% (p < 0.01), and ** indicates <5%
(p < 0.05).

Upon investigation of continuous variables related to visual field MD, significant
associations were observed with Mini-Cog (total), BCVA, IOP, number of glaucoma medi-
cations, and AGEs (Table 3). Subsequent analysis of the relationship between categorical
variables and MD reveals associations with pseudophakia and hypertension (Table 4). In
the multivariate analysis with MD as the dependent variable, significant differences were
still observed in Mini-Cog (total), BCVA, IOP, AGEs, and glaucoma type (PG/control and
EG/control) (Table 5). A significant association was observed between AGEs and skin
carotenoids in bivariate analysis (Figure 2).

Table 3. Possible associations among MD and various continuous parameters.

Parameters r Lower 95% CI Upper 95% CI p-Value

Age (years) −0.019 −12.06 −6.09 0.3896
Mini-Cog (total) 0.58 0.048 1.12 0.0326 *
BCVA (logMAR) −1.80 −3.44 −0.16 0.0319 *

IOP (mmHg) 0.11 0.029 0.2 0.0088 **
No. of glaucoma medications −0.75 −1.03 −0.46 <0.0001 **

AGEs (AU) −7.12 −13.47 −0.77 0.0280 *
Carotenoids (OD) 0.0029 −0.0012 0.007 0.1667

The correlation coefficient (r) represents Pearson’s correlation coefficient. The ** indicates <1% (p < 0.01), and the *
indicates <5% (p < 0.05).

Table 4. Possible associations among MD and various categorical parameters.

Parameters Mean ± SD (95% CI) Mean ± SD (95% CI) p-Value

Sex
Male, –10.6 ± 0.4 Female, –10.1 ± 0.4

0.3662(–11.3 to –9.9) (–10.9 to –9.4)

Pseudophakia Yes, –11.3 ± 0.4 No, –9.6 ± 0.4
0.0016 **(–12.0 to –10.5) (–10.3 to –8.9)

Diabetes
Yes, –10.4 ± 0.6 No, –9.9 ± 0.4

0.5529(–11.6 to –9.2) (–10.7 to –9.1)

Hypertension Yes, –11.1 ± 0.4 No, –9.4 ± 0.6
0.0095 **(–11.8 to –10.4) (–11.8 to –10.4)

The p-values were calculated using a t-test between the two groups. The ** indicates <1% (p < 0.01).
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Table 5. Possible correlations among MD and diverse parameters analyzed by multiple regression
analysis.

Parameters Estimate SD Lower 95% CI Upper 95% CI p-Value

Age (years) 0.023 0.024 –0.024 0.071 0.3316
Sex (Male) 0.11 0.26 –0.41 0.62 0.6859

Mini-Cog (total) 0.65 0.28 0.095 1.21 0.0218 *
BCVA (logMAR) –2.09 0.86 –3.82 –0.41 0.0160 *

IOP (mmHg) 0.14 0.04 0.056 0.23 0.0012 **
AGEs (AU) –6.71 3.22 –13.0 –0.38 0.0378 *

Carotenoids (OD) 0.0014 0.0021 –0.0028 0.0055 0.5130
Glaucoma type (PG/control) –2.30 0.41 –3.11 –1.50 <0.0001 **
Glaucoma type (EG/control) –2.25 0.5 –3.24 –1.27 <0.0001 **

The correlation coefficient (r) represents Pearson’s correlation coefficient. The ** indicates <1% (p < 0.01), and
the * indicates <5% (p < 0.05).
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4. Discussion

In this study, we revealed that the EG group exhibited significantly lower Mini-Cog
scores compared to the PG group (Figure 1). To the best of our knowledge, while studies have
been reported on the association between PG and NTG with cognitive functions [27,28], this is
the first study to investigate the cognitive functions in patients with PG and EG. Compared
to other groups, the EG group exhibited older age, elevated IOP, and reduced MD (Table 1).
Whereas, in the multivariate analysis, the significant difference in Min-Cog scores between
EG and PG was canceled (Table 2). A potential explanation for this observation is that
patients with EG tend to be of advanced age [29], which may contribute to a decline in
cognitive function attributable to aging. The decline in cognitive function may lead to
reduced reliability of visual field tests [6] and decreased medication adherence [7], thereby
impacting the management of glaucoma. Consequently, considering the high IOP and
the potential for subacute progression, EG requires age- and cognitive function-adapted
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medical examinations. Deposits of pseudoexfoliation materials are found in blood vessels
and systemic organs, including the brain [30]. In the present study, a direct association
between EG and cognitive function after excluding the effect of age was not detected. This
finding of lower cognitive function in EG patients suggests that clinicians should consider
regular assessments for patients with EG. Early identification of cognitive decline could
lead to timely interventions, potentially improving the overall quality of life for these
patients. Further investigation is required, including more precise cognitive screening or
subgroup analysis of glaucoma patients.

In analyses where MD was the dependent variable, there was a significant association
between a reduction in MD and lower Mini-Cog scores (Tables 3 and 4). These associations
remained consistent even after adjustments in multivariate analysis (Table 5). The associ-
ations between MD and cognitive function in glaucoma patients have been reported [3].
These results are further supported by the association between brain amyloid deposition
and changes in the function of retinal ganglion cells [31], as well as by the characteristic
fundus changes observed in Alzheimer’s patients [32]. Additionally, it is reported that
the combination of hearing loss and visual impairment is associated with an increased
risk of dementia [33]. The mechanisms of neurodegeneration in glaucoma patients have
been proposed, including neuroinflammation, central nervous system morpho-function
changes, Müller cells and other glial cytotype impairment, vascular impairment, increased
excitotoxicity and neurotoxicity, anterograde and retrograde axonal transport dysfunction,
and increased energetic demand. These factors interact in a complex manner to form the
pathology in glaucoma patients. Vascular disorders impede perfusion in both the brain
and retina, leading to neurodegeneration [34]. There is a report that AD and PG are not
associated [35], suggesting that the neurodegeneration in glaucoma patients may involve
mechanisms different from those in AD. The impact of cognitive function on the reliability
of visual field tests has also been documented [8]. Therefore, the monitoring of cognitive
function is essential for the effective management of glaucoma. Lower MD values were also
associated with increased accumulation of AGEs, and this association persisted even after
adjustments in multivariate analysis. We reported that the EG group exhibits a significantly
higher accumulation of AGEs compared to the PG group, a finding that was replicated in
this study. It is known that a higher accumulation of AGEs is associated with an increased
risk of glaucoma. From these findings, AGEs may have potential as biomarkers for the
progression of glaucoma.

The accumulation of AGEs was inversely correlated with skin carotenoid levels
(Figure 2). AGEs are formed through non-enzymatic glycation, rearrangements, and oxida-
tive processes [36]. On the other hand, carotenoids suppress AGEs production through their
potent antioxidant properties [37], anti-inflammatory effects [38], and direct inhibition of
AGEs formation [23]. They neutralize free radicals, reduce oxidative stress, and synthesize
AGEs. Furthermore, the consumption of vegetables and fruits has been documented to
reduce the risk of glaucoma onset [39,40]. As of now, studies that directly demonstrate an
increase in carotenoid intake leading to a reduction in AGEs have not been found. However,
increasing the intake of carotenoids through the consumption of vegetables and fruits may
suppress the accumulation of AGEs, potentially reducing not only the risk of glaucoma but
also other age-related diseases.

This research was subject to several limitations. Significant differences were observed
in the subject demographic data across variables among age, AGEs, BCVA, IOP, MD,
number of glaucoma medications, and status of phakia. These variables may potentially
impact the findings, despite attempts to adjust for their effects through the application
of multivariate analyses. Data on current smoking habits, diabetes, and hypertension
were gathered through interviews, which could potentially reduce the detection power.
The Mini-Cog test is a brief screening tool and does not provide a definitive diagnosis
of dementia. The association between cataracts and cognitive function in the elderly has
been reported [41], and it has been noted that cognitive function improved after cataract
surgery [42]. The control group of this study had cataracts, which may have influenced
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the Mini-Cog scores. To establish a deeper understanding of the relationship between
glaucoma and cognitive function, it is necessary to observe changes in visual fields and
cognitive abilities over an extended period.

5. Conclusions

We have demonstrated that high levels of AGEs and cognitive decline are observed
with age as a confounding factor in EG. This study is the first to report that within a cohort
of glaucoma patients, including EG, the EG group exhibits a greater decline in cognitive
function compared to the PG group. Both elevated AGEs accumulation and reduced
cognitive function are associated with decreased visual function, specifically visual field
sensitivity. EG patients are at a higher risk of blindness or low vision due to their older age
and elevated IOP, underscoring the need for meticulous glaucoma management. If early
detection of cognitive decline in glaucoma patients becomes possible, early intervention
could help maintain the visual field. Particularly if the finger-tip measurement of skin
carotenoids and AGEs proves useful, it has the potential to become a widely used, non-
invasive, and simple diagnostic tool.
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