Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Data Extraction and Synthesis
3. Results
3.1. Randomized Clinical Trials
3.2. Longitudinal Studies
3.3. Cross-Sectional Studies
3.4. Summary of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005, 366, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- World Alzheimer Report 2023—Alzheimer’s Disease International. Available online: https://www.alzint.org/u/World-Alzheimer-Report-2023.pdf (accessed on 1 July 2024).
- Campbell, N.L.; Unverzagt, F.; LaMantia, M.A.; Khan, B.A.; Boustani, M.A. Risk factors for the progression of mild cognitive impairment to dementia. Clin. Geriatr. Med. 2013, 29, 873–893. [Google Scholar] [CrossRef] [PubMed]
- Baglietto-Vargas, D.; Shi, J.; Yaeger, D.M.; Ager, R.; LaFerla, F.M. Diabetes and Alzheimer’s disease crosstalk. Neurosci. Biobehav. Rev. 2016, 64, 272–287. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.G.; Ferreira, S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 2014, 63, 2262–2272. [Google Scholar] [CrossRef]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.B.; Tang, X.; Han, M.; Yang, J.; Simó, R. Impact of antidiabetic agents on dementia risk: A Bayesian network meta-analysis. Metabolism 2020, 109, 154265. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Shao, H.; Shaaban, C.E.; Yang, K.; Brown, J.; Anton, S.; Wu, Y.; Bress, A.; Donahoo, W.T.; DeKosky, S.T.; et al. Newer glucose-lowering drugs and risk of dementia: A systematic review and meta-analysis of observational studies. J. Am. Geriatr. Soc. 2023, 71, 2096–2106. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Wefers, J.; Meier, J.J. Treatment of type 2 diabetes: Challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 2021, 9, 525–544. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef]
- Chen, K.; Nie, Z.; Shi, R.; Yu, D.; Wang, Q.; Shao, F.; Wu, G.; Wu, Z.; Chen, T.; Li, C. Time to Benefit of Sodium-Glucose Cotransporter-2 Inhibitors among Patients with Heart Failure. JAMA Netw. Open 2023, 6, e2330754. [Google Scholar] [CrossRef]
- Chen, H.B.; Yang, Y.L.; Yu, T.H.; Li, Y.H. SGLT2 inhibitors for the composite of cardiorenal outcome in patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Pharmacol. 2022, 936, 175354. [Google Scholar] [CrossRef] [PubMed]
- Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021, 26, 7213. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, C.H.; Friedrich, S.; Hansen, C.T.; Gerds, T.; Ballard, C.; Møller, D.V.; Knudsen, L.B.; Kvist, K.; Zinman, B.; Holm, E.; et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: Data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12268. [Google Scholar] [CrossRef] [PubMed]
- Bohlken, J.; Jacob, L.; Kostev, K. Association Between the Use of Antihyperglycemic Drugs and Dementia Risk: A Case-Control Study. J. Alzheimer’s Dis. 2018, 66, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, Z.; Zhang, B.; Zhang, W.; Wang, J.; Ni, W.; Miao, Y.; Liu, J.; Bi, Y. Enhancement of Impaired Olfactory Neural Activation and Cognitive Capacity by Liraglutide, but Not Dapagliflozin or Acarbose, in Patients with Type 2 Diabetes: A 16-Week Randomized Parallel Comparative Study. Diabetes Care 2022, 45, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Siao, W.Z.; Lin, T.K.; Huang, J.Y.; Tsai, C.F.; Jong, G.P. The association between sodium-glucose cotransporter 2 inhibitors and incident dementia: A nationwide population-based longitudinal cohort study. Diabetes Vasc. Dis. Res. 2022, 19, 14791641221098168. [Google Scholar] [CrossRef] [PubMed]
- Secnik, J.; Xu, H.; Schwertner, E.; Hammar, N.; Alvarsson, M.; Winblad, B.; Eriksdotter, M.; Garcia-Ptacek, S.; Religa, D. Glucose-Lowering Medications and Post-Dementia Survival in Patients with Diabetes and Dementia. J. Alzheimer’s Dis. 2022, 86, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Mainardi, M.; Astrone, P.; Gozzer, C.; Biava, A.; Bacchio, R.; Spadaccini, D.; Solerte, S.B.; Rondanelli, M. 12-month effects of incretins versus SGLT2-Inhibitors on cognitive performance and metabolic profile. A randomized clinical trial in the elderly with Type-2 diabetes mellitus. Clin. Pharmacol. Adv. Appl. 2018, 10, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, R.; Wang, S. Effect of Dapagliflozin Combined with Cognitive Behavior Training on Quality of Life and Cognitive Function in Elderly Patients with Type 2 Diabetes Mellitus Complicated with Mild Cognitive Impairment. Iran. J. Public Health 2022, 51, 1251–1258. [Google Scholar] [CrossRef]
- Wu, C.Y.; Iskander, C.; Wang, C.; Xiong, L.Y.; Shah, B.R.; Edwards, J.D.; Kapral, M.K.; Herrmann, N.; Lanctôt, K.L.; Masellis, M.; et al. Association of Sodium-Glucose Cotransporter 2 Inhibitors with Time to Dementia: A Population-Based Cohort Study. Diabetes Care 2023, 46, 297–304. [Google Scholar] [CrossRef]
- Wium-Andersen, I.K.; Osler, M.; Jørgensen, M.B.; Rungby, J.; Wium-Andersen, M.K. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: A nested case-control study. Eur. J. Endocrinol. 2019, 181, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Mui, J.V.; Zhou, J.; Lee, S.; Leung, K.S.K.; Lee, T.T.L.; Chou, O.H.I.; Tsang, S.L.; Wai, A.K.C.; Liu, T.; Wong, W.T.; et al. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors vs. Dipeptidyl Peptidase-4 (DPP4) Inhibitors for New-Onset Dementia: A Propensity Score-Matched Population-Based Study with Competing Risk Analysis. Front. Cardiovasc. Med. 2021, 8, 747620. [Google Scholar] [CrossRef] [PubMed]
- Mone, P.; Lombardi, A.; Gambardella, J.; Pansini, A.; Macina, G.; Morgante, M.; Frullone, S.; Santulli, G. Empagliflozin Improves Cognitive Impairment in Frail Older Adults with Type 2 Diabetes and Heart Failure with Preserved Ejection Fraction. Diabetes Care 2022, 45, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Low, S.; Goh, K.S.; Ng, T.P.; Moh, A.; Ang, S.F.; Wang, J.; Ang, K.; Tang, W.E.; Lim, Z.; Subramaniam, T.; et al. Association Between Use of Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors and Cognitive Function in a Longitudinal Study of Patients with Type 2 Diabetes. J. Alzheimer’s Dis. 2022, 87, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Proietti, R.; Rivera-Caravaca, J.M.; López-Gálvez, R.; Harrison, S.L.; Marín, F.; Underhill, P.; Shantsila, E.; McDowell, G.; Vinciguerra, M.; Davies, R.; et al. Cerebrovascular, Cognitive and Cardiac Benefits of SGLT2 Inhibitors Therapy in Patients with Atrial Fibrillation and Type 2 Diabetes Mellitus: Results from a Global Federated Health Network Analysis. J. Clin. Med. 2023, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Shi, Q.; Tao, Q.; Su, H.; Du, Y.; Pan, T.; Zhong, X. Correlation between long-term glycemic variability and cognitive function in middle-aged and elderly patients with type 2 diabetes mellitus: A retrospective study. PeerJ 2023, 11, e16698. [Google Scholar] [CrossRef]
- Merzon, E.; Shpigelman, M.; Vinker, S.; Cohen, A.G.; Green, I.; Israel, A.; Cukierman-Yaffe, T.; Eldor, R. Clinical characteristics and healthcare utilisation associated with undiagnosed cognitive impairment in elderly patients with diabetes in a primary care setting: A population-based cohort study. BMJ Open 2024, 14, e078996. [Google Scholar] [CrossRef]
- Saisho, Y. SGLT2 Inhibitors: The Star in the Treatment of Type 2 Diabetes? Diseases 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, Y.; Li, D.; Pu, J.; Ding, H.; Zhang, X. Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value. J. Cardiovasc. Pharmacol. 2023, 81, 4–14. [Google Scholar] [CrossRef]
- Noel, J.A.; Hougen, I.; Sood, M.M. The Intersection of SGLT2 Inhibitors, Cognitive Impairment, and CKD. Front. Neurol. 2022, 13, 823569. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Baratta, F.; Buzzetti, R.; D’Amico, A.; Castellani, V.; Bartimoccia, S.; Siena, A.; D’Onofrio, L.; Maddaloni, E.; Pingitore, A.; et al. The Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors Reduce Platelet Activation and Thrombus Formation by Lowering NOX2-Related Oxidative Stress: A Pilot Study. Antioxidants 2022, 11, 1878. [Google Scholar] [CrossRef] [PubMed]
- Lescano, C.H.; Leonardi, G.; Torres, P.H.P.; Amaral, T.N.; de Freitas Filho, L.H.; Antunes, E.; Vicente, C.P.; Anhe, G.F.; Monica, F.Z. The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation. Biochem. Pharmacol. 2020, 182, 114276. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Lv, R.; Wang, J.; Che, L.; Wang, Z.; Huai, Z.; Wang, Y.; Xu, L. The Extraglycemic Effect of SGLT-2is on Mineral and Bone Metabolism and Bone Fracture. Front. Endocrinol. 2022, 13, 918350. [Google Scholar] [CrossRef] [PubMed]
- Dan, X.; Wechter, N.; Gray, S.; Mohanty, J.G.; Croteau, D.L.; Bohr, V.A. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res. Rev. 2021, 70, 101416. [Google Scholar] [CrossRef] [PubMed]
- Marigliano, V.; Gualdi, G.; Servello, A.; Marigliano, B.; Volpe, L.D.; Fioretti, A.; Pagliarella, M.; Valenti, M.; Masedu, F.; Di Biasi, C.; et al. Olfactory deficit and hippocampal volume loss for early diagnosis of Alzheimer disease: A pilot study. Alzheimer Dis. Assoc. Disord. 2014, 28, 194–197. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, F.; Tischler, V.; Dening, T.; Churchill, A. Olfactory stimulation for people with dementia: A rapid review. Dementia 2022, 21, 1800–1824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Zhang, X.Y.; Sun, Y.Q.; Lv, R.H.; Chen, M.; Li, M. Metformin use is associated with a reduced risk of cognitive impairment in adults with diabetes mellitus: A systematic review and meta-analysis. Front. Neurosci. 2022, 16, 984559. [Google Scholar] [CrossRef]
- Lee, C.T.; Lin, K.D.; Hsieh, C.F.; Wang, J.Y. SGLT2 Inhibitor Canagliflozin Alleviates High Glucose-Induced Inflammatory Toxicity in BV-2 Microglia. Biomedicines 2023, 12, 36. [Google Scholar] [CrossRef]
- Millar, P.; Pathak, N.; Parthsarathy, V.; Bjourson, A.J.; O’Kane, M.; Pathak, V.; Moffett, R.C.; Flatt, P.R.; Gault, V.A. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. J. Endocrinol. 2017, 234, 255–267. [Google Scholar] [CrossRef]
- Sa-Nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Jaiwongkam, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol. Appl. Pharmacol. 2017, 333, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.R.; Grant, D.G.; Aroor, A.R.; DeMarco, V.G. Empagliflozin Ameliorates Type 2 Diabetes-Induced Ultrastructural Remodeling of the Neurovascular Unit and Neuroglia in the Female. Brain Sci. 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Esterline, R.; Oscarsson, J.; Burns, J. A role for sodium glucose cotransporter 2 inhibitors (SGLT2is) in the treatment of Alzheimer’s disease? Int. Rev. Neurobiol. 2020, 155, 113–140. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Yamazaki, Y.; Nishioka, H.; Tokuyama, S. Neuroprotective effect through the cerebral sodium-glucose transporter on the development of ischemic damage in global ischemia. Brain Res. 2013, 1541, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Sim, A.Y.; Choi, D.H.; Kim, J.Y.; Kim, E.R.; Goh, A.R.; Lee, Y.H.; Lee, J.E. SGLT2 and DPP4 inhibitors improve Alzheimer’s disease-like pathology and cognitive function through distinct mechanisms in a T2D-AD mouse model. Biomed. Pharmacother. 2023, 168, 115755. [Google Scholar] [CrossRef]
- Pang, B.; Zhang, L.L.; Li, B.; Sun, F.X.; Wang, Z.D. The sodium glucose co-transporter 2 inhibitor ertugliflozin for Alzheimer’s disease: Inhibition of brain insulin signaling disruption-induced tau hyperphosphorylation. Physiol. Behav. 2023, 263, 114134. [Google Scholar] [CrossRef]
Author | Type of Study | Aim(s) | Patients Number | Age | SGLT2i | Time of Observation | Results |
---|---|---|---|---|---|---|---|
Bohlken J et al. (Germany) [15] (2018) | Cross-sectional study | To analyze the association between the use of antihyperglycemic drugs and dementia risk in patients followed in general practices | 8276 patients with dementia vs. 8276 dementia-free patients | N/A | not reported | N/A | Metformin use (in monotherapy or in combination with sulfonylureas) and glitazone use were negatively associated with dementia risk (p < 0.001), while insulin use was positively associated with dementia risk. Regarding SGLT2i, there was no significant difference in the risk of developing dementia (p = 0.477) |
Cheng H. et al. (China) [16] (2022) | Randomized clinical trial | To investigate the therapeutic effects of liraglutide, dapagliflozin or acarbose treatment on brain functional alterations and cognitive changes in patients with type 2 diabetes | 12 dapagliflozin users, 12 liraglutide users, 12 acarbose users | 57 (9.5 SD) years in the SGLT2i group; 51.9 (10.2 SD) years in the Liraglutide group; 56.4 (8.9 SD) years in the Acarbose group | dapagliflozin | 16 weeks | Liraglutide significantly enhanced the impaired odor-induced left hippocampal activation with Gaussian random field correction and improved cognitive subdomains of delayed memory, attention and executive function (all p < 0.05), whereas dapagliflozin or acarbose did not |
Siao W.Z. et al. (Taiwan) [17] (2022) | Longitudinal Study | To explore the association between SGLT2i and dementia incidence in patients with type 2 diabetes | 103,247 SGLT2i users. 103,247 non-SGLT2i users | not reported | canaglifozin, dapaglifozin, empaglifozin. | 32 Months | After the adjustment for gender, age and comorbilities, the SGLT2 inhibitor group was associated with a lower risk of incident dementia compared to the non-SGLT2 inhibitor group (aHR: 0.89; [95% CI 0.82–0.96]) |
Secnik J. et al. (Sweden) [18] (2022) | Longitudinal Study | Analyze all-cause mortality among users of glucose-lowering drugs in dementia and dementia-free subjects | 11,401 patients with dementia and 121,001 dementia-free patients | 75.7 (6.3) years in the SGLT2-i group; 79.8 (7.1) years in the control group | not reported | 13 years | GLP-1a (HR: 0.44 [95% CI 0.25–0.78]) and SGLT-2i users with dementia (HR 0.43 [95% CI 0.23–0.80]) experienced lower mortality compared to non-users |
Perna S. et al. (Italy) [19] (2018) | Randomized clinical trial | To examine the effects on cognitive performance, anthropometric measures and metabolic markers in two different treatments: Incretins vs. SGLT2i | 18 incretin users vs. 21 SGLT2i users | 77.21 (8.07 SD) years. | canaglifozin, dapaglifozin, empaglifozin. | 12 months | Cognitive status did not change significantly during the 12 months of treatment in both groups |
Zhao Y. et al. (China) [20] (2021) | Randomized clinical trial | To investigate the effect of dapagliflozin combined with cognitive behavior training on quality of life and cognitive function in elderly patients with type 2 diabetes mellitus and mild cognitive impairment | 48 patients with standard cares for diabetes vs. 48 patients with dapagliflozin combined with cognitive behavior training | 59.4 (8.0 SD) in controls and 61.0 (8.43 SD) in the experimental group | dapaglifozin | 1.5 years | Dapagliflozin combined with cognitive behavior training intervention improve cognitive function, the self-efficacy of diabetes management and quality of life |
Wu C.Y. et al. (Canada) [21] (2022) | Longitudinal Study | To investigate the association between SGLT2i and DPP-4i and the incidence of dementia. | 36,513 SGLT2i users and 70,390 DPP-4i users | 72.4 (5.4 SD) years in the SGTL2i group and 74.3 (6.5 SD) years in the DPP-4i group | canaglifozin, dapaglifozin, empaglifozin. | 2.80 years | SGLT2i compared with DPP-4i were associated with a lower risk of dementia (14.2/1000 person-years; aHR 0.80 [95% CI 0.71–0.89]) |
Wium-Andersen I.K. et al. (Denmark) [22] (2019) | Cross-sectional study | To investigate the association between different types of antidiabetic medication and treatment regimens (combinations of antidiabetic drugs) and dementia diagnoses in patients with type 2 diabetes. | 176,250 patients | 70.8 (51–67 IQR) years in the dementia group and 59.0 years (64–78 IQR) in the dementia-free group | not reported | N/A | Use of metformin, DPP-4i, GLP1 analogs and SGLT2i inhibitors (OR 0.58 [95% CI: 0.42–0.81]) was associated with lower odds of dementia after multible adjustments |
Mui J. V. et al. (China) [23] (2021) | Longitudinal Study | To evaluate the effects of the two novel antidiabetic agents on cognitive dysfunction by comparing the rates of dementia between SGLT2I and DPP4I users. | 51,460 patients | 66.3 [58–76 IQR] years | not reported | 472 days | SGLT2I use was associated with lower risks of dementia (hazard ratio HR 0.41, [95% CI 0.27–0.61]), Parkinson (HR 0.28 [95% CI 0.09–0.91]), all-cause (HR 0.84, [95% CI 0.77–0.91]), cardiovascular (HR 0.64, [95% CI 0.49–0.85]) and cerebrovascular (HR:0.36, [95% CI 0.30–0.43]) mortality |
Mone P. et al. (Italy) [24] (2022) | Longitudinal Study | To assess cognitive and physical function in consecutive frail older adults with diabetes and HFpEF, comparing the effects of empagliflozin, metformin and insulin | 52 empaglifozin users, 56 metformin users, 54 insulin users | 80 [6.6 SD] years in the empaglifozin group, 80 [6.3 SD] years in the metformin group, 81.4 [5.5 SD] years in the insulin group | empaglifozin | 1 month | The multivariable regression analysis showed the beneficial effects of empagliflozin (OR 3.61; [95% CI 1.57–8.32]) and no effect of metformin and insulin therapy. |
Low S. et al. (Singapore) [25] (2022) | Longitudinal Study | To evaluate the possible association between SGLT2i and longitudinal changes in cognitive functions in patients with Type II Diabetes | 138 patients with SGLT2i | 60.6 [7.4 SD] years | not reported | 4.6 years | The use of SGLT2i was associated with an increase in the Repeteable Battery for the Assessment of Neuropsychological Status (RBANS) total score in language (p = 0.019) |
Proietti R. et al. (International dataset) [26] (2023) | Longitudinal Study | To investigate cardiovascular, cerebrovascular and cognitive outcomes of SGLT2i therapy in patients with atrial fibrillation (AF) and T2DM | 89356 patients with AF | 71.8 [11.3 SD] years in the control group; 66.6 [9.92 SD] years in the SGLT2i group | not reported | 3 years | the risk of ischemic stroke/TIA was higher in patients not receiving SGLT2i (HR 1.12 [95% CI 1.01–1.24]) and for ICH (HR 1.57 [95% CI 1.25–1.99]) and incident dementia (HR 1.66 [95% CI 1.30–2.12]) |
Ding J et al. (China) [27] (2023) | Longitudinal Study | To investigate the correlation between long-term glycemic variability and cognitive function in middle-aged and elderly patients with type 2 diabetes mellitus (T2DM) | 222 patients | 63.1 (57.00–69.50 IQR) years in the MCI group; 60.7 (56.0–65.0 IQR) years in the MCI-free group | not reported | 16.1 months | HbA1c SD, fasting glucose SD and smoking were risk factors for cognitive dysfunction, while eGFR, GLP-1RA and SGLT-2i usage had a protective effect. |
Merzon E. et al. (Israel) [28] (2024) | Cross-sectional study | To assess the prevalence, clinical characteristics and healthcare utilization of patients with type 2 diabetes and previously undiagnosed cognitive impairment (who were identified as having a low MoCA score) | 350 patients | 73.8 [5.8 SD] years | not reported | N/A | Patients with MoCA < 19 had more diabetes-related complications, were less likely to be treated with GLP-1Ra, DPP-4i or SGLT2i and were more likely to receive insulin or sulfonylurea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lardaro, A.; Quarta, L.; Pagnotta, S.; Sodero, G.; Mariani, S.; Del Ben, M.; Desideri, G.; Ettorre, E.; Baratta, F. Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines 2024, 12, 1750. https://doi.org/10.3390/biomedicines12081750
Lardaro A, Quarta L, Pagnotta S, Sodero G, Mariani S, Del Ben M, Desideri G, Ettorre E, Baratta F. Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines. 2024; 12(8):1750. https://doi.org/10.3390/biomedicines12081750
Chicago/Turabian StyleLardaro, Antonio, Ludovica Quarta, Stefania Pagnotta, Giorgio Sodero, Sandro Mariani, Maria Del Ben, Giovambattista Desideri, Evaristo Ettorre, and Francesco Baratta. 2024. "Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline" Biomedicines 12, no. 8: 1750. https://doi.org/10.3390/biomedicines12081750
APA StyleLardaro, A., Quarta, L., Pagnotta, S., Sodero, G., Mariani, S., Del Ben, M., Desideri, G., Ettorre, E., & Baratta, F. (2024). Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines, 12(8), 1750. https://doi.org/10.3390/biomedicines12081750