Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. S. officinalis Leaf Extract Preparation
2.2. Qualitative Phytochemical Analysis of S. officinalis Leaf Extract
2.3. Spectroscopic Analysis of S. officinalis Leaf Extract
2.4. Thin-Layer Chromatography (TLC) Analysis
2.5. Total Flavonoid Content (TFC) in S. officinalis Leaf Extract
2.6. Total Antioxidant (TAC) and Ferric-Reducing (FRPA) Capacity of S. officinalis Leaf Extract
2.7. Determination of Total Phenolic Contents (TPC)
2.8. Preparation of Treatment Solutions of S. officinalis Leaf Extract
2.9. Cell Culture
2.10. Viability Assay
2.11. Clonogenic Assay
2.12. Wound Healing Assay
2.13. 3D-Spheroid Culture Formation and Reversion Assay
2.14. 3D-Spheroid Culture Inhibition Assay
2.15. Statistical Analysis
3. Results
3.1. Ethanolic Extract of S.officinalis Leaves Has Flavonoids, Tannins, Steroids, and Saponins, and Has Reducing and Antioxidant Capacity
3.2. Ethanolic Extract of S. officinalis Affects the Viability and Replication of TC-1 Cells
3.3. Ethanolic Extract of S. officinalis Leaves Inhibits TC-1 Cell Migration
3.4. Ethanolic Extract of S. officinalis Decreases the Growth of 3D Cultures of TC-1 and Their Reversion to 2D Cultures
3.5. Ethanolic Extract of S. officinalis Inhibits the Formation of 3D Cultures of TC-1 and Their Reversion to 2D Cultures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egawa, N. Papillomaviruses and Cancer: Commonalities and Differences in HPV Carcinogenesis at Different Sites of the Body. Int. J. Clin. Oncol. 2023, 28, 956–964. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Bauerschlag, D.O.; Muallem, M.Z.; Maass, N.; Alkatout, I. Challenges in the Diagnosis and Individualized Treatment of Cervical Cancer. Medicina 2023, 59, 925. [Google Scholar] [CrossRef]
- Riano, I.; Contreras-Chavez, P.; Pabon, C.M.; Meza, K.; Kiel, L.; Bejarano, S.; Florez, N. An Overview of Cervical Cancer Prevention and Control in Latin America and the Caribbean Countries. Hematol. Oncol. Clin. N. Am. 2024, 38, 13–33. [Google Scholar] [CrossRef]
- Nauta, I.H.; Klausch, T.; van de Ven, P.M.; Hoebers, F.J.P.; Licitra, L.; Poli, T.; Scheckenbach, K.; Brakenhoff, R.H.; Berkhof, J.; René Leemans, C. The Important Role of Cisplatin in the Treatment of HPV-Positive Oropharyngeal Cancer Assessed by Real-World Data Analysis. Oral. Oncol. 2021, 121, 105454. [Google Scholar] [CrossRef]
- George, I.A.; Chauhan, R.; Dhawale, R.E.; Iyer, R.; Limaye, S.; Sankaranarayanan, R.; Venkataramanan, R.; Kumar, P. Insights into Therapy Resistance in Cervical Cancer. Adv. Cancer Biol. Metastasis 2022, 6, 100074. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem. Res. Toxicol. 2019, 32, 1469–1486. [Google Scholar] [CrossRef]
- Santabarbara, G.; Maione, P.; Rossi, A.; Gridelli, C. Pharmacotherapeutic Options for Treating Adverse Effects of Cisplatin Chemotherapy. Expert Opin. Pharmacother. 2016, 17, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gu, A.; Nong, X.; Zhai, S.; Yue, Z.; Li, M.; Liu, Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. Chem. Rec. 2023, 23, e202300293. [Google Scholar] [CrossRef]
- Zhang, M.; Otsuki, K.; Li, W. Molecular Networking as a Natural Products Discovery Strategy. Acta Mater. Med. 2023, 2, 126–141. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Xu, H.; Hu, D.; Xie, C.; Liu, S.-M.; Hu, L.; Xu, D.-L.; Zhao, C.; Yuan, F.-W. Traditional Medicine in Cancer: What Is New in 2022. Tradit. Med. Res. 2023, 8, 47. [Google Scholar] [CrossRef]
- Asma, S.T.; Acaroz, U.; Imre, K.; Morar, A.; Shah, S.R.A.; Hussain, S.Z.; Arslan-Acaroz, D.; Demirbas, H.; Hajrulai-Musliu, Z.; Istanbullugil, F.R.; et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers 2022, 14, 6203. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.; Biswasroy, P.; Sahu, A.; Sahu, D.K.; Ghosh, G.; Rath, G. Recent Advances in Herbal Nanomedicines for Cancer Treatment. Curr. Mol. Pharmacol. 2021, 14, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.B.; Sytsma, K.J. Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever. Ann. Bot. 2007, 100, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. Phytochemical Composition and Bioactive Effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana Aqueous Extracts. Molecules 2019, 24, 4327. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, M.; Jokić, S.; Molnar, M.; Jašić, M.; Babić, J.; Jukić, H.; Banjari, I. Bioactive Profile of Various Salvia officinalis L. Preparations. Plants 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Poulios, E.; Giaginis, C.; Vasios, G.K. Current State of the Art on the Antioxidant Activity of Sage (Salvia Spp.) and Its Bioactive Components. Planta Med. 2020, 86, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Luca, T.; Napoli, E.; Privitera, G.; Musso, N.; Ruberto, G.; Castorina, S. Antiproliferative Effect and Cell Cycle Alterations Induced by Salvia Officinalis Essential Oil and Its Three Main Components in Human Colon Cancer Cell Lines. Chem. Biodivers. 2020, 17, e2000309. [Google Scholar] [CrossRef] [PubMed]
- Privitera, G.; Luca, T.; Castorina, S.; Passanisi, R.; Ruberto, G.; Napoli, E. Anticancer Activity of Salvia officinalis Essential Oil and Its Principal Constituents against Hormone-Dependent Tumour Cells. Asian Pac. J. Trop. Biomed. 2019, 9, 24. [Google Scholar] [CrossRef]
- Yakavets, I.; Francois, A.; Benoit, A.; Merlin, J.-L.; Bezdetnaya, L.; Vogin, G. Advanced Co-Culture 3D Breast Cancer Model for Investigation of Fibrosis Induced by External Stimuli: Optimization Study. Sci. Rep. 2020, 10, 21273. [Google Scholar] [CrossRef]
- Brindisi, M.; Bouzidi, C.; Frattaruolo, L.; Loizzo, M.R.; Cappello, M.S.; Dugay, A.; Deguin, B.; Lauria, G.; Cappello, A.R.; Tundis, R. New Insights into the Antioxidant and Anti-Inflammatory Effects of Italian Salvia officinalis Leaf and Flower Extracts in Lipopolysaccharide and Tumor-Mediated Inflammation Models. Antioxidants 2021, 10, 311. [Google Scholar] [CrossRef] [PubMed]
- Zare Shahneh, F.; Valiyari, S.; Baradaran, B.; Abdolalizadeh, J.; Bandehagh, A.; Azadmehr, A.; Hajiaghaee, R. Inhibitory and Cytotoxic Activities of Salvia officinalis L. Extract on Human Lymphoma and Leukemia Cells by Induction of Apoptosis. Adv. Pharm. Bull. 2013, 3, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.S.C.; Menti, C.; Lambert, A.P.F.; Barcellos, T.; Moura, S.; Calloni, C.; Branco, C.S.; Salvador, M.; Roeschely, M.; Henriques, J.A.P. Pharmacological Perspectives from Brazilian Salvia officinalis (Lamiaceae): Antioxidant, and Antitumor in Mammalian Cells. An. Acad. Bras. Cienc. 2016, 88, 281–292. [Google Scholar] [CrossRef]
- Jantová, S.; Hudec, R.; Sekretár, S.; Kučerák, J.; Melušová, M.; Salvia Officinalis, L. Extract and Its New Food Antioxidant Formulations Induce Apoptosis through Mitochondrial/Caspase Pathway in Leukemia L1210 Cells. Interdiscip. Toxicol. 2014, 7, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Kozics, K.; Klusová, V.; Srančíková, A.; Mučaji, P.; Slameňová, D.; Hunáková, Ľ.; Kusznierewicz, B.; Horváthová, E. Effects of Salvia officinalis and Thymus Vulgaris on Oxidant-Induced DNA Damage and Antioxidant Status in HepG2 Cells. Food Chem. 2013, 141, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Zhamanbayeva, G.T.; Aralbayeva, A.N.; Murzakhmetova, M.K.; Tuleukhanov, S.T.; Danilenko, M. Cooperative Antiproliferative and Differentiation-Enhancing Activity of Medicinal Plant Extracts in Acute Myeloid Leukemia Cells. Biomed. Pharmacother. 2016, 82, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Nemeckova, S.; Sroller, V.; Hainz, P.; Krystofova, J.; Smahel, M.; Kutinova, L. Experimental Therapy of HPV16 Induced Tumors with IL12 Expressed by Recombinant Vaccinia Virus in Mice. Int. J. Mol. Med. 2003, 12, 789–796. [Google Scholar] [CrossRef]
- Hernández-Fuentes, G.A.; García-Argáez, A.N.; Peraza Campos, A.L.; Delgado-Enciso, I.; Muñiz-Valencia, R.; Martínez-Martínez, F.J.; Toninello, A.; Gómez-Sandoval, Z.; Mojica-Sánchez, J.P.; Dalla Via, L.; et al. Cytotoxic Acetogenins from the Roots of Annona purpurea. Int. J. Mol. Sci. 2019, 20, 1870. [Google Scholar] [CrossRef] [PubMed]
- Jamil, S.; Khan, R.A.; Afroz, S.; Ahmed, S. Phytochemistry, Brine Shrimp Lethality and Mice Acute Oral Toxicity Studies on Seed Extracts of Vernonia Anthelmintica. Pak. J. Pharm. Sci. 2016, 29, 2053–2057. [Google Scholar]
- Oloya, B.; Namukobe, J.; Ssengooba, W.; Afayoa, M.; Byamukama, R. Phytochemical Screening, Antimycobacterial Activity and Acute Toxicity of Crude Extracts of Selected Medicinal Plant Species Used Locally in the Treatment of Tuberculosis in Uganda. Trop. Med. Health 2022, 50, 16. [Google Scholar] [CrossRef]
- Gwatidzo, L.; Dzomba, P.; Mangena, M. TLC Separation and Antioxidant Activity of Flavonoids from Carissa bispinosa, Ficus sycomorus, and Grewia bicolar Fruits. Nutrire 2018, 43, 3. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Wakeel, A.; Jan, S.A.; Ullah, I.; Shinwari, Z.K.; Xu, M. Solvent Polarity Mediates Phytochemical Yield and Antioxidant Capacity of Isatis tinctoria. PeerJ 2019, 7, e7857. [Google Scholar] [CrossRef] [PubMed]
- Jafri, L.; Saleem, S.; Haq, I.U.; Ullah, N.; Mirza, B. In Vitro Assessment of Antioxidant Potential and Determination of Polyphenolic Compounds of Hedera Nepalensis K. Koch. Arab. J. Chem. 2017, 10, S3699–S3706. [Google Scholar] [CrossRef]
- Mehwish, S.; Islam, A.; Ullah, I.; Wakeel, A.; Qasim, M.; Khan, M.A.; Ahmad, A.; Ullah, N. In Vitro Antileishmanial and Antioxidant Potential, Cytotoxicity Evaluation and Phytochemical Analysis of Extracts from Selected Medicinally Important Plants. Biocatal. Agric. Biotechnol. 2019, 19, 101117. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Szeto, Y.T. Total Antioxidant Capacity of Teas by the Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Ming, Y.; Cui, Q.; Zheng, N.; Yang, S.; Li, W.; Gao, H.; Zhang, R.; Cheng, X. Efficient Extraction and Antioxidant Activity of Polyphenols from Antrodia cinnamomea. BMC Biotechnol. 2022, 22, 9. [Google Scholar] [CrossRef]
- Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R.W. Evaluation of the Polyphenol Content and Antioxidant Properties of Methanol Extracts of the Leaves, Stem, and Root Barks of Moringa Oleifera Lam. J. Med. Food 2010, 13, 710–716. [Google Scholar] [CrossRef]
- Karami, P.; Othman, G.; Housein, Z.; Salihi, A.; Hosseinpour Feizi, M.A.; Azeez, H.J.; Babaei, E. Nanoformulation of Polyphenol Curcumin Enhances Cisplatin-Induced Apoptosis in Drug-Resistant MDA-MB-231 Breast Cancer Cells. Molecules 2022, 27, 2917. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Nejad, A.S.M.; Esghaei, M.; Bokharaei-Salim, F.; Dianat-Moghadam, H.; Keyvani, H.; Ghaemi, A. Oncolytic Newcastle Disease Virus Reduces Growth of Cervical Cancer Cell by Inducing Apoptosis. Saudi J. Biol. Sci. 2020, 27, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari Nejad, A.S.; Fotouhi, F.; Mehrbod, P.; Keshavarz, M.; Alikhani, M.Y.; Ghaemi, A. Oncolytic Effects of Hitchner B1 Strain of Newcastle Disease Virus against Cervical Cancer Cell Proliferation Is Mediated by the Increased Expression of Cytochrome C, Autophagy and Apoptotic Pathways. Microb. Pathog. 2020, 147, 104438. [Google Scholar] [CrossRef] [PubMed]
- Šmahel, M.; Šíma, P.; Ludvíková, V.; Marinov, I.; Pokorná, D.; Vonka, V. Immunisation with Modified HPV16 E7 Genes against Mouse Oncogenic TC-1 Cell Sublines with Downregulated Expression of MHC Class I Molecules. Vaccine 2003, 21, 1125–1136. [Google Scholar] [CrossRef]
- Manning, J.; Indrova, M.; Lubyova, B.; Pribylova, H.; Bieblova, J.; Hejnar, J.; Simova, J.; Jandlova, T.; Bubenik, J.; Reinis, M. Induction of MHC Class I Molecule Cell Surface Expression and Epigenetic Activation of Antigen-processing Machinery Components in a Murine Model for Human Papilloma Virus 16-associated Tumours. Immunology 2008, 123, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Gendron, K.B.; Rodriguez, A.; Sewell, D.A. Vaccination With Human Papillomavirus Type 16 E7 Peptide With CpG Oligonucleotides for Prevention of Tumor Growth in Mice. Arch. Otolaryngol. Head Neck Surg. 2006, 132, 327. [Google Scholar] [CrossRef] [PubMed]
- Gebäck, T.; Schulz, M.M.P.; Koumoutsakos, P.; Detmar, M. TScratch: A Novel and Simple Software Tool for Automated Analysis of Monolayer Wound Healing Assays. Biotechniques 2009, 46, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Metzger, W.; Sossong, D.; Bächle, A.; Pütz, N.; Wennemuth, G.; Pohlemann, T.; Oberringer, M. The Liquid Overlay Technique Is the Key to Formation of Co-Culture Spheroids Consisting of Primary Osteoblasts, Fibroblasts and Endothelial Cells. Cytotherapy 2011, 13, 1000–1012. [Google Scholar] [CrossRef]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman Fingerprints of Flavonoids—A Review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef]
- Etsassala, N.G.E.R.; Adeloye, A.O.; El-Halawany, A.; Hussein, A.A.; Iwuoha, E.I. Investigation of In-Vitro Antioxidant and Electrochemical Activities of Isolated Compounds from Salvia chamelaeagnea P.J.Bergius Extract. Antioxidants 2019, 8, 98. [Google Scholar] [CrossRef]
- Oladosu, O.P.; Isu, N.R.; Aboh, I.M.; Okhale, S.E.; Orishadipe, A.T.; Egharevba, H.O. Antibacterial Activity of Bioflavonoid from Fruit Pulps of Acacia nilotica Willd. Microbiol. Res. J. Int. 2019, 28, 1–12. [Google Scholar] [CrossRef]
- Rossouw, W.; Hundt, A.F.; Steenkamp, J.A.; Ferreira, D. Oligomeric Flavanoids. Part 17. Absolute Configurations of Flavan-3-Ols and 4-Arylflavan-3-Ols via the Mosher Method. Tetrahedron 1994, 50, 12477–12488. [Google Scholar] [CrossRef]
- Sagrera, G.J.; Seoane, G.A. Microwave Accelerated Solvent-Free Synthesis of Flavanones. J. Braz. Chem. Soc. 2005, 16, 851–856. [Google Scholar] [CrossRef]
- Sinha, R.; Gadhwal, M.; Joshi, U.; Srivastava, S.; Govil, G. Modifying Effect of Quercetin on Model Biomembranes: Studied by Molecular Dynamic Simulation, DSC and NMR. Int. J. Curr. Pharm. Res. 2012, 4, 70–79. [Google Scholar]
- Rajagopalan, P.; Wahab, S.; Dera, A.; Chandramoorthy, H.; Irfan, S.; Patel, A.; Abullias, S.; Zaman, G.; Ahmad, I. Anti-Cancer Activity of Ethanolic Leaf Extract of Salvia officinalis against Oral Squamous Carcinoma Cells in Vitro via Caspase Mediated Mitochondrial Apoptosis. Pharmacogn. Mag. 2020, 16, 554. [Google Scholar] [CrossRef]
- Ojo, O.; Basiru, A.; Ojo, A.; Olayide, I.; Akinyemi, A.; Adewale Oluwaseun, F.; Ebenezer, A.; Boligon, A.; Campos, M. HPLC-DAD Fingerprinting Analysis, Antioxidant Activity of Phenolic Extracts from Blighia sapida Bark and Its Inhibition of Cholinergic Enzymes Linked to Alzheimer’s Disease. Jordan J. Biol. Sci. 2017, 10, 257–264. [Google Scholar]
- Hernández-Fuentes, G.A.; Peraza Campos, A.L.; Ceballos-Magaña, S.G.; Muñiz-Valencia, R.; Parra-Delgado, H. HPLC-DAD Method for the Detection of Five Annopurpuricins in Root Samples of Annona purpurea. Phytochem. Anal. 2020, 31, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological Properties of Salvia officinalis and Its Components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-Y.; Guarnieri, F.G.; Staveley-O’Carroll, K.F.; Levitsky, H.I.; August, J.T.; Pardoll, D.M.; Wu, T.-C. Treatment of Established Tumors with a Novel Vaccine That Enhances Major Histocompatibility Class II Presentation of Tumor Antigen. Cancer Res. 1996, 56, 21–26. [Google Scholar]
- Grzelak, A.; Polakova, I.; Smahelova, J.; Vackova, J.; Pekarcikova, L.; Tachezy, R.; Smahel, M. Experimental Combined Immunotherapy of Tumours with Major Histocompatibility Complex Class I Downregulation. Int. J. Mol. Sci. 2018, 19, 3693. [Google Scholar] [CrossRef]
- Hernández-Fuentes, G.A.; Delgado-Enciso, I.; Enríquez-Maldonado, I.G.; Delgado-Machuca, J.J.; Zaizar-Fregoso, S.A.; Hernandez-Rangel, A.E.; Garcia-Casillas, A.C.; Guzman-Esquivel, J.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; et al. Antitumor Effects of Annopurpuricin A, an Acetogenin from the Roots of Annona purpurea. Rev. Bras. Farmacogn. 2023, 34, 111–121. [Google Scholar] [CrossRef]
- Pokorná, D.; Macková, J.; Dušková, M.; Rittich, Š.; Ludvíková, V.; Šmahel, M. Combined Immunization with Fusion Genes of Mutated E7 Gene of Human Papillomavirus Type 16 Did Not Enhance Antitumor Effect. J. Gene Med. 2005, 7, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Préville, X.; Ladant, D.; Timmerman, B.; Leclerc, C. Eradication of Established Tumors by Vaccination With Recombinant Bordetella Pertussis Adenylate Cyclase Carrying the Human Papillomavirus 16 E7 Oncoprotein. Cancer Res. 2005, 65, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Zhumaliyeva, G.; Zhussupova, A.; Zhusupova, G.E.; Błońska-Sikora, E.; Cerreto, A.; Omirbekova, N.; Zhunusbayeva, Z.; Gemejiyeva, N.; Ramazanova, M.; Wrzosek, M.; et al. Natural Compounds of Salvia L. Genus and Molecular Mechanism of Their Biological Activity. Biomedicines 2023, 11, 3151. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef]
- Moshari-Nasirkandi, A.; Alirezalu, A.; Alipour, H.; Amato, J. Screening of 20 Species from Lamiaceae Family Based on Phytochemical Analysis, Antioxidant Activity and HPLC Profiling. Sci. Rep. 2023, 13, 16987. [Google Scholar] [CrossRef]
- Hussain, Y.; Cui, J.H.; Khan, H.; Aschner, M.; Batiha, G.E.-S.; Jeandet, P. Luteolin and Cancer Metastasis Suppression: Focus on the Role of Epithelial to Mesenchymal Transition. Med. Oncol. 2021, 38, 66. [Google Scholar] [CrossRef]
- Çetinkaya, M.; Baran, Y. Therapeutic Potential of Luteolin on Cancer. Vaccines 2023, 11, 554. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M.; Singh, S.K.; Gulati, M.; Chellappan, D.K.; Zacconi, F.; De Rubis, G.; Gupta, G.; Sharifi-Rad, J.; Cho, W.C.; et al. Luteolin: A Flavonoid with a Multifaceted Anticancer Potential. Cancer Cell Int. 2022, 22, 386. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Z.-G.; Lin, Y.; Qu, X.-G.; Lv, W.; Wang, G.-B.; Li, C.-L. Effects of Quercetin on Proliferation and Migration of Human Glioblastoma U251 Cells. Biomed. Pharmacother. 2017, 92, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, L.; Rupasinghe, H.P.V. Antiproliferative Effects of Extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on Hepatocellular Carcinoma Cells. Biomed. Pharmacother. 2017, 85, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Bidmeshkipour, A.; Mostafaie, A.; Mansouri, K.; Mohammadi-Motlagh, H.-R. Anti-Tumor Activity of Salvia officinalis Is Due to Its Anti-Angiogenic, Anti-Migratory and Anti-Proliferative Effects. Cell J. 2011, 12, 477–482. [Google Scholar]
- Jaglanian, A.; Termini, D.; Tsiani, E. Rosemary (Rosmarinus Officinalis L.) Extract Inhibits Prostate Cancer Cell Proliferation and Survival by Targeting Akt and MTOR. Biomed. Pharmacother. 2020, 131, 110717. [Google Scholar] [CrossRef] [PubMed]
- Stan, R.L.; Marian, E.; Sevastre, B.; Sárpataki, O.; Muresan, M.; Sevastre-Berghian, A.C.; Jurca, T.; Hangan, A.C. Salvia Officinalis L. Extract Increase the Antitumor Effect of Doxorubicin on Ehrlich Carcinoma Tumor Cells. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Vet. Med. 2019, 76, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Tanshinone IIA Inhibits Viral Oncogene Expression Leading to Apoptosis and Inhibition of Cervical Cancer. Cancer Lett. 2015, 356, 536–546. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, W.; Kong, X.; Chen, X.; Sun, X.; Zhang, W.; Zhang, R. Tanshinone IIA Inhibits Glucose Metabolism Leading to Apoptosis in Cervical Cancer. Oncol. Rep. 2019, 42, 1893–1903. [Google Scholar] [CrossRef]
Metabolites | S. officinalis Ethanolic Extract * |
---|---|
Tannins (FeCl3) | ++ |
Tannins (gelatin hydrolysis) | ++ |
Flavonoids (Shinoda test) | ++ |
Flavonoids (Salkowski test) | +++ |
Steroids | ++ |
Alkaloids (Dragendorff test) | - |
Alkaloids (Wagner test) | + |
Alkaloids (Mayer test) | + |
Saponins (hemolysis in agar) | +++ |
Saponins (foam formation) | + |
Coumarins (NaOH test) | - |
S. officinalis Ethanolic Extract * | |
---|---|
TFC | QE = 153.4074074 ± 10.68 µg/mg extract |
FRPA | % age reduction = 45.62 ± 5.30 |
TAC | % age TAC = 44.57 ± 1.27 |
TPC | GAE = 89.08 ± 3.01 µg/mg extract |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Rangel, A.E.; Cabrera-Licona, A.; Hernandez-Fuentes, G.A.; Beas-Guzmán, O.F.; Martínez-Martínez, F.J.; Alcalá-Pérez, M.A.; Montes-Galindo, D.A.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; Casarez-Price, J.C.; et al. Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line. Biomedicines 2024, 12, 1804. https://doi.org/10.3390/biomedicines12081804
Hernández-Rangel AE, Cabrera-Licona A, Hernandez-Fuentes GA, Beas-Guzmán OF, Martínez-Martínez FJ, Alcalá-Pérez MA, Montes-Galindo DA, Rodriguez-Sanchez IP, Martinez-Fierro ML, Casarez-Price JC, et al. Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line. Biomedicines. 2024; 12(8):1804. https://doi.org/10.3390/biomedicines12081804
Chicago/Turabian StyleHernández-Rangel, Alejandra E., Ariana Cabrera-Licona, Gustavo A. Hernandez-Fuentes, Oscar F. Beas-Guzmán, Francisco J. Martínez-Martínez, Mario A. Alcalá-Pérez, Daniel A. Montes-Galindo, Iram P. Rodriguez-Sanchez, Margarita L. Martinez-Fierro, Juan C. Casarez-Price, and et al. 2024. "Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line" Biomedicines 12, no. 8: 1804. https://doi.org/10.3390/biomedicines12081804
APA StyleHernández-Rangel, A. E., Cabrera-Licona, A., Hernandez-Fuentes, G. A., Beas-Guzmán, O. F., Martínez-Martínez, F. J., Alcalá-Pérez, M. A., Montes-Galindo, D. A., Rodriguez-Sanchez, I. P., Martinez-Fierro, M. L., Casarez-Price, J. C., De-Leon-Zaragoza, L., Garza-Veloz, I., & Delgado-Enciso, I. (2024). Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line. Biomedicines, 12(8), 1804. https://doi.org/10.3390/biomedicines12081804