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Abstract: Managing chronic limb-threatening ischemia (CLTI) is challenging due to difficulties in
assessing tissue oxygen saturation in ulcers. Near-infrared spectroscopy (NIRS) is a non-invasive
method for measuring tissue oxygen saturation (StO2). This study evaluated the effects of endovas-
cular treatment (EVT) on StO2 and wound healing in CLTI patients, comparing NIRS to standard
ankle–brachial index (ABI) measurements. Using the Duesseldorf PTA Registry, 43 CLTI patients
were analyzed: 27 underwent EVT, and 16 received conservative treatment. ABI assessed macrocircu-
lation, while NIRS measured wound, wound area, and mean foot StO2 at baseline, post-EVT, and
four-month follow-up. Wound severity was classified by wound area and wound, ischemia, and
foot infection (WIfI) score. Wound StO2 increased significantly (median (interquartile range (IQR)),
38 (49.3) to 60 (34.5)%, p = 0.004), as did wound area StO2 (median (IQR), 70.9 (21.6) to 72.8 (18.3)%,
p < 0.001), with no significant changes in the control group by four-month follow-up. Wound area
decreased significantly after EVT (mean ± SD, 343.1 ± 267.8 to 178.1 ± 268.5 mm2, p = 0.01) but not
in the control group. Changes in wound StO2, wound area StO2, and WIfI score correlated with
wound area reduction, unlike ABI. This small exploratory study shows that NIRS-measured StO2

improvements after EVT correlate with reduced wound area and WIfI scores, highlighting NIRS as a
potential enhancement for CLTI wound management in addition to ABI.

Keywords: peripheral arterial disease; chronic limb-threatening ischemia; percutaneous transluminal
angioplasty; near-infrared spectroscopy; tissue oxygen saturation; wound healing

1. Introduction

Peripheral artery disease (PAD) is the third leading cause of atherosclerotic cardiovas-
cular morbidity worldwide, after coronary heart disease and stroke, and is associated with
an increased risk of major cardiovascular events and mortality [1]. The most severe clinical
manifestation of PAD is chronic limb-threatening ischemia (CLTI). CLTI is associated with
high mortality, amputation rates, and impaired quality of life [2]. Patients with CLTI present
with ischemic rest pain, gangrene, or lower extremity wounds (ulcers) lasting more than
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two weeks [3]. The ankle–brachial index (ABI) is the primary non-invasive screening tool
for PAD, with an ABI ≤ 0.90 having a positive predictive value of ≥95% for detecting PAD
and correlating with its severity [4]. However, ABI is unreliable in certain populations,
such as those with diabetes or chronic kidney disease, due to medial calcification, which
can produce falsely high ABI values despite the presence of PAD [5–8]. In an observa-
tional study, post-intervention ABI in CLTI patients undergoing endovascular treatment
was not associated with wound healing [9]. Furthermore, a meta-analysis by Wang et al.
demonstrated that there is no correlation between ABI changes and wound healing in CLTI
patients with diabetes [10]. This indicates that ABI is an unreliable predictor of wound
healing in these patients. Color-coded duplex sonography can assess the localization and
severity of arterial stenoses but is limited to medium to large vessels and cannot assess the
microcirculation of the foot. The role of microcirculation in ulcer healing in CLTI patients,
particularly in relation to therapeutic implications, is the subject of ongoing research and is
currently still unclear [11]. There is evidence that impaired microcirculatory function is a
systemic disease causing a variety of clinical manifestations such as renal failure, stroke,
ischemic heart disease, or pulmonary arterial hypertension [12]. Transcutaneous oxygen
pressure (TcPO2) and peripheral oscillography are useful in patients with unreliable ABI,
such as those with media sclerosis, and for estimating wound healing capacity after revas-
cularization [13,14]. However, these methods do not directly assess blood flow or oxygen
saturation in the wound or surrounding tissue. Therefore, an improvement in wound per-
fusion can only be assessed indirectly. Near-infrared spectroscopy (NIRS) using a camera
(e.g., SnapshotNIR, Kent Imaging©) is a relatively new, non-invasive, and non-contact
method to quantify peripheral microcirculation, even within the wound. We hypothesize
that NIRS measurement of microvascular tissue perfusion is a reliable and practical method
for estimating wound healing potential in CLTI patients after endovascular treatment (EVT)
and can predict wound area changes better than ABI measurements.

2. Materials and Methods

Using the prospectively maintained “all-comers” Duesseldorf PTA Registry (Clinical
Trial Registration—Unique identifier: NCT02728479), we analyzed the outcomes of 43 CLTI
patients. This study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Ethics Committee of Heinrich-Heine University Duesseldorf
(NCT02728479). Informed consent was obtained from all subjects included in this study.

2.1. Patients

A total of 27 subjects underwent EVT, and 16 subjects received optimal medical
therapy and wound care only (control group). The decision between EVT and conservative
treatment was made on an individual basis. In most cases, allocation to the conservative
group was based on individual patient preference, especially in cases where EVT was
refused at the time of presentation. In the remaining cases, the treating angiologist made
the treatment decision based on individual patient factors. All patients were treated in the
vascular unit of the Department of Cardiology, Pneumology, and Vascular Medicine at the
University Hospital Duesseldorf. Inclusion criteria were patients over 18 years of age, PAD
Fontaine stage 4, presence of a peripheral arterial wound, and consent for participation.

2.2. Study Design

The EVT group received revascularization and optimal wound care. The control group
received optimal wound care only. Patients were evaluated at the same time intervals.
Vascular assessment was performed at baseline and at four months, with an additional
assessment in the EVT group on the day after EVT. All examinations were performed in
the outpatient unit of the vascular department. Patients were placed in the supine position
for at least 10 min in a quiet, air-conditioned room (22 ◦C).
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2.3. Measurements

Office measurements were performed, including a standardized vascular ultrasound
assessment (10 MHz transducer; Vivid I, GE, San Jose, United States) and measurement
of the ABI. Blood pressure (BP) was measured using an automated clinical digital sphyg-
momanometer (Dynamap Vital Signs Monitor, Dinamap, General Electric Health Care,
Solingen, Germany). ABI was calculated for the leg with the wound as the ratio of the
highest lower limb blood pressure to the higher brachial systolic blood pressure, as recom-
mended in the ESC PAD guideline [15]. StO2, as a surrogate parameter for microcirculatory
tissue perfusion, was measured using a near-infrared spectroscopy (NIRS) device (Snap-
shotNIR, Kent Imaging, Canada). This type of NIRS measurement has good reproducibility
and agreement with established techniques. Its current clinical use is mainly in reconstruc-
tive surgery and wound care [16,17]. This camera is capable of non-invasively detecting
oxyhemoglobin/myoglobin saturation levels up to a depth of 5 mm. StO2 is reported as
color-coded StO2 maps. Measurements were taken in three defined regions: the wound,
defined as the region where the skin barrier was not intact; the wound area, defined as
the region immediately surrounding the wound; and finally, the mean of the whole foot,
obtained by measuring the sole of the foot and the toes. Five measurements of the wound
and wound area, five measurements of the sole, and one measurement of the nail fold of
each toe were taken for the mean of the foot. The mean was then calculated. Wound assess-
ment was performed by measuring the wound area in mm2 from the NIRS photographs
taken and additionally by obtaining the wound, ischemia, and foot infection (WIfI) score at
pre- and post-treatment. The WIfI score is a classification system developed by the Lower
Limb Guidelines Committee of the Society for Vascular Surgery (SVS) to categorize the risk
factors for amputation in CLTI patients: wound, ischemia, and foot infection. It includes a
scoring system for clinical and hemodynamic assessment of the lower limb, with 0–3 points
possible in each category (totaling 0–9 points) [18]. The WIfI score is an established score
for wound healing tendency and the need for amputation [19].

2.4. Statistical Analysis

StO2 values and wound area parameters did not show a normal distribution, so mainly
non-parametric tests were used. Continuous variables were compared using the Mann–
Whitney U test. Categorical and ordinal variables are presented as absolute numbers and
percentages, and statistical comparisons were made using the Wilcoxon test. ABI values
showed a normal distribution, so continuous variables were compared using Student’s
t-test. Spearman correlation was used for correlations in non-parametric data and Pearson
correlation was used for parametric data. Linear regression was used to identify possible
predictors for outcomes. Parametric data were presented as mean ± standard deviation,
and non-parametric data were presented as median and interquartile range (IQR). Data
were analyzed using GraphPad Software Prism version 9.00 and IBM SPSS software version
27.0.

3. Results
3.1. Baseline Characteristics

We prospectively analyzed 43 CLTI patients with arterial foot ulcers. A total of
27 subjects underwent EVT, and 16 subjects received optimal wound care. Follow-up was
approximately four months (mean 129 days) in both groups, with five patients lost to follow-
up (four EVT and one in the control group). Reasons for the loss to follow-up were death in
four cases and failure to return for follow-up in one case. The mean age was 77 ± 8 years
(mean ± SD) in the EVT group and 75 ± 12 years (mean ± SD) in the control group.
The majority of patients were male (89% in the EVT group and 100% in the conservative
group). EVT was most commonly performed below the knee (26 treated lesions) and
femoropopliteal (13 treated lesions). Details of patient characteristics are presented in
Table 1, and further characteristics are shown in Appendix A (Tables A1 and A2).
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Table 1. Baseline characteristics of the study population.

EVT (n = 27) Control (n = 16) p-Value

Patient characteristics
Male sex 24 (88.9) 16 (100) 0.21
Age—year(s) 77 ± 8 75 ± 12 0.55
Mean follow-up time—day(s) 129 ± 32 129 ± 47 0.40
Body mass index—kg/m2 28 ± 6 28 ± 5 0.88
Hypercholesterolemia 14 (52) 9 (56) 0.78
Hypertension 26 (96) 15 (94) 0.71
Coronary artery disease 21 (78) 13 (81) 0.79
Peripheral artery disease IV 27 (100) 16 (100) 1.0
Diabetes mellitus 22 (81) 13 (81) 0.99
Chronic kidney failure 23 (85) 12 (75) 0.62
Dialysis 2 (7) 1 (6) 0.89
Smoker 23 (85) 15 (94) 0.40

Laboratory
Hemoglobin—g/dL 11.8 ± 2 11.9 ± 2 0.87
Creatinine—mg/dL 1.9 ± 1.5 1.7 ± 1.1 0.51
LDL cholesterol—mg/dL 87 ± 23 91 ± 21 0.64
HbA1c—% 7.3 ± 1.7 7 ± 2 0.59

Peripheral hemodynamics
Systolic blood pressure—mmHg 142 143 0.97
Diastolic blood pressure—mmHg 76 71 0.71
ABI 0.72 ± 0.21 0.82 ± 0.22 0.34

Wound characteristics baseline
Mean foot—% StO2 66.7 (11) 80.5 (5.5) 0.49
Wound area—% StO2 66.1 (28.4) 70.9 (21.6) 0.45
Wound—% StO2 38 (49.3) 63.1 (31.4) 0.12
Wound area—mm2 343.1 ± 267.4 272.3 ± 274.1 0.44
Wound closed by follow-up 9 (33) 2 (13) 0.66
WIfI score 3.5 ± 1.4 2.5 ± 1.3 0.29

Data are presented as n (%), mean ± standard deviation, or median (interquartile range). (ABI = ankle–brachial
index, EVT = endovascular treatment, StO2 = tissue oxygen saturation, WIfI score = wound, ischemia, and foot
infection score.).

There were no significant differences between the two groups regarding age, sex,
medication, or comorbidities at baseline. Baseline StO2 measurements of the mean foot
(mean (interquartile range (IQR)), 66.7 (11) vs. 80.5 (5.5) %), wound area (66.1 (28.4) vs.
70.9 (21.6) %) and wound (38 (49.3) vs. 63.1 (31.4) %) tended to be lower in the EVT group,
while there was no significant statistical difference. At baseline, the wound area tended to
be larger in the EVT group (mean ± SD, 343.1 ± 267.4 to 178.1 ± 268.5 mm2) with a wound
area range of 7.1–904.7 mm2 in the EVT group and 23.8–710.1 mm2 in the control group,
but this observation was below the level of significance. The ABI tended to be slightly
lower in the EVT group (mean ± SD, EVT: 0.72 ± 0.21, C: 0.82 ± 0.22). However, these
differences were not significant. In the EVT group, a mean volume of 54 ± 24 mL contrast
agent (n = 25) and 100 ± 28 mL CO2 (n = 2) was used during the procedure.

3.2. Response to Treatment
3.2.1. Wound Area

At baseline, there was no significant difference in wound area between the two groups
(EVT: 343.1 ± 267.8 mm2; C: 272.3 ± 274.1 mm2; p = 0.44). In the EVT group, there was
a significant reduction in wound area between pre and follow-up (343.1 ± 267.8 mm2 vs.
178.1 ± 268.5 mm2, p = 0.009). In the control group, there were no significant changes
in wound area between pre and follow-up (272.3 ± 274.1 mm2 vs. 199.2 ± 249.1 mm2,
p = 0.249) (Figure 1). There was a significant difference in wound area reduction between
the two groups from pre to follow-up (EVT: −165 ± 280.3%; C: −73.1 ± 245.8%; p = 0.032).
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Figure 1. Changes in wound area between pre and four-month follow-up in the EVT group (a) and
control group (b). ** = p < 0.01; ns = not significant. (EVT = endovascular treatment.)

3.2.2. WIfI Score

There was no significant difference in the WIfI score between the two groups at
baseline (mean ± SD, EVT: 3.5 ± 1.4 points; C: 2.5 ± 1.3 points p = 0.29), while the WIfI
score tended to be higher in the EVT group. The maximum score in the EVT group was 6 out
of 9 possible points, while the maximum score in the control group was 5 points at baseline.
In the EVT group, there was a significant improvement in the WIfI score between pre and
follow-up (3.5 ± 1.4 points vs. 1.7 ± 1.5 points, p < 0.001), whereas in the control group,
there was no difference between pre and follow-up (2.5 ± 1.3 points vs. 1.8 ± 1 points,
p = 0.059) (Figure 2). The exact scoring in the EVT group between pre and follow-up was
wound (W) 1.7 ± 0.6 vs. 0.83 ± 1 points, ischemia (I) 1.1 ± 0.8 vs. 0.7 ± 0.7 points, and
foot infection (FI) 0.7 ± 0.7 vs. 0.2 ± 0.4 points. Exact scoring in the control group between
pre and follow-up was wound (W) 1.5 ± 0.8 vs. 1.1 ± 0.8 points, ischemia (I) 0.8 ± 0.7
vs. 0.7 ± 0.7 points, and foot infection (FI) 0.2 ± 0.4 vs. 0.1 ± 0.3 points. A significant
correlation was observed between changes in WIfI score and reduction in wound area
in the study population (r = 0.513, p = 0.002). In the subgroup analysis, the correlation
remained significant in the EVT group (r = 0.558, p = 0.016), while there was no correlation
in the control group (p = 0.59).

Biomedicines 2024, 12, x FOR PEER REVIEW 6 of 14 
 

 

Figure 2. Absolute WIfI scoring of the study participants in the EVT group and the control group; 

max. rating in this study population was 6 out of 9 points. *** = p < 0.001; ns = not significant. (EVT 

= endovascular treatment.) 

3.3. Prediction of Wound Healing 

3.3.1. NIRS Measurements 

The EVT group showed a significant increase between pre- and post-intervention in 

median StO2 values of the wound (median (IQR), pre 38 (49.3)% vs. post 45 (50.0)%, p = 

0.01), the wound area (pre 66.1 (28.4)% vs. post 72.2 (21.1)%, p = 0.002) and the mean foot 

(pre 66.7 (11.0)% vs. post 69.8 (11.9)%, p = 0.005). Concurrently, StO2 values increased 

significantly between pre and follow-up measurements of the wound (38 (49.3)% vs. 60 

(34.5)%, p = 0.004), the wound area (66.1 (28.4)% vs. 78 (16.8)%, p < 0.001) and the mean 

foot (66.7 (11)% vs. 73.8 (7.7)%, p < 0.001). In the control group, there were no significant 

changes between pre and follow-up in StO2 values of the wound (63.1 (41.8)% vs. 63 

(26.8)%, p = 0.17), the wound area (70.9 (21.6)% vs. 72.8 (18.3)%, p = 0.89) and the mean foot 

(66.8 (14.6)% vs. 77 (15.4)%, p = 0.084). The data are shown in Figure 3. 

(a) 

  

Figure 2. Absolute WIfI scoring of the study participants in the EVT group and the control group;
max. rating in this study population was 6 out of 9 points. *** = p < 0.001; ns = not significant.
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3.3. Prediction of Wound Healing
3.3.1. NIRS Measurements

The EVT group showed a significant increase between pre- and post-intervention
in median StO2 values of the wound (median (IQR), pre 38 (49.3)% vs. post 45 (50.0)%,
p = 0.01), the wound area (pre 66.1 (28.4)% vs. post 72.2 (21.1)%, p = 0.002) and the mean
foot (pre 66.7 (11.0)% vs. post 69.8 (11.9)%, p = 0.005). Concurrently, StO2 values in-
creased significantly between pre and follow-up measurements of the wound (38 (49.3)%
vs. 60 (34.5)%, p = 0.004), the wound area (66.1 (28.4)% vs. 78 (16.8)%, p < 0.001) and
the mean foot (66.7 (11)% vs. 73.8 (7.7)%, p < 0.001). In the control group, there were no
significant changes between pre and follow-up in StO2 values of the wound (63.1 (41.8)%
vs. 63 (26.8)%, p = 0.17), the wound area (70.9 (21.6)% vs. 72.8 (18.3)%, p = 0.89) and the
mean foot (66.8 (14.6)% vs. 77 (15.4)%, p = 0.084). The data are shown in Figure 3.
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The reduction in wound area from baseline to follow-up correlated significantly with
improvements in wound StO2 (r = −0.47, p = 0.004) and wound area StO2 (r = −0.395,
p = 0.015) in the study population (Figure 4). In the subgroup analysis, the correlation was
also significant in the EVT group (wound: r = −0.579, p = 0.004, wound area: r = −0.459,
p = 0.028), whereas the correlation remained below the level of significance in the control
group (wound: p = 0.668, wound area: p = 0.237). Linear regression revealed that StO2
changes in the wound, but not the wound area, predicted a reduction in wound area (β-
coefficient −0.535, p = 0.009; see Figure 4), unlike the control group in the observed study
population. Age, smoking, and diabetes were not predictors of changes in wound area.
Changes in WIfI score significantly correlated with changes in wound StO2 (r = −0.428,
p = 0.042) between pre- and post-intervention. In addition, changes in WIfI score correlated
significantly with changes in StO2 of the wound (r = −0.419, p = 0.011) and wound area
(r = −0.390, p = 0.019) between pre and follow-up. These results remained below the
significance level when the two groups were analyzed separately. Figure 5 shows an
example of the different NIRS photos over time in one patient after EVT.
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Figure 4. Correlations between changes in wound area and changes in StO2 of the wound (a), wound
area (b), and ABI (c) between pre and follow-up in the EVT and the control group. ** = p < 0.01;
* = p < 0.05. (ABI = ankle–brachial index, EVT = endovascular treatment, StO2 = tissue oxygen
saturation.)
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Figure 5. Example of NIRS camera images of a left foot ulcer (digitus 1) before (a), after (b), and at
four-month follow-up (c) after endovascular treatment. (StO2 = tissue oxygen saturation.)

3.3.2. ABI Measurements

The EVT group showed a significant increase in ABI between pre- and post-intervention
(mean ± SD, 0.72 ± 0.21 vs. 0.83 ± 0.15, p = 0.005), but no significant increase between pre
and follow-up (0.72 ± 0.21 vs. 0.8 ± 0.2, p = 0.061). In the control group, there were no
significant changes in ABI values of the affected leg between pre and follow-up (0.82 ± 0.23
vs. 0.84 ± 0.16, p = 0.98) (Figure 6). There were no correlations between ABI measurements
and changes in StO2, changes in wound area, or WIfI score in both groups. ABI was not a
predictor of changes in wound area.
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Figure 6. Ankle–brachial index (ABI) of the affected leg between pre and follow-up in the EVT (a) and
the control group (b). ** = p < 0.01; ns = not significant. (EVT = endovascular treatment.)

4. Discussion

This study demonstrates for the first time that (i) successful EVT in CLTI patients
improves wound and wound area tissue oxygen saturation, and (ii) improvement in
wound and wound area tissue oxygen saturation correlates with wound healing according
to wound area and WIfI score, unlike the ABI. This suggests that advanced arterial wound
monitoring with NIRS may improve the management of arterial wounds in CLTI patients.

4.1. Management of CLTI Patients

CLTI patients with chronic ulcers often require endovascular or surgical treatment,
but standard technologies (ABI, duplex ultrasound) cannot reliably assess early treatment
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efficacy. Few studies have evaluated diagnostic tools for wound healing in CLTI patients.
Kayama et al. used a finger-mounted tissue oximeter in 34 CLTI patients with foot ulcers
and found that a tissue oxygen saturation threshold of ≥50% predicted wound healing [20].
Maheshwari et al. analyzed 14 PAD patients with chronic wounds after revascularization
using the Dynamic Vascular Optical Spectroscopy (DVOS) system, showing a strong
correlation between a hemoglobin parameter and wound healing [21]. Other studies
have evaluated the peripheral microcirculation in PAD patients after revascularization
without focusing on wound healing. Geskin et al. used the same NIRS camera as in this
study to evaluate tissue perfusion in patients with PAD without ulcers before and after
revascularization and found a significant increase in StO2 values after intervention but
no correlation with changes in ABI. These results are consistent with our findings and
support the hypothesis that ABI is not a reliable marker of peripheral tissue perfusion after
revascularization [22]. Boezeman et al. used a single optode near foot ulcers to measure
StO2 and also found significant increases after revascularization [23]. These studies did not
measure directly in the wound, as the tools used were not designed for this, highlighting
the differences in global and local oxygen saturation that influence wound healing. This
study is the first to evaluate tissue oxygen saturation in the wound and surrounding area
as a predictor of wound healing before and after EVT in CLTI patients.

4.2. Improvement in Wound Tissue Oxygenation Correlates with Wound Healing

This small, prospective exploratory study shows significant increases in StO2 values
in the whole foot, the wound area, and the wound itself after EVT, with no significant
changes in the control group at four months follow-up. These results were expected due
to the revascularization of flow-limiting stenoses. In addition, a correlation was observed
between the improvement in StO2 values of the wound and wound area, which can
be considered a surrogate parameter for microcirculation, and the reduction in wound
area in the study population. Based on these findings, it can be discussed whether the
wound area may be used as an absolute surrogate parameter for ischemia in PAD patients.
Wound healing in PAD patients with foot ulcers is complex and multifaceted, requiring a
multidisciplinary approach. It depends on several factors, including adequate blood supply,
infection control, wound debridement, and patient compliance. Therefore, wound area was
not considered as an absolute surrogate parameter in this study as it does not adequately
represent the complexity of wounds. In the EVT group, there were no significant changes
between post-EVT and follow-up, nor was wound StO2 at post-EVT a predictor of wound
healing. A possible explanation for this observation could be a transient contrast medium
effect after angiography, as the post-EVT measurements were taken the day after EVT.
This hypothesis is supported by the fact that some patients initially showed a reduction
in StO2 post-EVT, whereas StO2 increased again at follow-up (see Figure 3). However,
no correlation was found between the ABI, the current gold standard in the diagnosis
of PAD, and the peripheral StO2 values before or after EVT. Changes in ABI and StO2
showed no correlation. The results suggest that the ABI and tissue oxygen saturation are
parameters to be considered and evaluated independently. These findings are consistent
with previous studies [22–24] and demonstrate the importance of considering local wound
tissue oxygenation.

4.3. NIRS Monitoring of Complex Arterial Wounds

A significant advantage of NIRS is its ability to quantify tissue oxygen saturation
directly in and around the wound in a non-invasive and non-contact manner. This small,
prospective exploratory study indicates that NIRS is a rapid, efficient, and practical method
for assessing surrogate parameters of wound perfusion and estimating healing tendencies
in CLTI patients post-EVT. NIRS is particularly reliable for low-risk wounds with small or
no areas of gangrene/necrosis, which are common in clinical practice (mean WIfI score 3.4
at baseline in the EVT group, maximum WIfI score 6). The correlation between changes
in wound area as well as WIfI score and StO2, but not ABI, supports the hypothesis that
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ABI is not a reliable parameter for estimating wound healing in CLTI patients. A possible
explanation for why the correlation between StO2 and wound area in the subgroup analysis
was significant only in the EVT group but not in the control group could be the small
number of patients in the control group. Changes in wound StO2 between pre and follow-
up were a predictor of wound area reduction. For a better clinical assessment of the wound
healing tendency immediately after EVT, it would be useful to know whether StO2 changes
between pre- and post-EVT are also a predictor of wound healing. In our study population,
the post-EVT measurements were taken on the day after the EVT, which may have been
too early to measure significant differences, as other factors (e.g., use of contrast medium
on the previous day, time to final improvement in tissue oxygen saturation) may have
confounded the results.

4.4. Limitations

The limitations of this study include the small study population and the lack of
randomization. The limited number of participants may affect the statistical power, gener-
alizability, and reproducibility of this study. This study was not randomized, which may
have biased the results in this cohort. There were small differences between the groups
at baseline, but these were below the level of significance. The EVT group had lower
tissue oxygen saturation, lower ABI, and larger wounds. These circumstances may have
influenced the decision of the treating vascular specialist as to when to perform revascular-
ization and which group to allocate the patient to. There was a loss to follow-up of five in
the EVT group and one in the control group. Some data could not be analyzed because not
all parameters could be determined in every patient. In addition, this was a predominantly
male study cohort, making it difficult to extrapolate the findings to female patients with
CLTI.

5. Conclusions

This small exploratory study demonstrates the efficacy of EVT in CLTI patients using
NIRS to monitor StO2 in wounds and surrounding areas, highlighting significant improve-
ments in wound perfusion and healing outcomes after EVT. The results suggest that NIRS
is a practical, rapid, and efficient method for assessing wound perfusion and healing
tendencies in CLTI patients, offering advantages over the traditional ABI, which did not
reliably correlate with wound healing in this study. Despite this study’s small sample size
and lack of randomization, the results suggest that NIRS could improve clinical practice by
better predicting healing outcomes. In conclusion, this study highlights the importance
of local wound StO2 in predicting healing outcomes and supports the use of NIRS as a
superior diagnostic tool over ABI in assessing the efficacy of revascularization procedures
in CLTI patients. Future studies should aim to confirm these findings and explore the
long-term benefits of incorporating NIRS into the standard care of CLTI patients.
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Abbreviations

ABI = ankle–brachial index, ACE inhibitor = angiotensin-converting-enzyme inhibitor, ASS =
aspirin, AT1 antagonist = angiotensin 1 receptor antagonist, BP = blood pressure, BTK = below the
knee, CLTI = chronic limb-threating ischemia, e.g., = example given, EVT = endovascular treatment,
IQR = interquartile range, NIRS = near-infrared spectroscopy, NOACs = non-vitamin K antagonist
oral anticoagulants, PAD = peripheral artery disease, PTA = percutaneous transluminal angioplasty,
SD = standard deviation, StO2 = tissue oxygen saturation, SVS = Society for Vascular Surgery, TcPO2

= transcutaneous oxygen pressure, WIfI score = wound, ischemia, foot infection score.

Appendix A

Table A1. Medication of the study population.

Medication EVT (n = 27) Control (n = 16) p-Value

ASS 13 (48) 9 (56) 0.61
P2Y12 inhibitor 12 (44) 6 (38) 0.66

NOACs 11 (41) 5 (31) 0.54
Cumarine 9 (33) 3 (19) 0.31

Statin 21 (78) 15 (94) 0.18
Metformin 8 (30) 4 (25) 0.75

Insulin 16 (63) 10 (63) 0.98
Betablocker 23 (85) 11 (69) 0.35

ACE inhibitor/AT1
antagonist 16 (59) 11 (69) 0.55

Calciumantagonist 10 (37) 9 (56) 0.23
Diuretics 23 (85) 12 (75) 0.31

Data are presented as n (%) (ACE inhibitor = angiotensin-converting-enzyme inhibitor, AT1 antagonist = an-
giotensin 1 receptor antagonist, ASS = aspirin, EVT = endovascular treatment, NOACs = non-vitamin K antagonist
oral anticoagulants).

Table A2. Vessel segment of the procedure/stenosis.

Localization of Stenosis EVT Control

Iliacal 4 3
Femoropopliteal 13 12

Below the knee (BTK) 26 17
Bypass 1 1

Data are presented as absolute numbers (EVT = endovascular treatment).
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