Diagnostic Performance of Serum Leucine-Rich Alpha-2-Glycoprotein 1 in Pediatric Acute Appendicitis: A Prospective Validation Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics
2.2. Study Design
2.3. Primary and Secondary Outcomes
2.4. Sample Size Calculation
2.5. Analyzed Variables
2.6. Sample Collection and Determination of LRG-1
2.7. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Characteristics
3.2. Serum LRG-1 Values
3.3. Diagnostic Performance of LRG-1 for Diagnosing Pediatric Acute Appendicitis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gadiparthi, R.; Waseem, M. Pediatric Appendicitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Mostafa, R.; El-Atawi, K. Misdiagnosis of Acute Appendicitis Cases in the Emergency Room. Cureus 2024, 16, e57141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benabbas, R.; Hanna, M.; Shah, J.; Sinert, R. Diagnostic Accuracy of History, Physical Examination, Laboratory Tests, and Point-of-care Ultrasound for Pediatric Acute Appendicitis in the Emergency Department: A Systematic Review and Meta-analysis. Acad. Emerg. Med. 2017, 24, 523–551. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.M.; Suh, C.H.; Cho, Y.A.; Kim, J.R.; Lee, J.S.; Jung, A.Y.; Kim, J.H.; Lee, J.Y.; Kim, S.Y. The diagnostic performance of reduced-dose CT for suspected appendicitis in pediatric and adult patients: A systematic review and diagnostic meta-analysis. Eur. Radiol. 2018, 28, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.M.; Kulaylat, A.N.; Hollenbeak, C.S.; Engbrecht, B.W.; Dillman, J.R.; Methratta, S.T. Magnetic resonance imaging in pediatric appendicitis: A systematic review. Pediatr. Radiol. 2016, 46, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Gudjonsdottir, J.; Marklund, E.; Hagander, L.; Salö, M. Clinical Prediction Scores for Pediatric Appendicitis. Eur. J. Pediatr. Surg. 2021, 31, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Arredondo Montero, J.; Bardají Pascual, C.; Antona, G.; Ros Briones, R.; López-Andrés, N.; Martín-Calvo, N. The BIDIAP index: A clinical, analytical and ultrasonographic score for the diagnosis of acute appendicitis in children. Pediatr. Surg. Int. 2023, 39, 175. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delgado-Miguel, C.; Muñoz-Serrano, A.; San Basilio, M.; Miguel-Ferrero, M.; de Ceano-Vivas, M.; Martínez, L. The role of the neutrophil-to-lymphocyte ratio in avoiding negative appendectomies. An. Pediatr. (Engl. Ed.) 2023, 98, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Elliver, M.; Salö, M.; Roth, B.; Ohlsson, B.; Hagander, L.; Gudjonsdottir, J. Associations between Th1-related cytokines and complicated pediatric appendicitis. Sci. Rep. 2024, 14, 4613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, T.; Cheng, Y.; Zhou, Y.; Zhang, Z.; Qi, S.; Pan, Z. Diagnostic performance of type I hypersensitivity-specific markers combined with CRP and IL-6 in complicated acute appendicitis in pediatric patients. Int. Immunopharmacol. 2023, 124, 110977. [Google Scholar] [CrossRef] [PubMed]
- Druhan, L.J.; Lance, A.; Li, S.; Price, A.E.; Emerson, J.T.; Baxter, S.A.; Gerber, J.M.; Avalos, B.R. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLoS ONE 2017, 12, e0170261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, Y.; Xu, Y.; Chen, X.; Wu, Y.; Fu, L.; Lv, Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front. Pharmacol. 2022, 12, 809225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arredondo Montero, J.; Pérez Riveros, B.P.; Bueso Asfura, O.E.; Rico Jiménez, M.; López-Andrés, N.; Martín-Calvo, N. Leucine-Rich Alpha-2-Glycoprotein as a non-invasive biomarker for pediatric acute appendicitis: A systematic review and meta-analysis. Eur. J. Pediatr. 2023, 182, 3033–3044, Erratum in: Eur. J. Pediatr. 2023, 182, 3045–3047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tintor, G.; Jukić, M.; Šupe-Domić, D.; Jerončić, A.; Pogorelić, Z. Diagnostic Accuracy of Leucine-Rich α-2-Glycoprotein 1 as a Non-Invasive Salivary Biomarker in Pediatric Appendicitis. Int. J. Mol. Sci. 2023, 24, 6043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daniels, J.; Montgomery, E. Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas, 2nd ed.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 395–404. ISBN 9781416040590. [Google Scholar]
- Kharbanda, A.B.; Rai, A.J.; Cosme, Y.; Liu, K.; Dayan, P.S. Novel serum and urine markers for pediatric appendicitis. Acad. Emerg. Med. 2012, 19, 56–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arredondo Montero, J.; Antona, G.; Bronte Anaut, M.; Bardají Pascual, C.; Ros Briones, R.; Fernández-Celis, A.; Rivero Marcotegui, A.; López-Andrés, N.; Martín-Calvo, N. Diagnostic performance of serum pentraxin-3 in pediatric acute appendicitis: A prospective diagnostic validation study. Pediatr. Surg. Int. 2022, 39, 27, Erratum in: Pediatr. Surg. Int. 2022, 39, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kentsis, A.; Ahmed, S.; Kurek, K.; Brennan, E.; Bradwin, G.; Steen, H.; Bachur, R. Detection and diagnostic value of urine leucine-rich α-2-glycoprotein in children with suspected acute appendicitis. Ann. Emerg. Med. 2012, 60, 78–83.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salö, M.; Roth, B.; Stenström, P.; Arnbjörnsson, E.; Ohlsson, B. Urinary biomarkers in pediatric appendicitis. Pediatr. Surg. Int. 2016, 32, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.L.; Fan, J.D.; Chen, Y.; Ho, M.F.; Choo, C.S.; Allen, J.; Low, Y.; Jacobsen, A.S.; Nah, S.A. A novel noninvasive appendicitis score with a urine biomarker. J. Pediatr. Surg. 2019, 54, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Mahalik, S.K.; Bandyopadhyay, D.; Tripathy, B.B.; Pati, A.B.; Mohanty, M.K. Diagnostic accuracy of Leucine-rich α-2 glycoprotein (LRG) as a urinary biomarker in pediatric appendicitis: A prospective observational pilot study from Eastern India. Ann. Pediatr. Surg. 2021, 17, 22. [Google Scholar] [CrossRef]
- Kakar, M.; Berezovska, M.M.; Broks, R.; Asare, L.; Delorme, M.; Crouzen, E.; Zviedre, A.; Reinis, A.; Engelis, A.; Kroica, J.; et al. Serum and Urine Biomarker Leucine-Rich Alpha-2 Glycoprotein 1 Differentiates Pediatric Acute Complicated and Uncomplicated Appendicitis. Diagnostics 2021, 11, 860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yap, T.L.; Fan, J.D.; Ho, M.F.; Choo, C.S.C.; Ong, L.Y.; Chen, Y. Salivary biomarker for acute appendicitis in children: A pilot study. Pediatr. Surg. Int. 2020, 36, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Tintor, G.; Jukić, M.; Šupe-Domić, D.; Jerončić, A.; Pogorelić, Z. Diagnostic Utility of Serum Leucine-Rich α-2-Glycoprotein 1 for Acute Appendicitis in Children. J. Clin. Med. 2023, 12, 2455. [Google Scholar] [CrossRef] [PubMed]
- Rainer, T.H.; Leung, L.Y.; Chan, C.; Leung, Y.K.; Cheng, N.M.; Lai, P.; Cheung, Y.S.; Graham, C.A. Circulating human leucine-rich α-2-glycoprotein 1 mRNA and protein levels to detect acute appendicitis in patients with acute abdominal pain. Clin. Biochem. 2017, 50, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Lontra, M.B.; Savaris, R.F.; Cavazzola, L.T.; Maissiat, J. Comparison of leucine-rich alpha-2-glycoprotein-1 (LRG-1) plasma levels between patients with and without appendicitis, a case-controlled study. Sci. Rep. 2021, 11, 5574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demirci, O.L.; Cevik, Y.; Corbacioglu, S.K.; Taner, A. Value of Leucine-rich alpha-2-glycoprotein-1 (LRG-1) on diagnosis of acute appendicitis in female patients with right lower-quadrant abdominal pain. J. Pak. Med. Assoc. 2017, 67, 1383–1386. [Google Scholar] [PubMed]
Sociodemographics | Group 1 (Healthy Controls) n = 56 | Group 2 (NSAP) n = 52 | Group 3 (PAA) n = 92 | Total | p-Value |
---|---|---|---|---|---|
Age (years) | 8.68 (3.26) | 11.09 (2.48) | 9.6 (3.01) | 9.73 (3.08) | <0.001 |
Sex, Male/Total (percentage) | 46/56 (82.1%) | 24/52 (46.2%) | 59/92 (64.1%) | 129/200 (64.5%) | <0.001 |
Weight, kg | 35.75 (18.38) | 45.36 (15.40) | 35.77 (12.09) | 38.27 (15.47) | <0.001 |
Clinical Variables | Healthy Controls (n = 56) | NSAP (n = 52) | PAA (n = 92) | p-Value |
---|---|---|---|---|
Hours since the onset of pain | - | 31.58 (23.13) | 27.14 (19.42) | 0.38 |
Fever at home >37.8 °C, Yes/no/missing | - | 15/37 | 29/62/1 | 0.85 |
Number of diarrheal stools | - | 0.4 (1.21) | 0.68 (2.48) | 0.59 |
Urinary symptoms, Yes/no/missing | - | 8/44 | 21/70/1 | 0.39 |
Number of emetic episodes | - | 0.56 (1.96) | 2.48 (2.49) | <0.001 |
Hyporexia, Yes/no/missing | - | 35/15/2 | 71/17/4 | 0.21 |
Leukocytes (×109/L) * | - | 9.6 (7.8–12.5) | 16.1 (13–18.8) | 0.0001 *** |
Neutrophils (×109/L) * | - | 5.9 (4.1–8.4) | 13.2 (9.5–16.2) | 0.0001 *** |
C-Reactive Protein (mg/L) | - | 1.7 (1–22.2) | 26.9 (6.4–63.3) | 0.0001 *** |
Initial LRG-1 (ng/mL) * | 23,145 (18,246–27,453) | 27,655 (21,151–38,795) | 40,409 (32,631–53,655) | <0.0001 ** <0.0001 *** |
Clinical Variables | NCAA (n = 64) | CAA (n = 28) | p-Value |
---|---|---|---|
Hours since the onset of pain | 24.63 (18.72) | 32.77 (20.12) | 0.03 |
Fever at home >37.8 °C, Yes/no/ missing | 13/50/1 | 16/12 | 0.001 |
Number of diarrheal stools | 0.75 (2.82) | 0.54 (1.50) | 0.78 |
Urinary symptoms, Yes/no/missing | 14/49/1 | 7/21 | 0.79 |
Number of emetic episodes | 2.24 (2.31) | 3.04 (2.81) | 0.23 |
Hyporexia, Yes/no/missing | 48/13/3 | 23/4/1 | 0.56 |
Leukocytes (×109/L) * | 15.2 (12.1–17.6) | 18 (15.4–21.8) | 0.002 |
Neutrophils (×109/L) * | 12.1 (8.8–15.3) | 15.3 (12.9–17.6) | 0.001 |
C-Reactive Protein (mg/L) | 18.2 (4.7–40.1) | 63.3 (17.4–108) | 0.0006 |
Initial serum LRG-1 (ng/mL) * | 38,686 (31,804–48,816) | 51,857 (34,013–64,202) | 0.02 |
Serum LRG-1 at 12 h post-surgery (ng/mL) *, ** | 41,226 (33,904–50,918) | 60,432 (44,809–69,370) | 0.002 |
Group Comparison | AUC Value | 95% CI | Proposed Serum LRG-1 Cut Off (ng/mL) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Healthy Controls vs. PAA | 0.88 | 0.82–0.94 | 25,610 | 91.2 | 73.2 |
NSAP vs. PAA | 0.75 | 0.67–0.84 | 28,614 | 85.7 | 57.7 |
NCAA vs. CAA | 0.66 | 0.52–0.79 | 44,382 | 64.3 | 64.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arredondo Montero, J.; Ros Briones, R.; Fernández-Celis, A.; López-Andrés, N.; Martín-Calvo, N. Diagnostic Performance of Serum Leucine-Rich Alpha-2-Glycoprotein 1 in Pediatric Acute Appendicitis: A Prospective Validation Study. Biomedicines 2024, 12, 1821. https://doi.org/10.3390/biomedicines12081821
Arredondo Montero J, Ros Briones R, Fernández-Celis A, López-Andrés N, Martín-Calvo N. Diagnostic Performance of Serum Leucine-Rich Alpha-2-Glycoprotein 1 in Pediatric Acute Appendicitis: A Prospective Validation Study. Biomedicines. 2024; 12(8):1821. https://doi.org/10.3390/biomedicines12081821
Chicago/Turabian StyleArredondo Montero, Javier, Raquel Ros Briones, Amaya Fernández-Celis, Natalia López-Andrés, and Nerea Martín-Calvo. 2024. "Diagnostic Performance of Serum Leucine-Rich Alpha-2-Glycoprotein 1 in Pediatric Acute Appendicitis: A Prospective Validation Study" Biomedicines 12, no. 8: 1821. https://doi.org/10.3390/biomedicines12081821
APA StyleArredondo Montero, J., Ros Briones, R., Fernández-Celis, A., López-Andrés, N., & Martín-Calvo, N. (2024). Diagnostic Performance of Serum Leucine-Rich Alpha-2-Glycoprotein 1 in Pediatric Acute Appendicitis: A Prospective Validation Study. Biomedicines, 12(8), 1821. https://doi.org/10.3390/biomedicines12081821