The Impact of Autosomal Dominant Polycystic Kidney Disease in Children: A Nephrological, Nutritional, and Psychological Point of View
Abstract
:1. Introduction
1.1. Renal Manifestations
1.2. Cardiovascular Manifestations
1.3. Therapeutic Possibilities of ADPKD in Children
1.4. Psychological Issues
1.5. Nutritional Issues
2. Summary
3. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, C.L.; Ong, A.C. Autosomal dominant polycystic kidney disease. Clin. Med. 2009, 9, 278–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chapman, A.B.; Devuyst, O.; Eckardt, K.U.; Gansevoort, R.T.; Harris, T.; Horie, S.; Kasiske, B.L.; Odland, D.; Pei, Y.; Perrone, R.D.; et al. Autosomal-dominant polycystic kidney disease (ADPKD): Executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015, 88, 17–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stringer, K.D.; Komers, R.; Osman, S.A.; Oyama, T.T.; Lindsley, J.N.; Anderson, S. Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int. 2005, 68, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Primers 2018, 4, 50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pei, Y. Diagnostic approach in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2006, 1, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Gabow, P.A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 1993, 329, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wei, C.; Li, P.; Sun, X.; Cai, G.; Chen, X.; Hong, Q. Primary cilium in kidney development, function and disease. Front. Endocrinol. 2022, 13, 952055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caprara, C.; Corradi, V.; Curioni, A.; Pegoraro, O.; Giuliani, A.; Gastaldon, F.; Ronco, C. Rene policistico: dall’ereditarietà complessa alla terapia. Biochim. Clin. 2021, 45, S37. [Google Scholar]
- Sussman, C.R.; Wang, X.; Chebib, F.T.; Torres, V.E. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal. 2020, 72, 109649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Porath, B.; Gainullin, V.G.; Cornec-Le Gall, E.; Dillinger, E.K.; Heyer, C.M.; Hopp, K.; Edwards, M.E.; Madsen, C.D.; Mauritz, S.R.; Banks, C.J.; et al. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am. J. Hum. Genet. 2016, 98, 1193–1207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cornec-Le Gall, E.; Torres, V.E.; Harris, P.C. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J. Am. Soc. Nephrol. 2018, 29, 13–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Su, Q.; Hu, F.; Ge, X.; Lei, J.; Yu, S.; Wang, T.; Zhou, Q.; Mei, C.; Shi, Y. Structure of the human PKD1-PKD2 complex. Science 2018, 361, eaat9819. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, A.K.; Piontek, K.; Boletta, A.; Liu, L.; Qian, F.; Xu, P.N.; Germino, F.J.; Germino, G.G. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 2002, 109, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Nauli, S.M.; Kawanabe, Y.; Kaminski, J.J.; Pearce, W.J.; Ingber, D.E.; Zhou, J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 2008, 117, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reiterová, J.; Tesař, V. Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment. Int. J. Mol. Sci. 2022, 23, 3317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McConnachie, D.J.; Stow, J.L.; Mallett, A.J. Ciliopathies and the Kidney: A Review. Am. J. Kidney Dis. 2021, 77, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Rowe, I.; Chiaravalli, M.; Boletta, A. Defects of glucose metabolism in polycystic kidney disease: First studies and future perspectives. G. di Tec. Nefrol. e Dial. 2013, 25, 172–179. [Google Scholar] [CrossRef]
- Subramanian, S.; Leslie, S.W.; Ahmad, T. Autosomal Recessive Polycystic Kidney Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537137/ (accessed on 7 August 2024).
- Pei, Y. A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease? Trends Mol. Med. 2001, 7, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Colgin, L.M.; Hackmann, A.F.; Emond, M.J.; Monnat, R.J., Jr. The unexpected landscape of in vivo somatic mutation in a human epithelial cell lineage. Proc. Natl. Acad. Sci. USA 2002, 99, 1437–1442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lantinga-van Leeuwen, I.S.; Dauwerse, J.G.; Baelde, H.J.; Leonhard, W.N.; van de Wal, A.; Ward, C.J.; Verbeek, S.; Deruiter, M.C.; Breuning, M.H.; de Heer, E.; et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 2004, 13, 3069–3077. [Google Scholar] [CrossRef] [PubMed]
- Hopp, K.; Ward, C.J.; Hommerding, C.J.; Nasr, S.H.; Tuan, H.F.; Gainullin, V.G.; Rossetti, S.; Torres, V.E.; Harris, P.C. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J. Clin. Investig. 2012, 122, 4257–4273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torres, J.A.; Rezaei, M.; Broderick, C.; Lin, L.; Wang, X.; Hoppe, B.; Cowley, B.D., Jr.; Savica, V.; Torres, V.E.; Khan, S.; et al. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J. Clin. Investig. 2019, 129, 4506–4522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leonhard, W.N.; Zandbergen, M.; Veraar, K.; van den Berg, S.; van der Weerd, L.; Breuning, M.; de Heer, E.; Peters, D.J. Scattered Deletion of PKD1 in Kidneys Causes a Cystic Snowball Effect and Recapitulates Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2015, 26, 1322–1333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cornec-Le Gall, E.; Audrézet, M.P.; Chen, J.M.; Hourmant, M.; Morin, M.P.; Perrichot, R.; Charasse, C.; Whebe, B.; Renaudineau, E.; Jousset, P.; et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 2013, 24, 1006–1013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pei, Y.; Lan, Z.; Wang, K.; Garcia-Gonzalez, M.; He, N.; Dicks, E.; Parfrey, P.; Germino, G.; Watnick, T. A missense mutation in PKD1 attenuates the severity of renal disease. Kidney Int. 2012, 81, 412–417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hwang, Y.H.; Conklin, J.; Chan, W.; Roslin, N.M.; Liu, J.; He, N.; Wang, K.; Sundsbak, J.L.; Heyer, C.M.; Haider, M.; et al. Refining Genotype-Phenotype Correlation in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 1861–1868. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rossetti, S.; Kubly, V.J.; Consugar, M.B.; Hopp, K.; Roy, S.; Horsley, S.W.; Chauveau, D.; Rees, L.; Barratt, T.M.; van’t Hoff, W.G.; et al. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int. 2009, 75, 848–855. [Google Scholar] [CrossRef]
- Mantovani, V.; Bin, S.; Graziano, C.; Capelli, I.; Minardi, R.; Aiello, V.; Ambrosini, E.; Cristalli, C.P.; Mattiaccio, A.; Pariali, M.; et al. Gene Panel Analysis in a Large Cohort of Patients with Autosomal Dominant Polycystic Kidney Disease Allows the Identification of 80 Potentially Causative Novel Variants and the Characterization of a Complex Genetic Architecture in a Subset of Families. Front. Genet. 2020, 11, 464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koptides, M.; Mean, R.; Demetriou, K.; Pierides, A.; Deltas, C.C. Genetic evidence for a trans-heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease. Hum. Mol. Genet. 2000, 9, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Hopp, K.; Cornec-Le Gall, E.; Senum, S.R.; Te Paske, I.B.A.W.; Raj, S.; Lavu, S.; Baheti, S.; Edwards, M.E.; Madsen, C.D.; Heyer, C.M.; et al. Detection and characterization of mosaicism in autosomal dominant polycystic kidney disease. Kidney Int. 2020, 97, 370–382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clissold, R.L.; Hamilton, A.J.; Hattersley, A.T.; Ellard, S.; Bingham, C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat. Rev. Nephrol. 2015, 11, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Adeva, M.; El-Youssef, M.; Rossetti, S.; Kamath, P.S.; Kubly, V.; Consugar, M.B.; Milliner, D.M.; King, B.F.; Torres, V.E.; Harris, P.C. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine 2006, 85, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Brook-Carter, P.T.; Peral, B.; Ward, C.J.; Thompson, P.; Hughes, J.; Maheshwar, M.M.; Nellist, M.; Gamble, V.; Harris, P.C.; Sampson, J.R. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease—A contiguous gene syndrome. Nat. Genet. 1994, 8, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.F.; Calvo, A.S.; Franch, P.C.; Lillo, N.C.; Barrachina, I.A. Ciliopathies: A journey through the cilium. An. Pediatría (Engl. Ed.) 2015, 82, 104–105. [Google Scholar] [CrossRef]
- ADPKD Variant Database. 2024. Available online: http://pkdb.pkdcure.org (accessed on 18 June 2024).
- Pei, Y.; Hwang, Y.H.; Conklin, J.; Sundsbak, J.L.; Heyer, C.M.; Chan, W.; Wang, K.; He, N.; Rattansingh, A.; Atri, M.; et al. Imaging-based diagnosis of autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2015, 26, 746–753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gimpel, C.; Bergmann, C.; Bockenhauer, D.; Breysem, L.; Cadnapaphornchai, M.A.; Cetiner, M.; Dudley, J.; Emma, F.; Konrad, M.; Harris, T.; et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat. Rev. Nephrol. 2019, 15, 713–726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fick, G.M.; Duley, I.T.; Johnson, A.M.; Strain, J.D.; Manco-Johnson, M.L.; Gabow, P.A. The spectrum of autosomal dominant polycystic kidney disease in children. J. Am. Soc. Nephrol. 1994, 4, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Sedman, A.; Bell, P.; Manco-Johnson, M.; Schrier, R.; Warady, B.A.; Heard, E.O.; Butler-Simon, N.; Gabow, P. Autosomal dominant polycystic kidney disease in childhood: A longitudinal study. Kidney Int. 1987, 31, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Selistre, L.; de Souza, V.; Ranchin, B.; Hadj-Aissa, A.; Cochat, P.; Dubourg, L. Early renal abnormalities in children with postnatally diagnosed autosomal dominant polycystic kidney disease. Pediatr. Nephrol. 2012, 27, 1589–1593. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.E.; Harris, P.C.; Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 2007, 369, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.; Pohl, M.; John, U. Proteinuria in children with autosomal dominant polycystic kidney disease. Minerva Pediatr. 2018, 70, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Shamshirsaz, A.A.; Reza Bekheirnia, M.; Kamgar, M.; Johnson, A.M.; McFann, K.; Cadnapaphornchai, M.; Nobakhthaghighi, N.; Schrier, R.W. Autosomal-dominant polycystic kidney disease in infancy and childhood: Progression and outcome. Kidney Int. 2005, 68, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Tee, J.B.; Acott, P.D.; McLellan, D.H.; Crocker, J.F. Phenotypic heterogeneity in pediatric autosomal dominant polycystic kidney disease at first presentation: A single-center, 20-year review. Am. J. Kidney Dis. 2004, 43, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Bae, K. Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (V9) [Dataset]. NIDDK Cent. Repos. 2024. [Google Scholar] [CrossRef]
- De Rechter, S.; Breysem, L.; Mekahli, D. Is Autosomal Dominant Polycystic Kidney Disease Becoming a Pediatric Disorder? Front. Pediatr. 2017, 5, 272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gansevoort, R.T.; van Gastel, M.D.A.; Chapman, A.B.; Blais, J.D.; Czerwiec, F.S.; Higashihara, E.; Lee, J.; Ouyang, J.; Perrone, R.D.; Stade, K.; et al. Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int. 2019, 96, 159–169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, D.; Wolfe, M.; Cowley, B.D., Jr.; Wallace, D.P.; Yamaguchi, T.; Grantham, J.J. Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. Am. Soc. Nephrol. 2003, 14, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Meijer, E.; Boertien, W.E.; Nauta, F.L.; Bakker, S.J.; van Oeveren, W.; Rook, M.; van der Jagt, E.J.; van Goor, H.; Peters, D.J.; Navis, G.; et al. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: A cross-sectional analysis. Am. J. Kidney Dis. 2010, 56, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Messchendorp, A.L.; Meijer, E.; Visser, F.W.; Engels, G.E.; Kappert, P.; Losekoot, M.; Peters, D.J.M.; Gansevoort, R.T.; on behalf of the DIPAK-1 Study Investigators. Rapid Progression of Autosomal Dominant Polycystic Kidney Disease: Urinary Biomarkers as Predictors. Am. J. Nephrol. 2019, 50, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Azukaitis, K.; Ju, W.; Kirchner, M.; Nair, V.; Smith, M.; Fang, Z.; Thurn-Valsassina, D.; Bayazit, A.; Niemirska, A.; Canpolat, N.; et al. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int. 2019, 96, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Harskamp, L.R.; Gansevoort, R.T.; Boertien, W.E.; van Oeveren, W.; Engels, G.E.; van Goor, H.; Meijer, E. Urinary EGF Receptor Ligand Excretion in Patients with Autosomal Dominant Polycystic Kidney Disease and Response to Tolvaptan. Clin. J. Am. Soc. Nephrol. 2015, 10, 1749–1756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gimpel, C.; Bergmann, C.; Mekahli, D. The wind of change in the management of autosomal dominant polycystic kidney disease in childhood. Pediatr. Nephrol. 2022, 37, 473–487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Massella, L.; Mekahli, D.; Paripović, D.; Prikhodina, L.; Godefroid, N.; Niemirska, A.; Ağbaş, A.; Kalicka, K.; Jankauskiene, A.; Mizerska-Wasiak, M.; et al. Prevalence of Hypertension in Children with Early-Stage ADPKD. Clin. J. Am. Soc. Nephrol. 2018, 13, 874–883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mekahli, D.; Woolf, A.S.; Bockenhauer, D. Similar renal outcomes in children with ADPKD diagnosed by screening or presenting with symptoms. Pediatr. Nephrol. 2010, 25, 2275–2282. [Google Scholar] [CrossRef] [PubMed]
- Fick, G.M.; Johnson, A.M.; Strain, J.D.; Kimberling, W.J.; Kumar, S.; Manco-Johnson, M.L.; Duley, I.T.; Gabow, P.A. Characteristics of very early onset autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 1993, 3, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Savis, A.; Simpson, J.M.; Kabir, S.; Peacock, K.; Beardsley, H.; Sinha, M.D. Prevalence of cardiac valvar abnormalities in children and young people with autosomal dominant polycystic kidney disease. Pediatr. Nephrol. 2023, 38, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Marlais, M.; Cuthell, O.; Langan, D.; Dudley, J.; Sinha, M.D.; Winyard, P.J. Hypertension in autosomal dominant polycystic kidney disease: A meta-analysis. Arch. Dis. Child. 2016, 101, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Fick-Brosnahan, G.M.; Tran, Z.V.; Johnson, A.M.; Strain, J.D.; Gabow, P.A. Progression of autosomal-dominant polycystic kidney disease in children. Kidney Int. 2001, 59, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Helal, I.; Reed, B.; Mettler, P.; Mc Fann, K.; Tkachenko, O.; Yan, X.D.; Schrier, R.W. Prevalence of cardiovascular events in patients with autosomal dominant polycystic kidney disease. Am. J. Nephrol. 2012, 36, 362–370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ivy, D.D.; Shaffer, E.M.; Johnson, A.M.; Kimberling, W.J.; Dobin, A.; Gabow, P.A. Cardiovascular abnormalities in children with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 1995, 5, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.B.; Johnson, A.; Gabow, P.A.; Schrier, R.W. The renin-angiotensin-aldosterone system and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 1990, 323, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- ESCAPE Trial Group; Wühl, E.; Trivelli, A.; Picca, S.; Litwin, M.; Peco-Antic, A.; Zurowska, A.; Testa, S.; Jankauskiene, A.; Emre, S.; et al. Strict blood-pressure control and progression of renal failure in children. N. Engl. J. Med. 2009, 361, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Abebe, K.Z.; Perrone, R.D.; Torres, V.E.; Braun, W.E.; Steinman, T.I.; Winklhofer, F.T.; Brosnahan, G.; Czarnecki, P.G.; Hogan, M.C.; et al. Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2014, 371, 2255–2266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fathallah-Shaykh, S.A.; Flynn, J.T.; Pierce, C.B.; Abraham, A.G.; Blydt-Hansen, T.D.; Massengill, S.F.; Moxey-Mims, M.M.; Warady, B.A.; Furth, S.L.; Wong, C.S. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin. J. Am. Soc. Nephrol. 2015, 10, 571–577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karava, V.; Benzouid, C.; Hogan, J.; Dossier, C.; Denjean, A.P.; Deschênes, G. Early cardiovascular manifestations in children and adolescents with autosomal dominant polycystic kidney disease: A single center study. Pediatr. Nephrol. 2018, 33, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Jin, X.; Ye, C.; Chen, J.; Mei, C. Carotid vascular remodelling in patients with autosomal dominant polycystic kidney disease. Nephrology 2009, 14, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Kocaman, O.; Oflaz, H.; Yekeler, E.; Dursun, M.; Erdogan, D.; Demirel, S.; Alisir, S.; Turgut, F.; Mercanoglu, F.; Ecder, T. Endothelial dysfunction and increased carotid intima-media thickness in patients with autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 2004, 43, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.L.; Farmer, H.; Cadnapaphornchai, M.A.; Gitomer, B.; Chonchol, M. Vascular dysfunction in children and young adults with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 2017, 32, 342–347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Wu, Y.; Ward, C.J.; Harris, P.C.; Torres, V.E. Vasopressin directly regulates cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 2008, 19, 102–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Perrone, R.D.; Koch, G.; Ouyang, J.; McQuade, R.D.; Blais, J.D.; Czerwiec, F.S.; et al. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2017, 377, 1930–1942. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S.; et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2012, 367, 2407–2418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schaefer, F.; Mekahli, D.; Emma, F.; Gilbert, R.D.; Bockenhauer, D.; Cadnapaphornchai, M.A.; Shi, L.; Dandurand, A.; Sikes, K.; Shoaf, S.E. Tolvaptan use in children and adolescents with autosomal dominant polycystic kidney disease: Rationale and design of a two-part, randomized, double-blind, placebo-controlled trial. Eur. J. Pediatr. 2019, 178, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amedei, A.; D’Elios, M.M. New therapeutic approaches by using microorganism-derived compounds. Curr. Med. Chem. 2012, 19, 3822–3840. [Google Scholar] [CrossRef] [PubMed]
- Santoro, D.; Pellicanò, V.; Visconti, L.; Lacava, V.; Ricciardi, C.; Lacquaniti, A.; Cernaro, V.; Buemi, M. New options for the management of polycystic kidney disease. G. di Tec. Nefrol. e Dial. 2016, 28, 143–152. [Google Scholar] [CrossRef]
- Zafar, I.; Ravichandran, K.; Belibi, F.A.; Doctor, R.B.; Edelstein, C.L. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int. 2010, 78, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Shillingford, J.M.; Murcia, N.S.; Larson, C.H.; Low, S.H.; Hedgepeth, R.; Brown, N.; Flask, C.A.; Novick, A.C.; Goldfarb, D.A.; Kramer-Zucker, A.; et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. USA 2006, 103, 5466–5471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shillingford, J.M.; Piontek, K.B.; Germino, G.G.; Weimbs, T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol. 2010, 21, 489–497. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, F.; Huang, S.-Q.; Cheng, X.-S.; Li, K.; Jiang, X.-L. Metformin reduces decline in the estimated glomerular filtration rate during progression of autosomal dominant polycystic kidney disease: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 11904–11912. [Google Scholar] [CrossRef]
- Gittus, M.; Harris, T.; Ong, A.C. Patient Perspectives on ADPKD. Adv. Kidney Dis. Health 2023, 30, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Rizk, D.; Jurkovitz, C.; Veledar, E.; Bagby, S.; Baumgarten, D.A.; Rahbari-Oskoui, F.; Steinman, T.; Chapman, A.B. Quality of life in autosomal dominant polycystic kidney disease patients not yet on dialysis. Clin. J. Am. Soc. Nephrol. 2009, 4, 560–566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Logan, B.A. The impact of the COVID-19 pandemic on pediatric chronic illness groups. Brown Univ. Child Adolesc. Behav. Lett. 2022, 38, 1–4. [Google Scholar] [CrossRef] [PubMed Central]
- Società Italiana di Nutrizione Umana. LARN: Livelli di Assunzione di Riferimento di Nutrienti ed energia per la Popolazione Italiana, IV Revisione; SICS Editore: Milan, Italy, 2014. [Google Scholar]
- Gowrishankar, M.; Blair, B.; Rieder, M.J. Dietary intake of sodium by children: Why it matters. Paediatr. Child Health 2020, 25, 47–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kramers, B.J.; Koorevaar, I.W.; Drenth, J.P.H.; de Fijter, J.W.; Neto, A.G.; Peters, D.J.M.; Vart, P.; Wetzels, J.F.; Zietse, R.; Gansevoort, R.T.; et al. Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney Int. 2020, 98, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Padoan, F.; Guarnaroli, M.; Brugnara, M.; Piacentini, G.; Pietrobelli, A.; Pecoraro, L. Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines 2024, 12, 911. [Google Scholar] [CrossRef]
- Pecoraro, L.; Mastrorilli, C.; Arasi, S.; Barni, S.; Caimmi, D.; Chiera, F.; Dinardo, G.; Gracci, S.; Miraglia Del Giudice, M.; Bernardini, R.; et al. Nutritional and Psychosocial Impact of Food Allergy in Pediatric Age. Life 2024, 14, 695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Age | Adequate Intake (AI) g/Day | |
---|---|---|
Infants | 6–12 months | 0.4 |
Children– Adolescents | 1–3 years | 0.7 |
4–6 years | 0.9 | |
7–11 years | 1.1 | |
11–17 years | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarnaroli, M.; Padoan, F.; Fava, C.; Benetti, M.G.; Brugnara, M.; Pietrobelli, A.; Piacentini, G.; Pecoraro, L. The Impact of Autosomal Dominant Polycystic Kidney Disease in Children: A Nephrological, Nutritional, and Psychological Point of View. Biomedicines 2024, 12, 1823. https://doi.org/10.3390/biomedicines12081823
Guarnaroli M, Padoan F, Fava C, Benetti MG, Brugnara M, Pietrobelli A, Piacentini G, Pecoraro L. The Impact of Autosomal Dominant Polycystic Kidney Disease in Children: A Nephrological, Nutritional, and Psychological Point of View. Biomedicines. 2024; 12(8):1823. https://doi.org/10.3390/biomedicines12081823
Chicago/Turabian StyleGuarnaroli, Matteo, Flavia Padoan, Cristiano Fava, Maria Giulia Benetti, Milena Brugnara, Angelo Pietrobelli, Giorgio Piacentini, and Luca Pecoraro. 2024. "The Impact of Autosomal Dominant Polycystic Kidney Disease in Children: A Nephrological, Nutritional, and Psychological Point of View" Biomedicines 12, no. 8: 1823. https://doi.org/10.3390/biomedicines12081823
APA StyleGuarnaroli, M., Padoan, F., Fava, C., Benetti, M. G., Brugnara, M., Pietrobelli, A., Piacentini, G., & Pecoraro, L. (2024). The Impact of Autosomal Dominant Polycystic Kidney Disease in Children: A Nephrological, Nutritional, and Psychological Point of View. Biomedicines, 12(8), 1823. https://doi.org/10.3390/biomedicines12081823